
An Agile Sample Maintenance Approach for Agile
Analytics

Hanbing Zhang∗†, Yazhong Zhang∗†, Zhenying He∗†, Yinan Jing∗†, Kai Zhang∗†, X. Sean Wang∗†‡
{hbzhang17, zhangyz17, zhenying, jingyn, zhangk, xywangCS}@fudan.edu.cn

∗ School of Computer Science, Fudan University, Shanghai, China
† Shanghai Key Laboratory of Data Science, Shanghai, China

‡ Shanghai Institute of Intelligent Electronics and Systems, Shanghai, China

Abstract—Agile analytics can help organizations to gain and
sustain a competitive advantage by making timely decisions. Ap-
proximate query processing (AQP) is one of the useful approaches
in agile analytics, which facilitates fast queries on big data by
leveraging a pre-computed sample. One problem such a sample
faces is that when new data is being imported, re-sampling is
most likely needed to keep the sample fresh and AQP results
accurate enough. Re-sampling from scratch for every batch of
new data, called the full re-sampling method and adopted by
many existing AQP works, is obviously a very costly process,
and a much quicker incremental sampling process, such as
reservoir sampling, may be used to cover the newly arrived data.
However, incremental update methods suffer from the fact that
the sample size cannot be increased, which is a problem when the
underlying data distribution dramatically changes and the sample
needs to be enlarged to maintain the AQP accuracy. This paper
proposes an adaptive sample update (ASU) approach that avoids
re-sampling from scratch as much as possible by monitoring
the data distribution, and uses instead an incremental update
method before a re-sampling becomes necessary. The paper also
proposes an enhanced approach (T-ASU), which tries to enlarge
the sample size without re-sampling from scratch when a bit of
query inaccuracy is tolerable to further reduce the sample update
cost. These two approaches are integrated into a state-of-the-art
AQP engine for an extensive experimental study. Experimental
results on both real-world and synthetic datasets show that the
two approaches are faster than the full re-sampling method while
achieving almost the same AQP accuracy when the underlying
data distribution continuously changes.

I. INTRODUCTION

Making timely decisions is an important task for today’s en-

terprises, in which data is continuously growing and changing.

For example, on Alibaba’s Singles’ Day Shopping Festival,

812 million orders were placed within 24 hours on Nov. 11,

20171. In such a scenario, the underlying data distribution will

change significantly with order placement. It is difficult to

make correct decisions if analytics relies only on historical

data. Hence, there is an increasing demand for agile analytics

[13], i.e., analytics that provides fresh and timely insights from

not only large-scale historical base data but also up-to-date

Zhenying He, Yinan Jing, and X. Sean Wang are the contact authors.
1https://www.forbes.com/sites/helenwang/2017/11/12/alibabas-singles-day-

by-the-numbers-a-record-25-billion-haul/3c4da1951db1

data. Agility requires (1) the ability to handle underlying data

changes, and (2) the timely response to analytical queries.
Approximate query processing (AQP) is a candidate tech-

nique for the requirements of timely analytics [24]. Using

the pre-computed samples, existing AQP works (e.g., [5]–

[7], [16]) often provide approximate results in exchange for

timely response. The sampling theory can guarantee confi-

dence bounds on result accuracy [22]. Since many decisions

often rely just on a “big picture”, inaccurate probabilistic

results are often tolerable.
However, existing AQP works mostly ignored the problem

of the underlying data updates. With the coming new data,

the pre-computed samples will become increasingly stale,

rendering the query results increasingly unreliable. Consider

a data warehouse (DW for short) that stores hourly Wikipedia

page view statistics data from the wiki-page-view-statistics [1].

Assume that DW contains the most recent 24 hours’ data, and

a pre-computed sample with the 10% sampling rate has been

constructed in advance. Assume also that during the next 12

hours, a new batch of data is added into the DW every hour.

Consider the following query Q, which is to get the total page

view count of the wiki pages that belong to the project ‘kk’.

Q: SELECT SUM(page count) FROM pagecounts

WHERE project name=‘kk’;

Fig. 1 shows the relative error (using the performance metrics

in Section IV) of Q for the 12 hourly update points. The

relative error is increasing along with the data updates since the

incoming skewed data makes the initial sample increasingly

stale to answer the query. Therefore, to guarantee the query

accuracy, samples need to be maintained timely along with

data changes.
Existing sample maintenance methods [23], [28] cannot

quickly update the sample with a dynamically adjusted sample

size that is used to guarantee the query accuracy when the

distribution of the underlying data changes. For example, we

can use a small sample to calculate the average value when the

underlying data has a small variance, but when the incoming

new data causes the variance to increase significantly, the

sample of the same size will not be able to provide a result

with the same accuracy guarantee. Hence, a larger sample

757

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00071

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Relative error of Q on the unchanged sample

is required. The natural sample update strategy called full

re-sampling, is re-sampling from scratch to construct a new

sample with the required sample size once a new batch comes.

(It is worth mentioning that re-sampling in this paper differs

in meaning from the term resampling used in the statistical

theory.) Re-sampling is usually very expensive and adversely

inhibits the agility of AQP. Another sample update strategy

is incremental updating, such as reservoir sampling [28].

However, such a strategy can incrementally update the sample

with a fixed sample size, but it cannot adjust the sample size

while keeping the sample randomness. Thus, in AQP systems,

to support agile analytics, maintaining samples at a lower cost

while guaranteeing the query accuracy is a challenging and

fundamental problem.

In this paper, we study an agile sample maintenance mech-

anism that adapts to data changes. The system will decide

whether re-sampling is indeed needed when a new batch of

data arrives by monitoring the data distribution. If the sample

size does not need to be enlarged, the incremental update is

employed. In this way, the sample maintenance cost can be re-

duced dramatically. We also develop a strategy, called T-ASU,

to trade-off between query accuracy and sample maintenance

speed. In summary, we make the following contributions with

this paper:

• We introduce an adaptive sample update (ASU) approach

that can choose between re-sampling and incremental

sample update strategies according to the characteristics

of existing historical data and new incoming data.

• We provide an enhanced approach T-ASU to speed up

sample update further. As the experiment results indicate,

T-ASU is faster than ASU in sample maintenance while

sacrificing a bit of query accuracy.

• We integrate and evaluate ASU and T-ASU with a state-

of-the-art AQP engine, and perform extensive experi-

ments on real-world and synthetic datasets. Experimental

results show that the two approaches are faster than the

full re-sampling update strategy when the underlying data

is continuously changing while achieving almost the same

query accuracy as full re-sampling does.

The rest of this paper is organized as follows. In Section II,

we formalize the problem and give an overview of an AQP

system that includes our proposed agile sample maintenance

strategies. Next, in Section III and Section IV, we describe

our approaches and evaluate them using two different datasets.

Finally, we review the related work in Section V and conclude

the paper with Section VI.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

A. Problem Definition

We call the data stored in the DW as base data. To deal

with data updates, the DW system usually follows a batch data

processing model shown in Fig. 2. The incoming new data are

organized in batches (i.e., batch data) and are imported into

the DW batch by batch.

As shown in Fig. 2, the base data at time t is denoted Dt.

A sample St is constructed from Dt to support AQP. Next,

at time t + 1, a new batch of data Bt+1 has come and the

base data is changed to Dt+1, i.e., Dt+1 = Dt + Bt+1
2.

Correspondingly, the sample needs to be updated from St

to St+1 to guarantee the query accuracy. A natural sample

update strategy is to construct a new sample St+1 from scratch

to replace the previous sample St. Although such a new

constructed sample is definitely good to guarantee the query

accuracy, the update cost cannot be ignored, because every re-

sampling needs to full scan the entire dataset. When the size of

the base data is very large, one re-sampling operation will cost

tens of minutes to several hours or even more. Obviously, too

many expensive re-sampling operations will reduce the agility

of the system. Therefore, it is not a wise choice for us to

indiscriminately reconstruct a new sample for each batch. We

need to be careful when maintaining the samples after the

underlying data is updated.

The paper started with an observation that it would be

unnecessary for us to re-sample from scratch if the under-

lying data has not changed dramatically after including a

new batch. In such a situation, we may update the sample

incrementally without changing the sample size instead of

re-sampling to significantly reduce the sample update cost,

while guaranteeing the query accuracy. Certainly, re-sampling

is eventually unavoidable when the new batches of data

dramatically change the underlying data distribution so a larger

sample is required. Now the question is which update strategy,

re-sampling or incremental updating, is the better choice for

sample maintenance when the system receives a new batch of

data. Hence, in this paper, the problem can be expressed as

how to choose between the above two sample update strategies

to minimize the sample update cost while guaranteeing the

query accuracy. We define this problem as follows:

min cost(St → St+1)

s.t. Pr[|θ̃(St+1)− θ(Dt+1)| � ε] � α

where:

• Dt and Dt+1 are the base data at time t and t+ 1;

• St and St+1 are the samples corresponding to Dt and

Dt+1, respectively, and cost(St → St+1) is the sample

update cost from St to St+1;

• θ̃(·) is the approximate query result based on the sample,

while θ(·) is the exact query result based on the under-

lying data;

2Assume there are no duplicate records in these datasets and hence the ”+”
operation between datasets is equal to ∪ operation in this paper.

758

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

… … New
Data

SAMPLE

Batch Data

Data Warehouse

Base Data

Sample Update

U

Fig. 2: Data processing model and problem definition

• ε is the error bound that is equal to the half-width of the

confidence interval;

• α is the confidence level.

Specifically, for the grouping queries, θ̃(·) and θ(·) are two

result sets. The ε and α can be set by users in their modified

AQP queries [4] to make the query accuracy meet their needs.

B. System Overview

Fig. 3 gives an overview of an AQP system that integrates

our agile sample maintenance strategies with a usual AQP

engine. The system is composed of two parts: AQP Engine
and Sampling Engine.

AQP Engine: The AQP engine is responsible for answering

queries by leveraging on pre-computed samples. After a query

is posed, the AQP engine firstly rewrites the query and execute

it on the sample to get an intermediate result. Then, the

engine needs to rewrite this intermediate result according to

the sampling rate to obtain the approximate result with an

error bound. Finally, the engine returns the approximate result.

Since the query processing procedure of existing AQP engines

is similar to each other, we can borrow from any one of them

into our system.

Sampling Engine: The sampling engine is responsible

for constructing and maintaining the samples. To tackle data

changes, we implement a new sampling engine. Initially, the

sampling engine constructs samples from the base data. When

a new batch arrives, we evaluate the influence of the new

batch on the current samples and decide whether we have to

re-sample from scratch because of this new batch. If the new

batch dramatically changes the underlying data distribution,

re-sampling becomes inevitable, and the sampling engine will

reconstruct a new sample of larger size from the updated

dataset that includes the new batch. Otherwise, the sampling

engine will update the sample incrementally in place using

a strategy like reservoir sampling, to make it work well for

queries. Compared with re-sampling, the incremental update

does not need to scan all the data in DW and hence makes

the whole system adapts to the data changes in a much more

agile manner.

Through the collaboration between AQP engine and Sam-

pling engine, the system can help analysts get fresh results

from a large volume of historical and up-to-date data. Since

the sampling engine is independent of the AQP engine, we

can easily replace the sampling engine in the existing AQP

systems with our engine proposed in this paper.

Query
Rewrite

Answer
Rewrite

User’s AQP
Query

Approximate
Query Result

Sampling Engine

Batch Data

Sample Generation
(Re-sampling)

Base Data

New
Data

Sample Update
(Incremental update)…

Sa
m

pl
es

Import

AQP Engine

Query
Execution

Data Warehouse

Sample Update
Strategy Decision

Fig. 3: AQP system with agile sample maintenance strategies

III. METHODS

A. Sample Update Strategy Decision

For random sampling, a larger sample size generally leads

to higher precision. Due to the storage constraint and the

query processing speed requirement, the sample size is usually

much smaller than the data size. Thus, query results on the

sample are approximate with an error bound. When a new

batch arrives, the original sample may become invalid to

guaranteeing the specified accuracy since the new batch may

change the distribution of underlying base data. Therefore,

updating samples is required to adapt to the changes.

To update samples, there are many different update strate-

gies. The simplest way to update the sample is by constructing

a new sample to replace the old sample by re-sampling.

However, it is unnecessary to re-sample when the expected size

of the new sample does not need to be increased. To avoid too

many expensive re-sampling operations, we can make a wiser

choice in terms of the expected sample size. If the expected

sample size is equal to or smaller than the old sample size, we

can update the sample incrementally by taking an incremental

random sampling method like reservoir sampling [28], instead

of re-sampling from scratch. In such a scenario, we can regard

the incoming batch data as a data stream and update the sample

increasingly by applying reservoir sampling while keeping the

sample size unchanged. In contrast, if the expected sample size

is larger than the old sample size, we have to re-sample from

scratch. Therefore, we need a condition to decide when we

have to re-sample.

In terms of the user-specified accuracy requirement, we

can deduce the expected sample size through the formula

that calculates the error bound. For the given dataset D and

aggregation function, we can calculate the error bound ε with

the confidence level α in terms of the uniform sample S and its

underlying base data D. Moreover, the calculation formula of

ε only has a little difference between the different aggregation

functions. Here, we take AVG as an example. The calculation

formula for the error bound of AVG is shown as follows [22]:

ε = z ·
√
1− |S|

|D| ·
σ√|S| (1)

, where the value of z corresponding to the given confidence

level α can be figured out by looking up the standard normal

distribution table in terms of probability theory [22], |S| is

the sample size, |D| is the size of the base data, and σ is the

standard deviation on the attribute that is involved in the AVG

759

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

function. Note that although α does not appear in Formula 1,

Formula 1 still connects to α indirectly through z. Through

Formula (1), we can easily deduce the sample size |S| by

Formula (2), which is rounded up to an integer.

|S| = � z2σ2

ε2 +
z2σ2

|D|
� (2)

Specifically, in Formula (2), |S| is monotonically increasing

when σ2 increases with the same |D|, ε and z.

Theorem 1. For all dataset D of the same size |D|, user-
specified confidence level α and error bound ε, |S| in Formula
(2) is monotonically increasing when σ2 increases.

Proof. Since the confidence level α is fixed, we have the same

z in Formula (2) according to probability theory. For ∀(σ2
1 <

σ2
2) with the same |D|, ε and z, we get the following equations

based on Formula (2)

|S1| = � z2σ2
1

ε2 +
z2σ2

1

|D|
� and |S2| = � z2σ2

2

ε2 +
z2σ2

2

|D|
�,

and the relation between the two sample size is |S1| ≤ |S2|
because

z2σ2
1

ε2 +
z2σ2

1

|D|
− z2σ2

2

ε2 +
z2σ2

2

|D|
=

z2ε2|D|2(σ2
1 − σ2

2)

(ε2|D|+ z2σ2
1)(ε

2|D|+ z2σ2
2)

< 0

Therefore, in Formula (2), |S| is monotonically increasing for

∀(σ2
1 < σ2

2) with the same |D|, ε and z.

Moreover, in Formula (2), |S| is also monotonically increas-

ing for ∀(|D1| < |D2|) with the same σ2, ε and z. The new

batch will need to increase the sample size even if the data

distribution is not changed. Similar to Theorem 1, this fact

can easily be proved. Thus, the sample size will increase if

the variance increases or the data size increases. However,

the sample size may not need to increase when the data size

increases but the variance decreases. Hence, we can get the

condition of re-sampling through the following Property 1.

We can use Property 1, instead of the sample size shown in

Formula 2, to determine whether re-sampling is needed.

Property 1. Given a uniform sample S on the base data D,
a new batch of data B that changes the variance σ2 on one
certain attribute/column by Δσ2, i.e., Δσ2 = σ2

D+B − σ2
D.

Given a user-specified confidence level α and error bound ε,
there exists a bound δ that if Δσ2 is larger than it, the sample
must be re-sampled from scratch, otherwise, the sample can
be updated incrementally.

When a new batch B is added into the base data D, the

data size will be changed from |D| to |D′| = |D| + |B|. Let

the change of variance σ2 caused by the new batch be Δσ2,

i.e., Δσ2 = σ2
D+B − σ2

D. Then, the expected size of the new

sample S′ will become

|S′| = � z2(σ2 +Δσ2)

ε2 +
z2(σ2 +Δσ2)

|D′|
�. (3)

Note that Δσ2 can be calculated incrementally [15] when

the new batch is added into the base data, instead of been

calculated by scanning the whole dataset. If the expected

sample size is larger than the original sample size, i.e.,

|S′| > |S|, we have to re-sample from scratch. Otherwise,

we can incrementally update the sample. Eventually, we get

the bound δ and the re-sampling condition as follows:

|S′| > |S| ⇒ � z2(σ2 +Δσ2)

ε2 +
z2(σ2 +Δσ2)

|D′|
� > |S|

⇒ Δσ2 >
ε2 · |D′| · |S| − z2 · σ2 · (|D′| − |S|)

z2 · (|D′| − |S|) = δ (4)

Therefore, we can decide whether to re-sample by judging

whether Δσ2 is larger than the bound δ.

The re-sampling condition on other aggregation functions

can be achieved in a similar way to the AVG function. The

difference between them is Formula (1) (e.g., the error bound

calculation in the SUM function should multiply |D| on

the right-hand side of Formula (1)). In addition, according

to different attributes/columns, we will get many different

δ for multiple aggregation functions, since the variance σ2

on different attribute is different. Therefore, in practice, we

use the minimum value of multiple δ as the lower bound to

determine re-sampling finally. For stratified samples, we can

also use the judgment condition on the uniform sample to

make a re-sampling decision, because a stratified sample can

be constructed by relying on a uniform sample in practice.

B. Adaptive Sample Update (ASU) Algorithm

According to the Property 1, we propose an adaptive sample
update (ASU) algorithm which can adapt to the data changes

continuously. ASU firstly determines whether the sample size

needs to increase and then chooses corresponding update

strategies to update samples. If the sample size needs to

increase, the re-sampling will be used to update the sample.

Otherwise, the sample will be updated by an incremental

sample update method that is faster than re-sampling.

The ASU works as Algorithm 1 shown. The input of ASU

includes the base data D, the sample S on the base data,

the sample type TS (including uniform sample and stratified

sample), the feature information FD about the base data, a

new batch B, the user-specified confidence levels {α1, α2, ...}
and error bounds {ε1, ε2, ...} for different aggregations. Specif-

ically, the information FD contains the statistical data FD.S
(e.g., FD.Sσ2 is the variances for different attributes on base

data D), stratum information FD.L (e.g., strata’s names and

sizes) and stratified sampling rule FD.R (e.g., equal allocation

and proportional allocation).

760

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Adaptive sample update (ASU)

Input: base data D, sample S, sample type TS , data

feature FD, new batch B, confidence levels

{α1, α2, ...}, error bounds {ε1, ε2, ...}.
Output: updated sample S′.

1 FB = feature statistic on batch B;

2 F ′ = incremental update feature FD by FB ;

3 Δσ2 = F ′.Sσ2 − FD.Sσ2 ;

4 δ = calculate the minimum bound with FD.S, |S|,
|D′| = |D|+ |B|, {α1, α2, ...} and {ε1, ε2, ...};

5 if Δσ2 > δ then
6 n = calculate the maximum sample size with F ′.S,

|D′| = |D|+ |B|, {α1, α2, ...} and {ε1, ε2, ...};
7 S′ = select n tuples from D +B according to TS

(re-sampling);

8 else
9 if TS == uniform sample then

10 S′ = call conventional reservoir sampling to

update S with B;

11 else if TS == stratified sample then
12 S′ = ∅;
13 foreach stratum li ∈ F ′.L do
14 nli = allocate sample size to li based on |S|

and previous sample rule FD.R;

15 Bli = read the tuples of li from B;

16 if li ∈ FD.L then
17 Sli = read the tuples of li from S;

18 S′li = call Algorithm 2 to update Sli

with FD.Lli , Bli and nli ;

19 else
20 S′li = random select nli tuples from Bli ;

21 S′ = S′ + S′li ;

22 return S′;

With these inputs, ASU first incrementally updates the data

feature when the new batch is added to the base data (line

1-2) and decides whether the sample size will be affected

by the data changes (line 3-5). Note that we use the mini-

mum bound δ to meet the user’s requirements for different

aggregation functions as we discussed in Section III.A. Then,

if the changes of data distribution Δσ2 is larger than the

bound δ, ASU re-samples from the base data and batch data

according to the sample type (line 7). The calculation of

the expected sample size is based on the data size, data

distribution, confidence level and error bound (line 6), and it

is different for various aggregation functions. Otherwise, if the

sample size is not affected by the data changes, ASU updates

samples incrementally. For a uniform sample, the conventional

reservoir sampling [28] can be used to update it directly

(line 10). For a stratified sample, the new data will change

the previous data feature and affect the sample generation.

Therefore, we stratify the sample and the batch data based on

Algorithm 2: Stratum sample update

Input: sub-base data size |Dli |, sub-sample Sli ,

sub-batch Bli , expected sub-sample size nli .

Output: updated sample S′li .
1 S′li = ∅;
2 if nli > |Sli | then
3 k = |Sli |, S′li = Sli ;

4 foreach tuple t ∈ Bli do
5 k = k + 1;

6 if k � nli then
7 S′li ← t;

8 else
9 S′li = call conventional reservoir sampling to

update S′li with t;

10 else
11 Sr = random select |nli | tuples from Sli to retain;

12 S′li = call conventional reservoir sampling to update

Sr with Bli ;

13 return S′li ;

the stratified rule on the base data, and update the sample in

each stratum independently (line 13-21). If a stratum exists in

the base data, Algorithm 2 is used to update it (line 16-18).

Otherwise, it can be updated by the random sampling (line 20).

The FD.Lli (line 18) is the sub-base data size of stratum li.
Specifically, we use a prefix ‘sub’ to represent one stratum in

the whole data, e.g., sub-base data size |Dli | is the data size of

stratum li in base data D. Next, we use an example to explain

how to use ASU to update a stratified sample incrementally

when the re-sampling is not needed.

Example. Given a dataset D (|D| = 6000) which can be
divided into two strata l1 (|Dl1 | = 100) and l2 (|Dl2 | = 5900)
according to the specified attribute and the sample size is
600. Since the size of stratum l1 is less than 300, we can
only extract 100 tuples from Dl1 and extract 500 tuples from
Dl2 to satisfy the required sample size. These sub-samples are
called Sl1 (|Sl1 | = 100) and Sl2 (|Sl2 | = 500). When a new
batch B (|B| = 4000) is added into the base data, if Δσ2

is less than the bound δ, the sample size does not need to
increase. Assume batch B has 900 tuples of stratum l1 (Bl1),
100 tuples of stratum l2 (Bl2) and 3000 tuples of stratum l3
(Bl3). Therefore, the updated dataset D′ is composed of 1000
tuples of stratum l1 (|D′l1 | = 1000), 6000 tuples of stratum l2
(|D′l3 | = 6000) and 3000 tuples of stratum l3 (|D′l3 | = 3000).
Since the sample size does not increase, we extract 200 tuples
from each stratum in D′ based on the equal allocation rule.
For stratum l1, the sub-sample size |S′l1 | will increase from
100 to 200 because the sub-data size increases from 100 to
1000. Hence, we first add 100 tuples from Bl1 into Sl1 and
then use the remaining tuples in Bl1 to update Sl1 according
to the reservoir sampling algorithm (line 1-9 in Algorithm 2).
For stratum l2, the sub-sample size |S′l2 | will decrease from

761

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

500 to 200. Hence, we first randomly evict 300 tuples from
Sl2 and then use the tuples in Bl2 to update Sl2 according
to the reservoir sampling algorithm (line 10-12 in Algorithm
2). For stratum l3, since it is a new stratum, we extract 200
tuples from Bl3 randomly to construct a new sub-sample S′l3
(line 20 in Algorithm 1). Finally, we get an updated stratified
sample S′ with 600 tuples.

To reduce the number of re-samplings, we construct a

sample that can meet a higher confidence level (loose con-
fidence level) than the user-specified confidence level when

re-sampling, and hence the new sample size is larger than

what we calculated. For example, if the confidence level set

by users is 95%, ASU will create a sample using the 96% loose

confidence level when performing re-sampling. Therefore, the

size of the new sample is 1.1 times larger than that of 95%

confidence level, and it can reduce the number of re-sampling

in the subsequent data updates.

The I/O cost of sample update in ASU for the base data

D and new batch B is |D| + |B| if it needs re-sample from

scratch. Otherwise, the I/O cost is r · |D|+ |B|, where r is the

sampling rate. Therefore, set the probability that the sample

size does not need increase is β, the expected I/O cost in ASU

is (1− (1− r) · β) · |D|+ |B|.
Workload: In Algorithm 1, we use the minimum bound

δ which is calculated by the global statistics (variance and

data size) to decide whether the sample is needed to be

reconstructed, and the maximum expected sample size is

also calculated by the global statistics. However, for some

special queries, the sample update by ASU cannot guarantee

their accuracy, because the sample size assigned to the query

related subset is not large enough to construct a good sample.

The insufficient sample size on the subset is caused by the

inconsistency of data distribution between the subset and the

global dataset (underlying data), i.e., the sample size calculated

by the statistics on subset is larger than the sample size

assigned by the global sample according to the data size of the

subset. It’s similar to the cold start problem that we don’t know

which subset the user is interested in and we cannot enumerate

all possible subsets of the underlying data due to the expensive

time cost. Thus, in order to improve the query accuracy on the

updated sample, we exploit the workload (query history on the

underlying data) to identify the queries which are important

to users and decide the sample update strategy according to

the distribution changes of the important subsets.

The workload is composed of a variety of queries. The

duration of query executions can be divided into several time

slots 1, 2, ..., T . For a query Qi, it may be executed many

times in one time slot. The score of Qi will be calculated by

the following steps:

Step 1: Calculate the scores of the query Qi in sequential

time slots, QSi,1, QSi,2, ..., QSi,T . The score in the time slot

t, QSi,t, equals to the number of occurrences of Qi in this

slot.

Step 2: According to a decay function [19], [30], the query

scores will be reduced by the chronological order of time slots,

i.e., QSi,t = wt ∗QSi,t, where wt is a decay weight.

Step 3: If the query is executed periodically, the query score

will be enlarged by a factor p (p > 1). The final score of Qi

is calculated by Formula (5).

QSi = p ∗
T∑

t=1

wt ∗QSi,t (5)

Then, for those queries with top-k scores, the local distribution

of the subsets covered by those queries will be calculated. In

terms of the local distribution, the expected sample size will be

adjusted, except for considering global data distribution. The

adjusted sample will benefit the query accuracy of those known

queries in the historical workload. Furthermore, to adapt to

the workload changes, we periodically update the query score.

If there is no historical workload available, ASU still works

well by using the global data distribution to decide whether

re-sampling is needed.

C. T-ASU Algorithm

The re-sampling in ASU is used to ensure that the updated

sample can provide query results of high quality when the

data distribution changes dramatically. However, for a large

dataset, ASU may be still too expensive due to the inevitable

re-sampling operations. Therefore, to further speed up sample

update, we propose the T-ASU, which makes a trade-off

between the query accuracy and the sample update speed, i.e.,

to reduce the number of re-samplings by sacrificing accuracy.

In T-ASU, we replace the re-sampling in ASU with the

Algorithm 3 that exploits the adaptive reservoir sampling
(ARS) [8]–[10] to update the enlarged sample incrementally

by sacrificing a little query accuracy. ARS requires a minimum

number of new tuples m to maintain the uniformity confidence
(UC) of sample exceeding a given threshold ζ, which repre-

sents the sample randomness. The UC is calculated as follows:

UC =

∑|S|
x=max(0,n−m)

(|D|
x

)(
m

n−x

)
(|D|+m

n

) (6)

, where |D| is the underlying data size, |S| is the sample size,

n is the expected sample size and m is the number of incoming

tuples. Thus, the value of minimum m can be derived from

this formula. Intuitively, the higher uniformity confidence is,

the higher sample quality (query accuracy) can be.

However, for the continuous use of ARS (no re-sampling

occurs between them), it will make the calculated value of

uniformity confidence larger than the actual value of unifor-

mity confidence and make a misjudgment that the uniformity

confidence is larger than the given threshold. As a result,

if we use ARS to update the sample that indeed should be

re-sampled, the query result will be more inaccurate than

user-specified. The larger uniformity confidence is caused by

the larger value of
(|D|

x

)
in Formula (6). To facilitate the

understanding of this situation, we provide an example below.

Example. Given a dataset D (|D| = 100), a uniform sample
S (|S| = 10) on D, the given uniformity confidence threshold

762

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Sample expanding algorithm

Input: base data Dt, sample St, sample type TS , data

feature FD and F ′, new batch Bt, expected

sample size nt, uniformity confidence threshold

ζ, factor ut−1.

Output: updated sample S′

1 m̂t = set the upper bound of minimum mt according to

|Dt|, |St|, |Bt|, nt and ζ;

2 m̂′t = μt−1 · m̂t;

3 if m̂′t � |B| then
4 if TS == uniform sample then
5 S′t = call Algorithm 4 to update St with |Dt|,

Bt and nt;

6 else if TS == stratified sample then
7 S′t = ∅;
8 foreach stratum li ∈ F ′.L do
9 nli = allocate sample size to li based on nt

and previous sample rule FD.R;

10 Bli = read the tuples of li from Bt;

11 if li ∈ FD.L then
12 Sli = read the tuples of li from S;

13 S′li = call Algorithm 4 to update Sli

with FD.Lli , Bli and nli ;

14 else
15 S′li = random select nli tuples from Bli ;

16 S′t = S′t + S′li ;

17 μt = calculate the factor (using Formula (9)) with

|Dt|, |Bt| ,m̂t and μt−1;

18 else
19 S′t = select nt tuples from Dt +Bt according to TS

(re-sampling);

20 μt = 1;

21 return S′t, μt;

ζ = 95%, the user-specified confidence levels and error
bounds. There is a new batch B1 (|B1| = 40) added into the
dataset D at time t1 that makes the change of data distribution
larger than the bound (Property 1) and the expected sample
size is 11. Since the calculated uniformity confidence 97.9%
(using Formula (6) with m = |B1|) is larger than the given
threshold ζ, we can use the ARS to update the sample S.
The updated sample S′ (|S′| = 11) is composed by 7 tuples
(randomly pick) from dataset D and 4 tuples from batch B1.

Then, at time t2, a new batch B2 (|B2| = 40) is added
into the updated dataset D′ (|D′| = |D| + |B1| = 140)
that also makes the change of data distribution larger than
the bound (Property 1) and the expected sample size is 12.
According to Formula (6), the calculated uniformity confi-
dence 95.6% (m = |B2|) is larger than the given threshold
ζ and hence we can use ARS to update the sample S′.
However, the actual value of uniformity confidence is 59%
at this moment. In the calculated uniformity confidence, the

Algorithm 4: Adaptive reservoir sampling

Input: base data size |D|, sample S, data stream d1,2,...,
number of incoming tuples m, expected sample

size n.

Output: updated sample S′

1 if n > |S| then
2 Sr = random select x tuples from S to retain, where

max{0, n−m} � x � |S|;
3 Sc = random select n-x tuples from d1,...,m;

4 Src = Sr + Sc;

5 S′ = call conventional reservoir sampling to update

Src with dm+1,...;

6 else
7 Sr = random select |n| tuples from S to retain;

8 S′ = call conventional reservoir sampling to update

Sr with d1,2,...;

9 return S′;

calculated
(|D|

x

)
is

(|D′|=140
x

)
, which means the x tuples is

uniform sampling from the base data D′. But in fact, the actual(|D|
x

)
is
∑min(7,x)

i=max(0,x−4)

(|D|=100
i

)(|B1|=40
x−i

)
for each x in range

{0, 11}, where 7 and 4 are the numbers of tuples extract from
D and B1 respectively. As the calculated

(|D|
x

)
is larger than

the actual
(|D|

x

)
, the calculated uniformity confidence becomes

larger than the actual uniformity confidence, and hence we
have a wrong decision that the sample S′ can be updated by
the ARS.

Thus, to get an accurate uniformity confidence when ARS

is executed continuously, we change the
(|D|

x

)
in Formula (6)

as follows:

(|D|
x

)
=

(|Dt|
xt

)
=

min(xt,xt−1)∑
a=max(0,xt−xt−1)

(|Dt−1|
a

)(|Bt−1|
xt − a

)
(7)

, where t is the time that sample will be updated, t− 1 is the

previous time that sample is updated by ARS, |Dt| and |Dt−1|
are the base data size at time t and t− 1, xt and xt−1 are the

numbers of tuples extract from the data Dt and Dt−1. Then,

we use Formula (8) to calculate the value of minimum mt,

which makes the uniformity confidence larger than the given

threshold ζ at time t when ARS is executed continuously,

where nt is the expected sample size.

argmin
mt

∑|S|
xt=max(0,n−m)

(|Dt|
xt

)(
mt

nt−xt

)
(|Dt|+mt

nt

) ≥ ζ (8)

Moreover, since the value of minimum mt cannot be timely

calculated on the large data size, we set the value of mt

empirically to decide whether we can use ARS to update the

enlarged sample. Further, we enlarge the upper bound of mt

with a factor μt−1 to ensure that the Algorithm 4 is correctly

763

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

called by the Algorithm 3 at time t. The factor μt is calculated

by Formula (9), where the m̂t is the upper bound of mt.

μt = μt−1 + logm̂t

|Dt|+ |Bt|
|Bt| − m̂t + 1

(9)

The default value of μt is 1, i.e., μ0 = 1, and it will be set

to 1 when the sample is updated by re-sampling because the

uniformity confidence of re-sampling is 100%. In Formula (9),

we use the logarithmic function to approximate the uniformity

confidence because the value of uniformity confidence with

the m increment is similar to this logarithmic function. It also

meets the rule that a larger uniformity confidence at time t−1
will make the minimum mt smaller.

The Algorithm 3 works as follows. Firstly, we get the upper

bound m̂t of the minimum size of new tuples mt empirically

(line 1). Then, we enlarge the m̂t (line 2) to ensure that the

Algorithm 4 (ARS) is correctly called. If the batch size is

larger than the m̂′t (line 3), we call Algorithm 4 to update the

sample (line 4-16). Otherwise, we re-sample from the base

data and batch data according to the sample type (line 19).

Note that we use the |Bt| instead of the m̂′t in Algorithm 4

(line 5 and line 13). After the sample update, we calculate the

value of factor μt. For the sample updated by Algorithm 4,

we use Formula (9) to calculate μt (line 17). For re-sampling,

we set μt to 1 (line 20) because the uniformity confidence of

re-sampling is 100%. Therefore, the I/O cost of sample update

in T-ASU depends on the user-specified uniformity confidence

threshold (e.g., 95%) and the size of the new batch.

IV. EXPERIMENTS

A. Experiment setup

We implement full re-sampling (FULL), adaptive sample
update (ASU) and T-ASU strategies, and integrate our sam-

pling engine into Verdict [26]. All experiments are conducted

on a Spark cluster with 10 nodes (each node with Intel Xeon

E5-2620, 64GB RAM, and 1.77TB HDD disk under Ubuntu

Linux 14.04.1 LTS).

Performance Metrics: Two metrics are used: (1) the time

cost of sample updates (abbr. time cost), which is the time

used to update the sample when a new batch is added into

the base data; (2) the relative error (RE), which is used to

evaluate the query accuracy. The relative error is calculated

by Formula (10), where θ̂(St) is the approximate query result

based on the sample St and θ(Dt) is the query result based on

the underlying data Dt at time t. Specifically, for the grouping

queries, the relative error is the average value upon each group.

RE =
|θ̂(St)− θ(Dt)|

θ(Dt)
(10)

In the following experiments, the relative error is the average

value of ten separate experiments with the same experimental

settings. By default, the confidence level is set at 95%.

Real dataset (Wiki): We use the wiki-page-view-statistics

[1], containing the hourly global page-view statistics of the

Wiki media projects. Each tuple in the dataset is composed of

four attributes: page name, the title of the page, page count,

the number of requests for the page in the hour, page size, the

size of the requested page, and project name, the project to

which the page belongs. We extract the data from January 1,

2016, to January 21, 2016. The total data size is 75GB. Since

the dataset is organized in sequential hours, we naturally divide

the data into batches by hours. By default, we treat the first

24 hours’ data as base data, and let the size of batch data be

1-hour. We call such a base data update pattern as 24-1.

To evaluate the effectiveness of different sample update

strategies, we use the following four typical example queries.

Q1: SELECT SUM(page count) FROM pagecounts

WHERE project name=‘kk’;

Q2: SELECT COUNT(*) FROM pagecounts

WHERE project name=‘www’;

Q3: SELECT AVG(page count) FROM pagecounts

WHERE page size<7000;

Q4: SELECT project name, SUM(page count) FROM
pagecounts GROUP BY project name;

The above four queries cover various aggregation functions,

conditions and different data subpopulations, e.g., the data

with project name=‘www’ for Q2 is a rare subpopulation.

Synthetic dataset (TPC-H): We generate 450GB TPC-H

data. We then use a 350GB subset of the data as the base
data and divide the remaining data equally into 20 batches.

We denote this update pattern 350-5 for short. To evaluate the

query accuracy, we select four typical queries from the TPC-H

benchmark: a simple query Q6, two join queries Q14, Q19,

and a grouping query Q1 (denoted as QI , QII , QIII and QIV ,

respectively).

B. Experiment results

Performance on the Wiki dataset (small dataset): We

compare the performance between FULL and ASU on the

Wiki dataset. We use the default 24-1 update pattern and the

10% initial sampling rate. Note that in the different aggrega-

tion functions and attributions, the user-specified error bound

that has the minimum bound δ is 1.2 on the AVG(page count).
Fig. 4 shows the time cost of updating the uniform sample and

the stratified sample on the 24 update points. For the uniform

sample, the average time cost of ASU is about 68% of FULL

(ASU 25s vs. FULL 37s). As shown in Fig. 4(a), ASU just

performs re-sampling twice, namely after the second and sixth

update batches to guarantee query accuracy since a significant

change of the data distribution happens only after each of

these two batches. For the stratified sample, the average time

cost of ASU is about 46% of FULL (ASU 55s vs. FULL

119s). As shown in Fig. 4(b), ASU only performs re-sampling

twice, namely after the first and sixth update batches. Due to

extra computation, updating the stratified samples costs more

time than that for a uniform sample. We evaluate the example

queries on 24 update batches and obtain the average relative

error. Fig. 5 shows the relative error of the four example

queries with FULL and ASU. As shown in Fig. 5, ASU

basically achieves the same query accuracy as FULL does.

Both FULL and ASU can guarantee the query accuracy of

Q1, Q2 and Q4. For Q3, the relative error of ASU is a little

764

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

(a) Uniform sample (b) Stratified sample

Fig. 4: The sample update cost on the Wiki (24-1)

Fig. 5: The relative error on the Wiki (24-1)

bit higher than that of FULL, because some of the tuples in

the result of Q3 are replaced by new tuples, which causes an

accidental error. Even so, the relative error is still within the

user-specified error bound.

Therefore, ASU is about 1.5x-2.2x faster than FULL in

sample update speed while achieving almost the same query

accuracy as FULL does on the four example queries.

Performance on the TPC-H dataset (large dataset): We

compare the performance between FULL and ASU on the

larger TPC-H dataset. Here, we use the default 350-5 update

pattern. Since the TPC-H dataset is much larger than the Wiki

dataset, to get the query result quickly and meet the constraint

of the memory size at the same time, we use a smaller initial

sampling rate (1%) here. In the different aggregation functions

and attributions, the user-specified error bound that has the

minimum bound δ is 2.5 on the AVG(l extendedprice). Fig.

6 shows the time cost of updating the uniform sample and

the stratified sample on the 20 update points. As a result of

the increased data size, the sample update speed of ASU is

much faster than that of FULL. For the uniform sample, the

average time cost of ASU is about 10.7% of FULL (ASU.

239s vs. FULL. 2242s). For the stratified sample, the average

time cost of ASU is about 22.5% of FULL (ASU. 799s vs.

FULL. 3548s). Note that ASU has only one re-sampling on

the first update point, because the data distribution of the

TPC-H dataset is uniform and it rarely changes. We evaluate

the queries QI , QII , QIII , QIV on 20 update points and

get the average relative error. Theoretically, the relative error

of FULL should be smaller than that of ASU. However, as

shown in Fig. 7, the relative errors of FULL and ASU vary

for different queries. Taking QIII as an example, the average

relative error of ASU is smaller than that of FULL due to the

sample randomness. However, overall, ASU achieves almost

the same query accuracy as FULL does.

In summary, ASU is about 4.4x-9.4x faster than FULL in

sample update speed, while achieving almost the same query

(a) Uniform sample (b) Stratified sample

Fig. 6: The sample update cost on the TPC-H (350-5)

Fig. 7: The relative error on the TPC-H (350-5)

accuracy as FULL does on the four benchmark queries.

Effect of base data size: Based on the Wiki dataset, we

fix the batch size as 1 hour and adjust the base data size as

follows: 24 hours (24-1), 48 hours (48-1), 96 hours (96-1), 168

hours (168-1). Since the sample size will affect the sample

update cost, to get comparable experimental results on base

data of different sizes, we use 10%, 5%, 2%, and 1% initial

sampling rate respectively to get samples of similar sizes.

Fig. 8(a) shows the average time cost of 24 sample updates

on various base data sizes. The average time cost of FULL

increases significantly as the base data size increases since the

re-sampling needs to scan the entire dataset. We also find that

the base data size has a limited effect on the time cost of ASU

because it can reduce the unnecessary re-sampling operations

and update the sample incrementally. To evaluate the query

accuracy on the above-mentioned experimental settings, we

use the example query Q1 to conduct experiments. As shown

in Fig. 8(b), ASU achieves almost the same relative error as

FULL. Although the relative error of ASU on 96-1 is higher

than that of FULL, the relative error is still within the user-

specified error bound. Therefore, the base data size has a small

effect on the performance of ASU, but FULL cannot ignore

the negative effect of the base data size.

Effect of batch data size: On the Wiki dataset, we fix the

base data size as 168 hours and adjust the batch size as follows:

1 hour (168-1), 6 hours (168-6), 12 hours (168-12), 24 hours

(168-24). The initial sampling rate is 1%. Fig. 9(a) shows the

average time cost of 14 sample updates on various batch data

sizes. The average time cost of FULL increases significantly

as the batch data size increases, since the re-sampling needs

to scan the entire dataset. We also find that the average time

cost of ASU will be affected by the batch data size, because it

needs to read the batch data to update the samples. However,

the effect of batch data size on ASU is much less than that on

FULL. To evaluate the query accuracy on the above-mentioned

experimental settings, we use the example query Q1 to conduct

765

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

(a) Time cost (b) Query accuracy of Q1

Fig. 8: The performance of FULL and ASU on the Wiki

datasets (X-1) with different base data sizes

(a) Time cost (b) Query accuracy of Q1

Fig. 9: The performance of FULL and ASU on the Wiki

datasets (168-X) with different batch data sizes

experiments. As shown in Fig. 9(b), ASU achieves almost the

same relative error as FULL. Therefore, the batch data size

has only a small effect on the query accuracy of ASU, but it

will slow down the sample update in both ASU and FULL.

Effect of loose confidence level: We vary the loose con-

fidence level from 95% to 99% and conduct experiments on

Wiki w.r.t. 24-1 and 168-1. As shown in Fig. 10, the number of

re-samplings decreases as the loose confidence level increases

and become stable when the loose confidence level is high

enough, such as the 96% loose confidence level in the 168-

1 experiment. The number of re-samplings in 168-1 is less

than in 24-1, because the data distribution on the large base

data is more stable than that on the small base data when

the new batch data arrives. Moreover, the sample on the

loose confidence level does not take up a lot of extra storage

space (e.g., the sample size on the 96% loose confidence

level is about 1.1x times of 95% confidence level). Therefore,

calculating the sample size with the loose confidence level can

significantly reduce the number of re-samplings in ASU, while

it will not increase storage overhead dramatically.

Effect of the new stratum: We evaluate the effect of the

new stratum on the TPC-H. We construct an 11GB dataset

that contains 10GB base data and 1GB batch data (denoted

as 10-1). Based on the attribute l shipdate, we fix the number

of strata in the base data as 2000 and adjust the number of

new strata in the batch data as follows: 20 (1%), 50 (2.5%),

100 (5%), 200 (10%). The initial sampling rate is 1% and

there is only a stratified sample on the dataset. As shown in

Fig. 11(a), the ratio of new strata has a limited effect on the

time costs of both ASU and FULL. We use the queries QI

to evaluate the query accuracy. As shown in Fig. 11(b), ASU

achieves almost the same relative error as FULL, since they

successfully extract tuples from the new strata to guarantee the

(a) 24-1 (b) 168-1

Fig. 10: The number of re-samplings in ASU on the Wiki

datasets (24-1 and 168-1)

(a) Time cost (b) Query accuracy of QI

Fig. 11: The performance of FULL and ASU on the TPC-H

dataset with various ratios of new strata

query accuracy. Therefore, the ratio of new stratum has only

a small effect on the performance of both ASU and FULL.

Effect of workload: We evaluate the effect of workload on

both query accuracy and time cost on the TPC-H. Given the

historical workload, ASU may benefit from the workload. As

we know, the incremental view maintenance method (IVM)

[31] can also benefit from the workload for the response time

of known queries. Hence, we compare the performance of

FULL, ASU, ASU with the aid of the workload, and IVM

in this experiment. We construct two synthetic workloads

with different distributions (Uniform and Skewed) and get

two variants of ASU: ASU+U and ASU+S, respectively. Each

workload is composed of 100 historical queries. The skewed

workload is generated using a Zipf distribution with z = 2.

Due to the space limitation, we just show the experiment

results under this specific Zipf parameter.

Fig. 12(a) shows the query accuracy of FULL, ASU,

ASU+U, ASU+S, and IVM on the TPC-H. For a query, we

consider two situations: (1) this query has appeared in the

historical workload (denoted as Qiw); (2) it has not appeared

in the workload (denoted as Qnw). For Qiw, both ASU+U and

ASU+S have a smaller relative error than ASU and FULL,

because the samples adjusted by exploiting the workload can

benefit the query accuracy of those known queries. Since Qiw

has appeared in the workload, the relative error of IVM is

0%. For Qnw, the relative errors of ASU+U and ASU+S are

also smaller than those of ASU and FULL. According to the

workload used in the experiment, the sample size will be

enlarged. A larger sample can also benefit the query accuracy

of Qnw, although Qnw has not appeared in the historical

workload. Since Qnw has not appeared in the workload, IVM

cannot answer the query Qnw (denoted as N/A in Fig. 12(a)).

Fig. 12(b) shows the sample update cost of FULL, ASU,

766

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

(a) Query accuracy (b) Time cost

Fig. 12: The performance of FULL, ASU, ASU+U, ASU+S,

and IVM on the TPC-H

(a) Time cost (b) Query accuracy

Fig. 13: The performance of ASU and T-ASU on the Wiki

dataset (24-1)

ASU+U, ASU+S, and the view maintenance cost of IVM.

Among all of the approaches, ASU has the lowest time cost.

Compared with ASU, on average, ASU+U and ASU+S will

cost more time to maintain the samples, while they cost much

less time than FULL. IVM costs much more time to maintain

the materialized views than other approaches as new batches

arrive. This is because the view maintenance cost mainly

depends on the number of materialized views, and the number

of views is proportional to the number of known queries in

the historical workload.

Performance of T-ASU vs. ASU: We compare the per-

formance between ASU and T-ASU with a 95% uniformity

confidence threshold on the Wiki dataset (24-1). Fig. 13 shows

the performance of ASU and T-ASU. In Fig. 13(a), the Y-axis

represents the sum time cost of updating both the uniform

sample and the stratified sample. As a result of fewer re-

samplings and smaller sample size, the time cost of T-ASU

is about 70% of ASU (T-ASU: 55.7s vs. ASU: 80s). For T-

ASU, re-sampling just occurs only once, because the value of

m̂′ is much larger than the new batch size so that we must

re-sample from scratch to update the samples. In Fig. 13(b),

due to the degeneration of randomness, the relative error of

the four example queries in T-ASU has a little increment.

The relative error of Q2 in T-ASU does not increase because

all tuples containing ’www’ (rare subpopulation) have been

extracted into the stratified sample. Consequently, the result

of Q2 will not be affected by the randomness of sampling.

Moreover, since the small subset is more susceptible to the

reduction of randomness than the large subset, the increased

relative error of Q1 (0.33%) and Q4 (0.21%) is larger than that

of Q3 (0.07%). In summary, T-ASU can update the samples

faster than ASU by sacrificing a little query accuracy.

Effect of the ratio of batch data over base data: We

(a) Time cost (b) Query accuracy of Q1

Fig. 14: The performance of FULL, ASU, T-ASU, and 1%

FULL on the Wiki

evaluate the effect of the ratio of batch data over base data on

the Wiki dataset and compare the performance of FULL, ASU,

T-ASU, and 1% FULL (re-sampling every 1% new data). We

use 100 million tuples as the base data. The ratio of batch data

over base data is set from 0.0001% to 10% and let the number

of batches to be 100. The initial samples are constructed by

full re-sampling on the base data, and the relative error of Q1

on the initial sample is about 2%.

Fig. 14(a) shows the average sample update cost of FULL,

ASU, T-ASU, and 1% FULL. The time costs of ASU and

T-ASU increase little along with the increase of the ratio of

batch data over base data because ASU and T-ASU need only

a few re-samplings. However, the time cost of FULL and 1%

FULL increases significantly as the ratio increases, especially

when the ratio is high (e.g., on 10%). Since the newly ingested

data generated in 100 batches on the ratio 0.0001% or 0.001%

is less than 1% of the base data, the sample update will not be

triggered for 1% FULL. Hence, the time cost of 1% FULL is

N/A on the ratio 0.0001% and 0.001% as shown in Fig. 14(a).

Fig. 14(b) shows the relative error of FULL, ASU, T-ASU

and 1% FULL for the example query Q1. On all of the ratios,

ASU and T-ASU can achieve almost equivalent query accuracy

as FULL, and all of them have a smaller relative error because

the updated samples guarantee the query accuracy. On the ratio

of 1% and 10%, the relative error of T-ASU is larger than that

of ASU, because the larger batch size will make T-ASU work

under this situation. On the ratio of 0.0001%, 0.001%, and

0.01%, since the newly ingested data has not reached 1% of

base data, it causes that samples cannot be maintained timely.

Consequently, the relative error of 1% FULL is much larger

than that of other approaches due to the stale samples. On the

ratio of 0.1%, since the samples are updated for ten times, the

relative error of 1% FULL becomes small. After all, because

the samples are not updated timely, the relative error of 1%

FULL is still larger than that of FULL. Specifically, on the

ratio of 0.0001%, 0.001%, 0.01%, and 0.1%, the relative error

of 1% FULL is increased on the basis of 2% until it performs

a full re-sampling on the underlying dataset. On the ratio of

1% and 10%, 1% FULL is equivalent to FULL. Therefore,

they have the same relative error.

V. RELATED WORK

Sampling Approaches. Reservoir sampling [28] can con-

struct and maintain a fixed size random sample on an unknown

767

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

size dataset. [8]–[10] and [32] focus on extending the reservoir

sampling to make the sample size variable. [33] can incremen-

tally maintain Bernoulli samples over evolving multisets. In

this paper, however, we focus on how to maintain the samples

with an expected sample size which satisfies the user-specified

error bound.

Online Aggregation and AQP. By using the sampler

operator that picks input rows uniformly-at-random with the

given probability [11], [14], online aggregation methods [12],

[17], [18], [20], [21], [25], [29] uniformly sample the inputs in

a progressive manner that iteratively refines the approximate

answers. However, the cost of online sampling will increase

query latency. To achieve a much sharper reduction on re-

sponse time, AQP systems draw samples from the underlying

data in a pre-processing step and use them to process incoming

queries [3], [6], [26], [27]. Existing works can handle the

complex queries which involve joins [26] and grouping [2],

[3]. For example, to address the problem that joining (uniform)

samples leads to significantly fewer tuples in the output, [26]

uses at most one sampled relation per join, or require the join

key to be included in the stratified sample. In this paper, we

focus on sample maintenance. We redesign and implement

sampling engine using the approaches proposed in this paper.

As described in Section II-B, we can integrate our sampling

engine into the AQP system. The upper-level operations in the

AQP system do not need to be changed.

VI. CONCLUSION

In this paper, we proposed an adaptive sample update (ASU)

approach that can decide whether re-sampling is needed when

a new batch of data arrives. According to this decision, ASU

can make a choice between full re-sampling and incremental

sample update strategy to reduce the overall sample mainte-

nance cost. Moreover, we proposed an enhanced approach (T-

ASU) to speed up sample updates by sacrificing a little query

accuracy. We integrated and evaluated ASU and T-ASU with a

state-of-the-art AQP engine to demonstrate their effectiveness.

Extensive experiments on real-world and synthetic datasets

showed that these approaches are about 1.5x-9.4x faster than

the full re-sampling strategy in sample update speed while

achieving almost the same query accuracy as full re-sampling

does.

For future work directions, perhaps it is still to find further

ways to reduce or eliminate the expensive re-sampling. As an

example, we may try a predictive re-sampling method that

makes use of a prediction of data distribution changes to

prepare for sample size increases.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable comments. This work was partly supported by the

National Key R&D Program of China (No. 2018YFB1004404

and 2018YFB1402600), the NSFC (No. 61732004 and

No. 61802066) and the Shanghai Sailing Program (No.

18YF1401300).

REFERENCES

[1] https://dumps.wikimedia.org/other/pagecounts-raw/.
[2] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for

approximate answering of group-by queries. In SIGMOD 2002.
[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The Aqua

Approximate Query Answering System. In SIGMOD 1999.
[4] K. Li and G. Li. Approximate query processing: What is new and where

to go? - A survey on approximate query processing. Data Science and
Engineering, 3(4):379–397, 2018.

[5] G. Song, W. Qu, X. Liu, and X. Wang. Approximate Calculation of
Window Aggregate Functions via Global Random Sample. Data Science
and Engineering, 3(1):40–51, 2018.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In EuroSys 2013.

[7] Z. Wu, Y. Jing, Z. He, C. Guo, and X. S. Wang. POLYTOPE: a flexible
sampling system for answering exploratory queries. WWWJ, 2019.

[8] M. Al-Kateb and B. S. Lee. Stratified reservoir sampling over hetero-
geneous data streams. In SSDBM 2010.

[9] M. Al-Kateb, B. S. Lee, and X. S. Wang. Adaptive-size reservoir
sampling over data streams. In SSDBM 2007.

[10] M. Al-Kateb, B. S. Lee, and X. S. Wang. Reservoir sampling over
memory-limited stream joins. In SSDBM 2007.

[11] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark
SQL: relational data processing in spark. In SIGMOD 2015.

[12] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable progressive
analytics on big data in the cloud. PVLDB, 6(14):1726–1737, 2013.

[13] K. Collier. Agile Analytics: A Value-Driven Approach to Business
Intelligence and Data Warehousing. Agile Software Development Series.
Pearson Education, 2011.

[14] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses
for massive data: samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1-3):1–294, 2012.

[15] T. Finch. Incremental calculation of weighted mean and variance.
University of Cambridge Computing Service, Cambridge, 2009.

[16] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisit-
ing reuse for approximate query processing. PVLDB, 10(10):1142–1153,
2017.

[17] J. M. Hellerstein, R. Avnur, and V. Raman. Informix under CONTROL:
online query processing. Data Min. Knowl. Discov., 4(4):281–314, 2000.

[18] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
SIGMOD 1997.

[19] B. Hentschel, P. J. Haas, and Y. Tian. Temporally-biased sampling for
online model management. In EDBT 2018.

[20] C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the DBO engine. In SIGMOD 2007.

[21] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via
random walks. In SIGMOD 2016.

[22] S. Lohr. Sampling : design and analysis. Brooks/Cole, 2010.
[23] A. I. McLeod and D. R. Bellhouse. A convenient algorithm for drawing

a simple random sample. Journal of the Royal Statistical Society. Series
C (Applied Statistics), 32(2):182–184, 1983.

[24] B. Mozafari. Approximate query engines: Commercial challenges and
research opportunities. In SIGMOD 2017.

[25] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation
for large MapReduce jobs. PVLDB 4(11):1135–1145, 2011.

[26] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universal-
izing approximate query processing. In SIGMOD 2018.

[27] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq: Scientific data
management with bounds on runtime and quality. In CIDR 2011.

[28] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, 1985.

[29] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-OLA:
generalized on-line aggregation for interactive analysis on big data. In
SIGMOD 2015.

[30] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. Forward Decay:
A Practical Time Decay Model for Streaming Systems. In ICDE 2009.

[31] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. DBToaster: Higher-
order Delta Processing for Dynamic, Frequently Fresh Views. PVLDB,
5(10):968–979, 2012.

[32] R. Gemulla, W. Lehner, and P. J. Haas. A Dip in the Reservoir:
Maintaining Sample Synopses of Evolving Datasets. In VLDB 2006.

[33] R. Gemulla, W. Lehner, and P. J. Haas. Maintaining Bernoulli Samples
over Evolving Multisets. In PODS 2007.

768

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:17:01 UTC from IEEE Xplore. Restrictions apply.

