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Abstract—In a Network Function Virtualization (NFV) system,
network functions (NFs) are implemented on general-purpose
hardware, including CPU, GPU, and FPGA. Studies have shown
that there is no one-size-fits-all processor, as each processor demon-
strates performance advantages to implement certain types of
NFs. With more general-purpose processors such as GPUs being
deployed in data center servers, the best practice to build a high-
performance NFV service chain should employ available hetero-
geneous processors. However, current NFV systems fail to utilize
these processors for acceleration. This is because, due to separate
memory spaces, data synchronization is demanded to guarantee
correctness, which can incur non-trivial overhead and result in
low performance. This paper proposes AdaptChain, a data man-
agement facility that enables adaptive data sharing and synchro-
nization for hybrid NFV systems on heterogeneous architectures.
AdaptChain shares the host and device memory among NFs in a ser-
vice chain. With adaptive synchronization plan generation and NF
code adaptation, AdaptChain exploits three classes of opportunities
to reduce the amount of synchronized data while guaranteeing
correctness. Experimental results show that AdaptChain improves
the overall throughput by up to 3.2× and reduces the latency by
up to 52%.

Index Terms—Adaptive synchronization, GPU, heterogeneous
architecture, network function virtualization.

I. INTRODUCTION

N ETWORK Function Virtualization (NFV) is a network
architecture concept that virtualizes network functions

(NFs) to provide agile software implementation, deployment,
and management. Studies show that both CPU and Graphics
Processing Unit (GPU) are good at building and accelerating
certain types of NFs [1]. By leveraging the massive number
of cores in GPU, NFs with compute-intensive algorithms can
benefit from the parallel computational capacity of GPU [2],
[3], [4], [5]. For instance, compared with optimized CPU-based
implementations, SHA-1 and 2048-bit RSA decryption show
2.3× and 4.1× performance improvements on GPU, respec-
tively [1]. Instead, for memory-intensive algorithms such as IPv4
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table lookup and Poly1305, CPU outperforms GPU (with PCIe
data transfer) with techniques such as SIMD and prefetching [1],
[6]. As each processor can achieve higher performance in imple-
menting specific network algorithms, a high-performance NFV
system should be able to utilize the most beneficial processors
for each NF. Therefore, a service chain should be able to connect
NFs that are implemented on different processors.

Avoiding or reducing expensive data movements is a common
practice in building high-performance service chains [7], [8].
When each NF chooses the most appropriate processor, a service
chain may consist of both CPU-based NFs and GPU-based NFs,
which we call a hybrid NFV service chain. Different from a
pure CPU-based service chain, the main overhead of a hybrid
service chain comes from the data transfers between the host
memory and the GPU device memory. For packet processing
in GPU, packets must be batched in the host memory and
transferred into the GPU memory through a PCIe bus, which
incurs high costs [9], [10], [11]. Moreover, if an NF writes
packet data in the GPU, packets must be transferred back, so that
the following NFs can read the latest data in the host memory.
For specific algorithms such as IPv4 table lookup, ChaCha, and
SHA-256, PCIe data transfer can result in 2.7×, 3.6×, and 6.0×
performance degradation, respectively [1]. With multiple NFs in
a service chain, data sharing has been an effective technique to
avoid data movements. For instance, with packets being shared
in the host memory, the packet movement overhead between
NFs can be significantly alleviated [7], [12], [13]. However, for
a hybrid service chain with NFs implemented on both CPU and
accelerators, data sharing cannot be directly applied because
NFs write data in two or more separate memory spaces. When
an NF writes a packet field in either the host or GPU memory,
data in the two memory spaces become inconsistent. Conse-
quently, synchronization is demanded to guarantee correctness.
With continuous incoming traffic, synchronizations would be
performed frequently and simultaneously by multiple NFs in a
hybrid service chain. Besides the data transfer overheads, we find
that intensive synchronizations would result in PCIe conflicts
that postpone other data transfers and subsequent GPU kernel
executions. Moreover, performing synchronization also involves
packet parsing, batching, and data copying, which consume
large amounts of CPU computational resources. As a result,
the involved synchronization overhead would offset the benefits
from the heterogeneous processor architectures and result in
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low overall performance. To make things worse, Unified Mem-
ory [14] cannot alleviate the overhead because its coarse-grained
page data migration cannot reduce the amount of transferred
data. This blocks the adoption of heterogeneous processors in
an NFV system since it cannot achieve the expected performance
acceleration.

In this paper, we propose AdaptChain, a data management
facility that enables adaptive data sharing and synchronization
for hybrid service chains on heterogeneous architectures. To
minimize the synchronization costs, AdaptChain exploits three
classes of opportunities to reduce the amount of synchronized
data while guaranteeing correctness, i.e., avoiding unnecessary
synchronization, fine-grained synchronization, and global opti-
mization with transfer pushdown. By exploiting the optimization
opportunities, a synchronization plan is adaptively generated
for a service chain to reduce its data movement costs. With
dynamic code adaptation, NFs in the service chain can read
inputs and write outputs that are specified by the plan. More-
over, to support efficient synchronization, a system framework
with a low-overhead packet state tracking scheme is designed.
With the proposed set of techniques, AdaptChain guarantees
the data consistency between the host and GPU memory while
dramatically alleviating the synchronization overhead.

The main contributions of this paper are as follows.
� We identify the synchronization overhead for NFV systems

on heterogeneous architectures and analyze the opportuni-
ties to alleviate the overhead.

� We propose AdaptChain, a data management facility for
NFV systems on heterogeneous architectures with adaptive
synchronization plan generation.

� We design and implement an NFV system prototype, with
a lightweight packet state tracking scheme that efficiently
applies AdaptChain to reduce data transfer costs.

Our evaluation results show that AdaptChain is capable of
enhancing the overall throughput by up to 3.2× and reducing
the latency by up to 52% for hybrid service chains with complex
functionalities.

II. BACKGROUND AND MOTIVATION

A. Data Movement and Sharing

In an NFV system, NFs form a service chain to
deliver customized network functionalities. To leverage the
architectural advantages of heterogeneous processors to build
a high-performance NFV system, each NF in a service chain
should be implemented and accelerated with an appropriate
processor that meets its computational features. For an NFV
system with hybrid NF implementations on processors such
as CPU and GPU, there are two kinds of data movements in
a service chain: 1) data movement between NFs (in the host
memory): If packets are copied between NFs, it will incur
substantial performance penalties [7]. State-of-the-art NFV
systems address the problem in two main ways, i.e., allocating a
shared memory region and passing pointers among NFs [7], [8],
or discarding virtualization to avoid data movements between
virtual machines [12], [13], [15]. These efforts can reap notable
performance improvements. 2) PCIe data transfer for GPU

Fig. 1. Evaluation of PCIe data transfer overhead.

processing (between the host memory and GPU device memory):
GPU-accelerated NFs need to transfer packets to the GPU
memory for processing. The expensive PCIe data transfers may
result in up to 8× performance degradation for GPU-accelerated
NFs [1]. Specifically, for IPv4 table lookup and Poly1305, GPU
implementations without data transfers achieve 2.0× and
2.8× higher performance than CPU-based implementations.
However, data transfers degrade their performance to be 23.8%
and 27.5% lower than that of CPU-based implementations [1].

For a GPU-accelerated NF, if packet data have already been
stored and shared in the GPU device memory, data transfers
can be avoided to improve performance. Fig. 1 compares the
normalized processing time of an IPSec gateway and NIDS with
data residing in the host or GPU memory. To utilize GPU accel-
eration, an NF preprocesses packets with parsing and batching
(Pre), copies data from the host memory to the GPU device
memory (HtoD), launches GPU kernel processing (GPU), and
transfers packets back (DtoH), which are post-processed and
sent out (Post). For a single batch of packets, HtoD and DtoH
data transfers take 25.8% and 16.8% of the overall processing
time in IPSec and NIDS, respectively. If packets have been
stored in the GPU memory, NFs only need to transfer pointers
of packets in the GPU memory; thus, the HtoD and DtoH
time are dramatically reduced to only 2.5% and 4.9% of the
normalized time, respectively. Besides, it avoids the expensive
batching and memory copying operations in preprocessing and
post-processing, which take 49.2% of the time in IPSec and
35.6% in NIDS. With data being shared in the GPU memory,
the CPU costs in the two NFs are reduced to only 6.3% and
7.1% when normalized to the baseline. For different batches of
packets, these processing stages are executed on CPU and GPU
concurrently. However, data transfers still add overheads and
postpone kernel executions in NFs, which significantly degrades
performance. Overall, processing data in the GPU memory can
reduce the processing time by up to 77.1% and 58.9% for IPSec
and NIDS, which demonstrates that synchronizations play a key
role for enhancing the performance of a hybrid service chain.

The CPU and the integrated GPU in a coupled CPU-GPU
architecture share the host memory, which avoids data move-
ments between the two processors. Due to the limited chip size
of desktop CPUs, the performance of an integrated GPU is much
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Fig. 2. Demanded synchronizations with shared GPU memory.

lower than that of a discrete GPU, which is incompetent to
process tens of gigabits of network traffic [1], [16]. However,
its price is orders of magnitude higher than desktop processors.
Therefore, this paper focuses on heterogeneous architectures
with discrete GPUs, where future PCIe updating would further
unleash their potential.

B. Synchronization and the Overhead

Data sharing has demonstrated its potential to enhance NFV
efficiency, but it requires data synchronization for a service chain
with hybrid NF implementations.

Demanded synchronizations in a hybrid service chain: An
ideal case for data sharing is that GPU-accelerated NFs read and
write data directly in the GPU memory while CPU-based NFs ac-
cess data in the host memory. However, if an NF modifies packets
in either the host or GPU memory, data in the two memory spaces
becomes inconsistent. As a result, synchronization needs to be
performed to guarantee the correctness of NF functionalities,
or the following NF will access the wrong data in the other
memory. Fig. 2 demonstrates two typical cases. (1) In Fig. 2(a),
an IPSec gateway decrypts packets in the GPU memory while the
following CPU-based NIDS performs pattern matching. Thus,
synchronization is required for NIDS to read the decrypted
packet data. (2) Fig. 2(b) shows a case where synchronization
is also performed between two GPU-accelerated NFs. Because
GPU is less efficient at stateful operations for its architectural
characteristics, tasks such as maintaining session states are
usually performed on the CPU. Therefore, session information
is stored and managed in the host memory for the GPU-based
NFs, and a GPU-accelerated IPSec gateway retrieves session
states such as AES keys in the CPU [4]. After the NAT modifies
the destination IPs and ports in the GPU memory, it has to
synchronize its modified information to the host memory so
that the following GPU-based IPSec can read the correct IPs
and ports.

The overhead of synchronization: Besides the expensive PCIe
transfer costs, the performance would be further influenced when
multiple NFs perform synchronizations. There are coexistence
overheads for CPU-based NFs [17], [18], and the new coex-
istence overhead of a hybrid service chain comes from PCIe
data transfer conflicts. Since there are only one or two Host-
to-Device (HtoD) and Device-to-Host (DtoH) DMA engines in
a commodity off-the-shelf GPU, there will be conflicts when
multiple NFs transfer data simultaneously. Consequently, other

Fig. 3. The HtoD data transfer time of firewall with different degrees of
conflicts.

Fig. 4. Synchronizations that can be avoided.

data transfers and the subsequent kernel executions would be
queued and postponed if DMA engines are occupied [19]. Fig. 3
shows the performance degradation caused by PCIe data transfer
conflicts. F denotes the HtoD data transfer latency of a firewall
when it runs alone, and F-I shows that the HtoD latency rises by
47.5% when co-running with an IPSec gateway. For a service
chain with three NFs (F-I-N), i.e., firewall, IPSec, and NIDS, the
HtoD transfer latency of the firewall rises by 80.8%. The figure
illustrates the performance impact of PCIe conflicts, especially
for building complex service chains. With continuous incoming
network traffic, NFs need to perform simultaneous synchro-
nizations frequently, resulting in notable performance penalties.
NVLink provides much higher interconnection performance, but
it can only be used for data transfers between GPUs.

III. OPPORTUNITIES AND CHALLENGES TO ALLEVIATE

SYNCHRONIZATION OVERHEAD

A. Opportunities to Reduce Synchronized Data

We identify that, in many scenarios, synchronizations in a
hybrid service chain can be avoided or optimized to reduce
the amount of transferred data. We classify the optimization
opportunities into three main classes.

1) Avoiding unnecessary synchronization: Synchronizations
are not always necessary for adjacent NFs that work on different
processors. Fig. 4 demonstrates two cases where explicit data
synchronizations are not needed. In Fig. 4(a), the CPU-based
NAT can directly access packets in the host memory because
NIDS does not modify packet data in the GPU memory. Fig. 4(b)
shows another case where packets have already been transferred
to the GPU memory by NIDS. With a CPU-based VPN that
reads and writes packet payloads in the host memory [20], the
GPU-based L4 router does not need to transfer the source and
destination IPs and ports. This is because the VPN does not
modify these fields, so the GPU memory already contains the
latest data.

2) Fine-grained synchronization: NFs read and write different
packet fields [21]. Only transferring needed but modified fields
can save considerable amounts of transferred data. Fig. 5 shows
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Fig. 5. Only synchronizing modified packet fields.

Fig. 6. Transfer pushdown to reduce synchronized data.

a case where the data transferred by an IPSec gateway can be
significantly reduced in different scenarios. In Fig. 5(a), a WAN
optimizer compresses packet payloads and writes packet lengths
in the header. Therefore, the following IPSec gateway needs to
transfer all packet data into the GPU memory for encryption.
Differently, in Fig. 5(b), the first NIDS transfers packets into
the GPU memory, while the second CPU-based NAT modifies
IPs and ports in the host memory. Instead of transferring all
packet data, the third IPsec gateway only needs to transfer IPs
and ports into the GPU memory, as other fields transferred by
NIDS stay unchanged. With an average packet size of 1 KB,
only transferring IPs and ports can reduce more than 98% of
transferred data.

3) Global optimization: For a service chain consisting of mul-
tiple NFs, evaluating the global synchronization cost can further
reduce the overall transferred data. In Fig. 6(a), a GPU-based
firewall transfers 5-tuple (protocol and source and destination
IPs and ports) for packet filtering while the following IPSec
gateway transfers entire packets to the GPU memory. Therefore,
if the firewall transfers all packet data and shares them with IPSec
and NIDS, the repetitive transferring of 5-tuple can be avoided.
Fig. 6(b) demonstrates another service chain that consists of a
GPU-accelerated NAT and a CPU-based WAN optimizer. There
may be redundant logic in NFs when being composed as a
service chain [22]. Since the GPU-accelerated NAT modifies
both the IP addresses and ports, entire packets are transferred to
the GPU memory to recalculate TCP checksums. Checksum is
useful for detecting packet errors when being transferred through
the network. In an NFV system, since multiple NFs are deployed
on the same server to form a service chain, such checksums
become unnecessary, especially considering the huge overhead
incurred. Therefore, while the following WAN optimizer com-
presses packet payloads and recalculates the TCP checksums,
we consider the checksum calculation in NAT as redundant.

A more efficient way is to let the NAT only transfer IPs and
ports without calculating checksums, which not only reduces
data transfer overhead but also saves substantial CPU cycles.

B. Unified Memory Cannot Help

Unified Memory, available in NVIDIA Pascal or newer GPUs,
provides a managed memory space in which both CPU and GPU
see a coherent memory image within the same address space.
It simplifies GPU programming by eliminating the need for
explicit data copying in programs. With a page fault mechanism,
Unified Memory supports on-demand page migration and GPU
memory oversubscription [23]. However, Unified Memory can-
not help address the synchronization overhead for a hybrid CPU-
GPU NFV system. The main reason lies in the coarse granularity
of its page migration mechanism. The minimum data migration
size usually equals the page size in the operating system, such
as 4 KB in x86 or 64 KB in Power [23]. The maximum Ethernet
frame is 1518 bytes, which is much less than the minimum
data migration size. Consequently, if a four-byte destination IP
address is modified, Unified Memory would synchronize the
entire packet and all the other data on the page. With packets
being batched and continuously stored in a shared buffer, each
page in the buffer will become dirty with writes to any packet
field. As a result, packet data in the entire buffer would be
synchronized. Therefore, Unified Memory cannot alleviate the
synchronization overhead because it cannot support fine-grained
synchronization. Heterogeneous Memory Management (HMM)
is an abstraction that further eases programming, with which
GPUs can directly access host-allocated memory. Like Unified
Memory, HMM faces the same problem and cannot address the
synchronization overhead.

C. Challenges for Efficient Synchronization

Without Unified Memory, a software system should be de-
signed to exploit the three classes of optimizations. However,
implementing a synchronization scheme that can handle various
service chains faces the following challenges.

1) Demanding a specific synchronization plan for each service
chain: An NFV system should be extensible to build various
service chains with different NF compositions and implemen-
tations. Moreover, as shown in Fig. 6, a locally optimal plan
by considering only adjacent NFs may be suboptimal for the
service chain. Therefore, the synchronization plan should be
highly adaptive, which may require searching the space of all
possible plans for a service chain.

2) Fixed NF implementation cannot meet different synchro-
nization plans: To adapt to different service chains, an NF
should be flexible to synchronize different packet fields. As
shown in Fig. 5, an IPSec gateway may transfer either all packet
data to the GPU memory or only IPs and ports in some cases.
Therefore, each NF should be able to transfer designated packet
fields and read them in specified memory locations. Simply
implementing an NF as several versions, with each handling
a particular input and output case, however, requires substantial
development efforts, and the code is also hard to maintain.
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Algorithm 1: Synchronization Plan Generation PLANGEN

(i, Plan), where i=0, plan.CV=0xFF..F and Other Plan
Fields are Initialized as 0 or Empty in the First Call.

PLANGEN i, plan
1 if plan.cost > mincost then return;
2 if i==N then (//End of the service chain)
3 mincost = plan.cost;
4 RECORDPLAN (plan);
5 return;
6 if plan.GSB == 1 && plan.CV & CRi �= CRi then
7 return;
8 if NFi.proc == CPU then (// CPU-based NF)
9 if plan.GSB == 1 then

10 plan.CV | = CWi;
11 plan.GV& =∼ CWi;
12 PLANGEN (i+1, plan);
13 else (//GPU-accelerated NF)
14 for allpossible PH2D, PD2H , OutGSB do
15 if (plan.GV |PH2D)&GRi �= GRi then
16 continue;
17 plan.GSB = OutGSB;
18 if plan.GSB == 1 then
19 plan.CV = (plan.CV& ∼ GWi)|PD2H ;
20 plan.GV | = (GWi|PH2D);
21 UPDATEPLAN (&plan, PH2D, PD2H );
22 PLANGEN (i+1, plan);
23 return;

3) Lacking effective and efficient system support: With packets
being processed by different CPU threads and GPU kernels in
NFs, adjacent packets may be processed in a different order.
When synchronizing batched packets from the GPU memory,
the system needs to make sure all the transferred packets in the
batch have completed processing. It requires the system to track
the status of every packet, which incurs non-trivial overhead.
Therefore, efficient system support is demanded to guarantee
both correctness and performance of the system.

Overall, the above challenges make it difficult to exploit the
opportunities to reduce data synchronization costs for hybrid
NFV service chains.

IV. ADAPTIVE SYNCHRONIZATION IN ADAPTCHAIN

We propose AdaptChain, a data management facility that
adaptively optimizes the synchronization costs for a hybrid NFV
service chain. In this section, we describe the main techniques
in AdaptChain on a CPU-GPU heterogeneous architecture.

A. Synchronization Plan Generation

The solution of AdaptChain is to use the read-write behaviors
of NFs to discover the potential data-sharing opportunities be-
tween NFs. According to the read-write behaviors, AdaptChain
can know which modified fields by one processor will not be
read by the other processor in the following NF, which helps
avoid unnecessary synchronizations. AdaptChain proposes an

algorithm to enumerates all possible synchronization plans for
a service chain, and derive the one with the lowest overhead.

Fine-grained Synchronization: AdaptChain adopts fine-
grained synchronization, which only transfers needed data to
minimize its overhead. To know the data inconsistency in the
two memory spaces, each NF needs to correctly specify the read
and write behaviors in involved processors with read-write hints.
The hints used by NFs designate which packet fields are read or
written by CPU and GPU, which can be as small as a two-byte
TCP port. By recording dirty packet fields written by the CPU
and GPU, the system knows which memory keeps the latest
data, thus, the packet fields to be synchronized can be derived
accordingly. In AdaptChain, GPU-accelerated NFs are in charge
of performing synchronizations, while a CPU-based NF always
sees the latest version of its needed packet fields. The reason is
that if a CPU-based NF performs synchronization, it needs to in-
clude GPU supports in the source code and launch an additional
GPU kernel to read needed packet fields, incurring non-trivial
overhead. Based on the mechanism, the H2D and D2H syn-
chronization plans for each GPU-based NF are enumerated and
evaluated to generate an efficient plan for a service chain.

To enable fine-grained synchronization, a CPU-based NF uses
two 32-bit vectors to represent the CPU behavior on packet
fields, i.e., CPU read (CR) and CPU write (CW). For instance,
setting the 5th bit of CR to 1 means that this NF would read
the destination IP address in the CPU. For a GPU-accelerated
NF, besides the CR vector, a GPU read (GR) vector is used
to indicate the packet fields to read in the GPU, and a GPU
write (GW) vector specifies the modified fields. CW is not used
for a GPU-accelerated NF, while a PD2H vector reflects the
synchronized packet fields from the GPU memory to the host
memory.

Synchronization Plan Generation: To derive a synchroniza-
tion plan, AdaptChain enumerates all possible plans with dy-
namic pruning to enhance efficiency. The plan generation algo-
rithm is shown in Algorithm 1. In the process, two 32-bit vectors,
i.e., CPU View (CV) and GPU View (GV), are maintained to
denote the current view of packet fields in the shared host and
GPU memory, respectively. A bit in CV or GV is set as 1 when
the corresponding memory keeps the latest packet field, or 0
otherwise. The views are updated with read-write hints and
the synchronization plan of each NF. We create a GPU shared
buffer (GSB) to share the packets in the GPU memory among
NFs (details in Section 5.1). Since it may needs at least one
PCIe transfer for all packets, we decide whether to enable GSB
according to the overall costs of a service chain.

For a CPU-based NF, which does not perform synchroniza-
tion, CV and GV are updated in lines 10-11. Differently, a GPU-
based NF needs to consider different synchronization plans.
Because AdaptChain adopts global optimization, the scheme
generates the plan that transfers the dirty fields for the current
NF and enumerates possible plans that synchronize fields to be
accessed by following NFs. Packet fields to be synchronized
in the host-to-device direction are recorded in a vector called
PH2D, which is enumerated in Table I. There are two PH2D

plans if GSB is enabled in the previous NF and two plans if
it equals 0. When the GSB is enabled (Input GSB = 1), an
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TABLE I
PH2D ENUMERATION

TABLE II
PD2H ENUMERATION

NF may transfer the needed fields for the GPU kernel where
the GSB does not contain the latest data (the 1st plan). With a
plan, the corresponding bit in the generated vector is 0 if a field
does not need to be synchronized. AdaptChain only needs to
transfer the fields that are marked as 1 from the host memory
to the GPU memory. With the plan, the NF transfers the needed
fields and the pointer of the corresponding packets to the GPU
and merges the fields into the packets stored in the GSB. If
PH2D = 0, which means the GSB already contains all needed
data, the NF only transfers pointers of packets in the GSB as
the input of the GPU kernel. When large payloads need to be
synchronized, transferring and merging them with the packets
stored in the GSB incurs high costs; the second plan can be
chosen to synchronize entire packets, which saves the merging
costs. When the GSB is disabled (Input GSB = 0), an NF may
choose to transfer entire packets to enable GSB (the 2nd plan),
or only transfer GRi fields to perform GPU processing (the 3 rd
plan). In the second plan, the GSB status is changed to enabled.

With the GSB from the PH2D as the input (H2D GSB),
Table II enumerates possible plans of device-to-host synchro-
nizations, which is denoted as PD2H . When the GSB is enabled,
the first plan counts all fields to be read in the following CPU-
based NFs, where NFi+k is the first GPU-accelerated NF after
NFi. It means that a GPU-accelerated NF performs D2H syn-
chronizations so that its subsequent CPU-based NFs and the next
GPU-accelerated NF can read correct data in the host memory.
The last GPU-accelerated NF should synchronize all dirty fields
in the GSB (the 2nd plan). The third plan synchronizes all packet
data back to the host memory. If thePH2D chooses not to enable
GSB, the PD2H can only select the 4th plan to synchronize the
fields written by the GPU kernel. For each possible PH2D and
PD2H combination, CV and GV are updated accordingly in lines
19-20.

Pruning for Fast Search: For a GPU-accelerated NF, there
are a total of six synchronization plans if the GSB equals 1 (2
PH2D× 3 PD2H ) and four plans if it equals 0 (3 if H2D enables
GSB + 1 if not). With k GPU-accelerated NFs, there are a total
of (4 + 6k−1) plans for a service chain. To accelerate the plan
generation process, the algorithm prunes two types of branches.

1) Branches that get incorrect results: When the condition in
line 6 is met, it means NFi will read obsolete data in the host
memory, and the branch is pruned. In lines 15-16, a branch is
also pruned if an NF reads obsolete data in the GPU memory.
2) Costly branches: During the search, we record the amount
of H2D and D2H transferred data and calculate the overall
synchronization cost (line 21). We also maintain the plan with
the lowest overhead. If the cost of a branch has surpassed the cost
of the current optimal plan, the branch is directly pruned before
reaching the leaf node (line 1). The pruning helps accelerate the
search process for complex service chains. When the procedure
reaches the end of the service chain, a plan with a lower cost is
recorded and updated (lines 2-4).

For a synchronization plan, we estimate the costs as three
parts: 1) The PCIe data transfer cost CP = DH2D/SH2D +
DD2H/SD2H , where DH2D and DD2H denotes the amount
of transferred data for each packet in the two directions, and
SH2D and SD2H denotes the corresponding PCIe transfer speed
with batched data. CP estimates the PCIe data transfer time for
a packet. 2) H2D batching cost CH = DH2D/SH , where SH

denotes the host memory copying speed. 3) D2H batching cost
CD = DD2H/SG, whereSG denotes the GPU memory copying
speed. With a synchronization plan of an NF being added to the
service chain, the overall costsC += (CP + CH + CG). When
batching and copying data is too expensive, NFs can transfer
entire packets to avoid the cost. This is the reason why an NF
may choose the second PH2D, and the third PD2H plan to copy
consecutively stored packets even if not all packet fields are
modified.

B. Dynamic NF Code Adaptation

After plan generation, the input and output of the GPU kernel
and the CPU code of each GPU-accelerated NF are changed
to execute the derived synchronization plan, while the code of
CPU-based NFs stays unchanged. The following parts of code
in an NF need to adapt to the plan. 1) The preprocessing stage in
the CPU: As specified inPH2D, the preprocessing stage batches
specified data fields or collects pointers to the duplicated packets
in the shared GPU memory. 2) The GPU kernel: With different
input sources, a kernel should be modified to access data in either
the transferred buffer or the GSB. Besides, the kernel should also
write output in the specified location for D2H transferring. 3) The
post-processing stage in the CPU: Based on the PD2H vector of
an NF, packet fields may need to be transferred from the GPU
memory and used to update packets in the shared host memory.
These three parts are tightly correlated, where the preprocessing
stage provides the input for a kernel, and the post-processing
stage handles its output. Correspondingly, the data transfer and
kernel launch calls also need to adapt to the plan.

To minimize the code complexity while allowing flexibility,
AdaptChain dynamically adapts an NF to a plan with code tem-
plates and conditional compilation. In the preprocessing stage,
for fields in the IP or TCP/UDP header, a packet is first parsed
to locate the start of the header. Then batching is performed to
fetch the targeted fields and store them in a buffer with a code
template: batch(header + field_offset, buffer, field_length). A
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Fig. 7. The system framework.

mapping table is stored to map a fixed-length field in the plan
vector to its corresponding offset in the header and its length.
For variable-length payload, its offset and length are read and
calculated at run time. In the post-processing stage, the same
approach is adopted to update fields in the shared host memory.

For the GPU kernel, the code for two types of input are
generated, i.e., in a transferred buffer or the GSB. We extract
demanded packet fields in the kernel and build flexible code
templates with macros in two steps. Firstly, each field is associ-
ated with a buffer name for separate transferring and added to
the parameters of a kernel function. The buffer name is protected
by a macro, which is only enabled when the plan specifies.
Secondly, in the first lines of a kernel, a demanded packet field is
read into its corresponding variable from either the transferred
buffer or the GSB. Implemented with macros, each variable
selects an input source with conditional compilation. By using
fixed variables to access packet fields, the core algorithm of a
kernel stays unchanged. At last, the GPU kernel writes the fields
to be synchronized into a buffer with the same approach. In this
way, the NFV service chain can be deployed to perform specified
synchronizations.

V. SYSTEM IMPLEMENTATION

A. System Framework

Fig. 7 illustrates the frame of the system prototype, which
consists of two main parts, i.e., initialization and runtime. In
the initialization, the system takes the service chain graph and
read-write hints from NFs as the input. According to the infor-
mation, a synchronization plan is derived for the service chain.
Based on the plan, the system uses conditional compilation to
enable specified input and output memory locations and perform
corresponding data transfers.

At runtime, the hypervisor layer consists of five major func-
tional components: RX, TX, H2D Unit, D2H Unit, and Execution
Proxy. Execution Proxy is in charge of GPU virtualization. It uses
API remoting to virtualize GPUs, where a shared GPU execution
context is created for all NFs so that their kernels can share
the GPU memory space and execute simultaneously. It receives

requests from NFs and performs kernel execution or data transfer
operations with CUDA driver APIs. The implementation of the
mechanism is similar to that in G-NET [19].

Because the PCIe data transfer throughput of a small memory
region is orders of magnitude lower than that of a large continu-
ous one, packets have to be batched for transferring between the
host memory and the GPU memory. In the system prototype,
it shares the host memory among NFs to pass packets, like
NetVM [7] and G-NET. In the GPU memory, we create a GPU
shared buffer (GSB) to share packets among NFs. GSB is imple-
mented as a first-in-first-out ring buffer, where incoming packets
are directly transferred to the tail of the buffer, overwriting obso-
lete packets circularly. The detailed implementation is similar to
that of Gaviss [24]. For a service chain with a designed maximum
system throughput V and an allowed maximum latency T , the
shared buffer size can be set asV · T . For instance, withV = 100
Gbps and T = 1 ms, the shared buffer is calculated as 12.5 MB.
The buffer size guarantees that the overwritten packets have
already been processed by all NFs, so their memory can be
reused safely.

A RX module is deployed at the beginning of the service chain
to receive packets and store them in the shared host memory.
Ahead of the first NF that uses the GSB, the system deploys
a H2D Unit to batch and transfer packets to it. Each packet
is associated with a packet descriptor, which records both its
address in the shared host memory and the duplication in the
GSB. Pointers to packet descriptors are passed among NFs with
queues to reduce data movement costs, and NFs can batch and
transfer GPU pointers to access the corresponding packets in the
shared GPU buffer. When entire packets need to be synchronized
from the GPU device memory (the third PD2H plan is selected),
a D2H Unit is deployed after the NF to help correctly perform
the synchronization (details in Section V-B). After packets flow
through the service chain, a TX module sends the processed
packets out through NICs.

B. Lightweight Packet State Tracking

When entire packets need to be synchronized from the shared
GPU memory (the 3 rd plan in PD2H ), continuously stored
packets in the GSB are transferred in a batch for higher PCIe
efficiency. However, as discussed in Section III-B, with packets
being dispatched to multiple CPU threads in an NF for process-
ing, adjacent packets in the GSB may have an unpredictable
processing order. Therefore, the D2H Unit needs to confirm
that the continuously stored packets in a memory region have
completed processing before being synchronized in a batch.
However, maintaining the states of every packet introduces huge
overheads and results in low performance.

To address the issue, Fig. 8 demonstrates the mechanism in
AdaptChain, where all transferred packets are guaranteed to be
correctly processed with little influence on the system perfor-
mance. AdaptChain divides the GSB as blocks, where a block is
large enough to perform efficient PCIe data transfer in the D2H
Unit. A block is a group of continuously stored packets in the
shared GPU buffer, which is further divided into units. NFs use
the unit as the basic piece in packet forwarding and processing,
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Fig. 8. Packet state tracking with blocks.

i.e., all the packets in a unit are processed and enqueued together.
With blocking queues to pass batched packets, when an NF or
the TX module receives a packet of a unit, it is guaranteed that all
packets in the unit have been received in one dequeue operation.
Therefore, as shown in the figure, the D2H Unit tracks the units
of each block in a state table. Only when all units in a block
have arrived, the entire block can be synchronized (e.g., block k
in the figure).

In AdaptChain, we derive an efficient block size B through
evaluating the PCIe performance. To keep a consistent state
tracking cost, we keep a fixed number of units ((denoted as
k)) in a block. The number of packets to be stored in a unit is
calculated as s = �B/P/k�, where P is the average packet size.
Adopting unit and block is critical for guaranteeing correctness
while alleviating state tracking overhead. The deployment of a
D2H Unit would cause extra overheads, such as packet pointer
passing with queues and delays for state tracking. Therefore,
a penalty cost α is added for the third PD2H plan in Table II.
To optimize the performance, when the D2H Unit is placed at
the end of a service chain, it is merged with the TX module to
reduce extra enqueue and dequeue operations. Note that the state
tracking scheme supports service chains with no branches.

VI. EXPERIMENTS

A. Experimental Setup

Platform: We evaluate the system performance on a server
with an Intel Xeon E5-2695 v4 CPU (2.10 GHz, 18 physical
cores) and 128 GB main memory (DDR4, 2400MT/s, 16 GB ×
8). The server is equipped with a dual-port Mellanox ConnextX-
5 100GbE NIC for network I/O. An NVIDIA Titan X (Pascal)
GPU with 28 streaming multiprocessors (3584 CUDA cores
in total) is installed. The server runs on Ubuntu 20.04 with
Linux kernel 4.15.0-43-generic. Docker 18.09.3 is used as our
virtualization platform, with each NF running as a Docker in-
stance. The GPU kernels of NFs are compiled and executed with
NVIDIA CUDA Toolkit 11.1. The system and NFs are compiled
with GCC 7.5.0. In the evaluation, we implement a network
traffic generator with DPDK, which can consistently generate
synthesized traffic by up to 100 Gbps. The traffic generator runs
on a separate server, which is connected to the server running
AdaptChain with a 100 Gbps optical fiber.

System Configuration: The hypervisor layer of AdaptChain
is deployed as a system process, including RX (×4 threads),
H2D Unit (×4 threads), Execution Proxy (×1 thread), D2H
Unit (×5 threads), TX (×4 threads), and a statistic thread. Each
GPU-accelerated NF takes three threads in the server, with two

Fig. 9. Performance of C1.

threads for packet processing (DP) and one for controlling its
GPU execution (CP), including submitting GPU kernels and data
transfer requests. A CUDA stream is created for each DP thread,
so that they can concurrently transfer packet to the GPU memory
and launch GPU kernels. We use DPDK 18.11 to implement
high-performance packet I/O and queue operations. In packet
state tracking, the block size is set as 1 MB, and a unit contains
256 packets.

NFs and Service Chains: We implement seven NFs in the
experimental evaluation: (a) Router is an IPv4 router that
performs DIR-24-8-BASIC lookup algorithm [25] in packet
routing; (b) Firewall performs packet filtering with bit vector
linear search on the 5-tuple of packets [26]; (c) IPsec gateway
performs packet encryption with HMAC-SHA1 and AES-128
(CTR mode) algorithms; (d) NIDS performs deep packet in-
spection with Aho-Corasick algorithm [27] consisting of 147
rules. (e) NAT performs network address translation, and (f)
Load Balancer (LB) maps and distributes flows to NF instances.
(g) Monitor performs statistics on network traffic. We build
CPU-based and GPU-accelerated implementations of the NFs
to compose different service chains. Since we cannot get the
code of all state-of-the-art implementations for the algorithms,
we implement the NFs by ourselves. Please note that faster
NF implementations would benefit more from our techniques
because the synchronization cost would take a larger portion of
the overall processing time.

Baseline and Evaluation: We implement a baseline system
based on G-NET [19] for performance comparison. G-NET is
the pioneering work on GPU-based NFV systems. It shares
the GPU computational resources among NFs to enhance the
performance. In the baseline system, we adopt G-NET for
GPU-based NFs in the hybrid service chain. Gaviss [24] enables
memory sharing among GPU-based NFs. For C1-C3, a mix
of CPU-based NFs and GPU-based NFs can barely utilize the
advantages of GPU memory sharing. C4 and C5 consist of up
to three consecutive GPU-based NFs, and these NFs share the
GPU memory in the same way as Gaviss.

B. Performance Improvement With Adaptive Fine-Grained
Synchronization

In Fig. 9, we evaluate the performance improvement from
AdaptChain with fine-grained synchronization. Three service
chains are used to evaluate different scenarios that lead to
different synchronization plans: 1) C1: Firewall(C) - IPSec(G)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 04,2024 at 08:54:09 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: ADAPTCHAIN: ADAPTIVE DATA SHARING AND SYNCHRONIZATION FOR NFV SYSTEMS ON HETEROGENEOUS ARCHITECTURES 1289

Fig. 10. Performance of C2.

- NIDS(G); 2) C2: NIDS(G) - NAT(C) - IPSec(G); 3) C3:
IPSec(G) - LB(C) - NIDS(G).

The C or G in the parentheses denotes the running proces-
sor of the NF, which is CPU or GPU. In C1, the firewall is
implemented on the CPU while the IPSec gateway and NIDS
are accelerated by GPU. In the baseline system, IPSec transfers
entire packets because packet headers also need to be decrypted,
while NIDS transfers packet payload to perform deep packet
inspection (DPI). In AdaptChain, the GSB is enabled after the
firewall, and packets are batched and copied to the shared GPU
buffer by the H2D Unit. Then, packet descriptors with their
GPU memory pointers are passed to the IPSec gateway and
NIDS to utilize the shared memory. As shown in Fig. 9(a),
AdaptChain improves the overall throughput by up to 3.2×.
In particular, AdaptChain reduces more transferred data and
achieves much higher improvement for workloads with larger
packets. Fig. 9(b) demonstrates that the normalized transferred
data size in the HtoD direction is reduced by up to 49.1% for the
larger 1518-byte workload and 13.9% for the 64-byte workload.
Take a 64-byte Ethernet frame as an example, the application
layer payload is only 18 bytes for a UDP packet. Therefore, to
perform DPI in an NIDS, the transferred data is reduced from an
18-byte payload and a 4-byte offset to an 8-byte GPU memory
pointer, i.e., a 63.6% reduction. Instead, for a 1518-byte packet,
the transferred payload is 1472 bytes, which is reduced by almost
99.5% with an 8-byte pointer.

For C2, the NAT is implemented on CPU while the NIDS
and IPSec gateway are accelerated by GPU. The CPU-based
NAT modifies IP addresses and ports in the host memory. In the
baseline, the last NF, i.e., the IPSec gateway, has to transfer pack-
ets to the GPU memory again because the host memory keeps
the latest data. Instead of transferring all packet data, the IPSec
gateway in AdaptChain reuses most of the packet data being
shared by NIDS in the GPU memory, and only transfers modified
fields with adaptive synchronization. As shown in Fig. 10(a),
adaptive synchronization improves the overall performance by
14.1%–2.8×. Fig. 10(b) shows that the HtoD transferred data is
reduced by 5.6-48.9% by adaptive synchronization. Specifically,
the H2D transferred data for the IPSec gateway is reduced by
72.0–99.1%.

C3 demonstrates a different scenario that adaptively syn-
chronizes packets in the H2D direction. The GPU-accelerated
IPSec gateway needs all packet data in the GPU memory for
decryption. AdaptChain enables GSB before IPSec, and the
H2D Unit batches and transfers packets into it. IPSec adaptively

Fig. 11. Performance of C3.

Fig. 12. Transferred data reduction of C3.

synchronizes decrypted IP addresses and ports from the GPU
device memory to the host memory so that the following load
balancer can read correct data. The GPU-accelerated NIDS can
directly access the shared payloads in the GPU memory, which
have been decrypted by IPSec. In the end, both the host memory
and GPU memory keep part of the latest data, and the D2H unit
performs synchronization from the device memory to the host
memory. Because the D2H Unit is placed after the last NF, it is
merged with TX to reduce data movement overhead. Fig. 11(a)
demonstrates that adaptive synchronization enhances the over-
all performance by 10%-2.3×. Correspondingly, as shown in
Fig. 12(a), AdaptChain reduces the amount of transferred data
in the HtoD direction by 13.9-49.1%. Because AdaptChain
demands extra synchronizations to transfer decrypted packet
fields to the host memory in IPSec, the DtoH transferred data is
slightly higher than that of the baseline system (Fig. 12(b)).

To investigate the performance improvement in AdaptChain,
we measure the average packet processing time in all stages
of C3. Fig. 11(b) shows the execution time of a batch of
1024 packets in NFs and data plane modules of AdaptChain.
The system throughput is maintained at 10 Gbps. For each
packet size, there are a pair of bars to compare the baseline
system (B) and AdaptChain (A), where the processing time is
normalized to the baseline. For the baseline, the RX and TX
modules implemented with DPDK take only a tiny fraction of
the overall processing time. Around 99.8% of time is taken by
NFs, especially for GPU-accelerated NIDS and IPSec gateway.
Differently, in AdaptChain, packets are batched and transferred
to GPU in the H2D Unit, which takes 5.9–8.9% normalized time,
and synchronized back in the D2H Unit, which takes 26.5-52.3%
normalized time (D2H Unit and TX). The overall execution
time of IPSec, Load Balancer, and NIDS takes 38.7-67.3%
normalized time, which is 41.7-85.9% lower than that of the
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Fig. 13. Performance of C4.

baseline. Overall, AdaptChain reduces the average execution
time by 13.6-63.7%. This figure demonstrates that, after moving
main data transfers from NFs to the H2D Unit and D2H Unit, the
data transfer overhead of the system is dramatically alleviated
with adaptive synchronization.

For these service chains, the reduced data transfer size ap-
proaches 50%, while the performance improvements are up
to 3.2×. The main reason is that adaptive data sharing and
synchronization 1) reduces the amount of transferred data, 2)
mitigates PCIe data transfer conflicts, and 3) alleviates the
batching overhead in CPU in certain NFs. It allows the CPU
to process more packets, leading to a much higher overall
throughput. It is worth noting that our approach can achieve
even higher performance than running each NF alone because
the adaptive data synchronization can reduce the average amount
of transferred data for the NFs.

C. Performance Improvement With Adaptive Global
Optimization

The following two service chains benefit from the global
optimization in AdaptChain. In this subsection, we evaluate the
performance improvements brought by global optimization with
two service chains: 1) C4: Firewall(G) - IPSec(G) - NIDS(G) -
Router(C); 2) C5: Firewall(G)- Monitor(C) - NAT(G) - IPSec(G)
- NIDS(G).

For C4, the firewall in the baseline system copies the 5-tuple
of each packet into the GPU memory, while IPSec and NIDS
need to copy all packets into the GPU memory. Without global
optimization, H2D Unit transfers packet data to the GSB before
IPSec, and data are shared by IPSec and NIDS. Since the fire-
wall only demands the five-tuple, it runs independently without
memory sharing between other NFs. Since AdaptChain adopts
a similar GPU memory sharing scheme as Gaviss, AdaptChain
w/o Pushdown in the figures can represent Gaviss’s perofrmance
for comparison. With global optimization, the system pushes
down the shared data transfer before the firewall and shares data
with all three GPU-accelerated NFs. Therefore, the transferring
of 5-tuple in the firewall is avoided, which only needs to transfer
a packet pointer. Fig. 13 shows that, before global optimization,
the system reduces the HtoD data transfer by 11.8-48.9% and
improves the performance by 3.1%-3.0×. With transfer push-
down, the performance can be further enhanced by 1.8-58.4%.

C5 demonstrates another scenario. Without global optimiza-
tion rules in the plan generation, the H2D Unit is placed before
NAT, which shares data with IPSec and NIDS. Instead, with

Fig. 14. Performance of C5.

Fig. 15. Performance impact by unit size.

global optimization, the system enables GSB before the firewall
rather than NAT, which avoids the transferring of 5-tuple in the
firewall. Fig. 14 shows that compared with the plan without
global optimization, transfer pushdown further reduces the HtoD
data transfer by 0.3-6.0% and improves the performance by
0.7-58.3%. Compared with the baseline system, AdaptChain
reduces the transferred data by up to 49.0% and improves the
throughput by 2.8× in C5.

C4 and C5 show that transfer pushdown has a better effect on
workloads with small packets. Specifically, for 64-byte pack-
ets, the system reduces an additional 6.3% transferred data
and reaches 58.4% throughput improvement in C4, while it
reduces an additional 6.0% transferred data and achieves 58.3%
throughput improvement in C5. This is because the per-packet
processing overheads are comparatively high for small packets.
Transfer pushdown avoids the packet parsing and batching costs
in the firewall by only transferring GPU pointers. Therefore, lots
of CPU resources are saved to process more packets.

D. Performance Impact From Unit Size

Fig. 15(a) evaluates the performance impact from unit size
with C4. In the experiment, the block size is fixed and set as
1 MB, which is sufficient for efficient PCIe transfer. Therefore,
different unit size leads to a different number of units in a
block. Unit size denotes the number of packets in a block, which
defines the granularity of data transfer. Therefore, it influences
the throughput of the D2H Unit. For instance, with a unit size
of 16 and a packet size of 1024 bytes, a block contains 64 units.
With a unit size of 4 and packet size of 64 bytes, instead, a block
contains 4096 units. As shown in the figure, system throughput
stays stable with unit sizes between 16 and 1024. With a unit
size of 4, however, the throughput can be up to 40% lower than
that with a unit size of 64. The reason is that, for workloads with
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Fig. 16. Latency comparison on C1 and C4.

smaller packets or smaller unit sizes, the system needs to handle
more units. As a result, the D2H Unit becomes a bottleneck
when managing the states of too many units.

Fig. 15(b) compares the system latency with five different
unit sizes. With a large unit size, the large granularity of batched
packet passing in NFs would also influence system latency.
For unit sizes between 16 and 1024 with an input speed of
10 Gbps, the 50th percentile latency increases from 3.8 ms to
4.6 ms, while the 95th percentile latency increases from 5.5 ms
to 8.0 ms. However, with a unit size of 4, the 50th and 95th
percentile latency dramatically increases to 9.9 ms and 11.1 ms,
respectively. This is because, when the unit size is very small,
there will be a large number of units in a block, which makes
the D2H Unit spend a significant amount of time checking unit
states. Besides, when the D2H Unit becomes a bottleneck, it
makes packets blocked in the queues between NFs and system
modules, which results in higher system latency. With a larger
unit size, system latency also increases because more packets
need to be batched when being passed and processed in the
service chain. In AdaptChain, we choose a unit size of 256 as it
helps maintain high throughput with only limited effect on the
latency.

E. Evaluation of Latency

Besides the improvements in throughput, the reduction of
transferred data also brought a reduction in overall processing
latency. Fig. 16(a) and (b) demonstrate the latency improvements
of AdaptChain over the baseline system on C1 and C4, respec-
tively. For a fair comparison, the latencies of the two systems are
evaluated with the same input network speed, i.e., 10 Gbps. For
C1, the 50th percentile latency of the baseline is 6.4 ms, while
AdaptChain achieves 4.5 ms latency, which is 30% lower. The
95th percentile latency of AdaptChain is 5.6 ms, which is 39%
lower than that of the baseline system (9.2 ms).

C4 consists of four NFs with three running on GPU. There-
fore, it has a higher degree of conflict compared with C1. In the
baseline system, the 50th percentile latency is 10.2 ms, and the
95th percentile latency is 13.2 ms. The 50th and 95th percentile
latency of AdaptChain are 5.2 ms and 6.4 ms, leading to 49% and
52% reduction over the baseline, respectively. It demonstrates
that, for C4, which demands a higher amount of synchronized
data, the approach of AdaptChain is more effective in reducing
the packet processing latency. This is because, with less amount
of synchronized data, the degree of PCIe conflicts is significantly
alleviated.

VII. RELATED WORK

A series of systems are proposed to build NFV systems on
commodity CPUs [7], [8], [12], [13], [28], [29], [30]. NetVM [7]
is a CPU-based NFV system that utilizes data sharing in the
host memory. As its follow-up work, Microboxes [31] eliminates
redundant TCP processing in a service chain to enhance perfor-
mance. G-NET [19] and Grus [32] are NFV systems that utilize
GPUs to enhance system performance. However, both face the
inefficiencies described in Section II-A. Gaviss [24] shares GPU
device memory among GPU-accelerated NFs. Different from
AdaptChain, Gaviss does not use adaptive synchronization but
directly transfers all packets to the GPU memory in the first
NF, and the rest of the NFs directly process packets in the GPU
memory.

VIII. CONCLUSION

Aiming at solving the data synchronization overhead in hy-
brid NFV service chains on heterogeneous architectures, we
propose AdaptChain, a data management facility for adaptive
data sharing and synchronization in NFV systems. AdaptChain
adaptively generates the synchronization plan for a service chain
and changes the corresponding NF code to deploy the plan.
With an efficient system framework with lightweight packet
state tracking, the correctness of the service chain is guaranteed
with enhanced system performance. Our evaluation results show
that AdaptChain improves the throughput of a hybrid service
chain by up to 3.2× and reduces the latency by up to 52%.
With AdaptChain, existing NFV systems can effectively utilize
heterogeneous architectures to achieve higher performance.
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