
BinDex: A Two-Layered Index for Fast and Robust
Scans

Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,
X. Sean Wang
Fudan University

{lwli15,zhangk,guojd19,wenhe19,zhenying,jingyn,wlhan,xywangCS}@fudan.edu.cn

ABSTRACT
In modern analytical database systems, the performance of
the data scan operation is of key importance to the perfor-
mance of query execution. Existing approaches may be cate-
gorized into index scan and sequential scan. However, both
approaches have inherent inefficiencies. Indeed, sequential
scan may need to access a large amount of unneeded data, es-
pecially for queries with low selectivity. Instead, index scan
may involve a large number of expensive random memory
accesses when the query selectivity is high. Moreover, with
the growing complexities in database query workloads, it
has become hard to predict which approach is better for a
particular query.
In order to obtain fast and robust scans under all selec-

tivities, this paper proposes BinDex, a two-layered index
structure based on binned bitmaps that can be used to signif-
icantly accelerate the scan operations for in-memory column
stores. The first layer of BinDex consists of a set of binned
bitmaps which filter out most unneeded values in a column.
The second layer provides some auxiliary information to
correct the bits that have incorrect values. By varying the
number of bit vectors in the first layer, BinDex can make a
tradeoff between memory space and performance. Experi-
mental results show that BinDex outperforms the state-of-
the-art approaches with less memory than a B+-tree would
use. And by enlarging thememory space, BinDex can achieve
up to 2.9 times higher performance, eliminating the need for
making a choice between sequential or index scans.

CCS CONCEPTS
• Information systems→ Data scans.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380563

KEYWORDS
scan; in-memory column stores; indexing
ACM Reference Format:
Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan
Jing, Weili Han, X. Sean Wang. 2020. BinDex: A Two-Layered Index
for Fast and Robust Scans. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3318464.3380563

1 INTRODUCTION
Access path selection for selection operations is one of the
critical components in analytical database systems. The choices
of the data access path are generally between a sequen-
tial scan and an index scan. The performance of the ap-
proaches varies according to workloads, where one approach
can deliver up to three times higher performance than the
other [17]. To use a better approach in query execution, query
optimizers generally employ cost models to estimate the scan
performance. However, while the complexity of database
query workloads has been growing, the cost models often
use simple assumptions in the estimation [9]. Consequently,
it becomes difficult to predict the optimal approach, resulting
in a suboptimal query performance [5].

The huge performance disparities between the index scans
and the sequential scans come from their inherent charac-
teristics. The two classes of approaches differ in both the
amount of data accessed and the data access pattern. A se-
quential scan needs to evaluate all the values in a column.
Instead, an index scan only accesses the values that satisfy
the predicate with the help of some auxiliary information.
Therefore, when a vast majority of the values are unneeded
for predicates with low selectivities (< ∼1%), an index scan
can achieve much higher performance than a sequential
scan [17]. However, this is not the case for predicates with
higher selectivities (> ∼1%). In this case, because the values
satisfying the predicate may scatter over all the column, an
index scan may involve a number of random memory ac-
cesses to the base data and to the index data structure. The
operation time of the random memory accesses is known
to be an order of magnitude larger than that of sequential
memory accesses [4, 16]. As a result, the overhead of random

https://doi.org/10.1145/3318464.3380563
https://doi.org/10.1145/3318464.3380563

accesses would counteract the benefit of avoiding accessing
unneeded data incurred with a sequential scan when the
selectivity becomes higher, and sequential scans would out-
perform index scans. Overall, both index scans and sequential
scans have their inherent inefficiencies.

We propose BinDex, a two-layered index that significantly
enhances the scan performance for in-memory column stores
robustly under all selectivities by adopting the main advan-
tages from both existing index scans and sequential scans.
The main idea of BinDex is (1) avoid accessing most of un-
needed values that don’t satisfy the predicate while (2) avoid-
ing or mitigating the overheads caused by random memory
accesses. To achieve these goals, BinDex employs a data
structure with two layers that work together to perform the
scan operation. The first layer of BinDex uses bitmaps with
binning. Binning is a technique that partitions the attribute
values into a number of ranges, and uses a bit vector to rep-
resent each range. In evaluating a predicate, the bit vector
in the filter layer that is closest to the final result is selected,
where the majority of the bits have the correct values with
respect to the predicate. Then the bits of the chosen vector
that with incorrect values are corrected to generate the final
result for the predicate. In traditional bitmap indexes, the
base data needs to be probed to correct the bits in the bit
vector, but the probing incurs huge overhead and renders
the performance much lower than the other approaches. In
BinDex, the second layer uses some auxiliary information
to correct the selected bit vector with low overhead. Specif-
ically, the second layer stores all the rowIDs in a sequence
with their corresponding values in ascending order. With
the selected bit vector, BinDex locates the rowIDs of the
values whose bits are incorrectly set/unset. Then the stored
rowIDs are used to correct the corresponding bits. Since the
rowIDs are sequentially stored, they are accessed with se-
quential memory reads. Furthermore, the rowIDs are used to
prefetch the corresponding bits to write to further alleviate
the random write costs. These two layers tightly collaborate
to improve the overall performance of the scan operations.

An important characteristic of BinDex is its ability to make
tradeoffs between performance and memory usage. With a
higher number of bit vectors, fewer values need to be probed
in the second layer, which leads to higher performance but
larger memory usage. Hence, we introduce memory space
as the main dimension in the selection of scan approaches.
It is worth noting that, with less memory than a B+-tree
uses, BinDex can outperform state-of-the-art approaches for
various workloads. This brings notable advancements for
analytical database systems, since it not only leads to higher
performance but also avoids the potential performance issues
due to inaccurate estimation used in access path selection.

The main contributions of this paper are fourfold.

• We propose BinDex, a two-layered index structure
that significantly accelerates the scan operation in in-
memory analytical database systems.
• We propose a cost model to help make performance-
space tradeoffs in BinDex to maximize the scan per-
formance with a specified memory constraint.
• We intensively evaluate BinDex under various work-
loads. Our experimental results show that BinDex can
achieve up to 2.9× higher performance than the state-
of-the-art approaches.
• We propose a policy that uses memory space as the
main dimension for selecting the optimal scan ap-
proaches in in-memory database systems.

The rest of the paper is organized as follows. Section 2
analyzes the performance of the state-of-the-art approaches.
Section 3 demonstrates the methodology and the data struc-
ture of BinDex. Section 4 describes the detailed techniques
in the design and implementation. Section 5 demonstrates a
cost model to help make the tradeoff between space and per-
formance. Section 6 evaluates BinDex with a prototype, and
Section 7 discusses the selection of scan approaches based
on the memory constraint. Section 8 discusses the related
work, and Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION
In this section, we analyze state-of-the-art index scan and
sequential scan approaches for in-memory database systems.
As lots of techniques being proposed recently have blurred
the line between the two approaches, we establish a rule
to distinguish them: If an approach needs to inspect all the
values (compressed or not) in a column, we classify it as a
sequential scan, while an approach is classified as an index
scan if it only accesses values that satisfy a predicate with
auxiliary information. We take four main scan approaches
to evaluate and analyze their performance, including the
traditional secondary index B+-tree and three sequential
scan techniques: early pruning on bit-level storage layout,
lightweight indexes, and lossy compression.

2.1 The Scan Operation
Main memory databases usually store data in a compressed
formatwith fixed-length order-preserving schemes [18], where
sequential scans are performed on the compressed codes. We
use code and value interchangeably in the paper. In addition
to integer values, other value types can also be encoded into
integer codes, including floating points [11] and strings [2].
The input of a scan operation is a list of N codes and a pred-
icate with a comparison operator, e.g. <, >, ≤, ≥, =, ,, or
BETWEEN. The scan process finds out all matching codes
that satisfy the predicate and outputs an N -bit result bit vec-
tor or a rowID list. A rowID list stores the rowIDs of all codes

that satisfy the predicate. The result bit vector also indicates
the rowIDs of the matching codes, where the ith bit is set as
1 if the code in the ith row satisfies the predicate.

A result bit vector is a common and efficient way for
recording scan results, and it has been adopted by state-of-
the-art approaches [12, 15, 19]. For complex queries withmul-
tiple predicates, predicates on the corresponding columns
are first evaluated with a scan. The scan for each predicate
generates a result bit vector. Then logical operators such as
AND, OR and NOT are performed on these bit vectors for
conjunctions or disjunctions, which are more efficient than
merging rowID lists [7]. Then the final result bit vector is
used to retrieve other columns of interest for this query.

2.2 Secondary Index Scan
A secondary index is a small but structured data structure
that filters unneeded values and their other attributes. Tradi-
tional secondary indexes are typically in the form of bitmap,
B-tree and its variants [10, 28]. They have been widely used
in many row-oriented relational database systems.
As an invariant of B-tree, B+-tree is a self-balancing tree

that supports search, insert, and delete operations in logarith-
mic time. Different with a binary tree, the node in a B+-tree
contains up to tens or hundreds of children, leading to lower
height and higher storage efficiency. Based on a B+-tree, the
process of an index scan consists of two main steps. First, ac-
cording to the requested value range, the tree is traversed to
locate the leaf node that contains the first value in the range.
Second, leaf nodes are traversed in the B+-tree to access the
values in the range. At the same time, the result (generally a
bit vector) is generated with the rowIDs of the indexed data.
For in-memory databases, scanning with a B+-tree involves
large amounts of random memory accesses.

Index scans have been extensively adopted in row-oriented
databases, because they avoid accessing all the data in the
table. After database systems have evolved to the columnar
storage, sequential scans outperform index scans in most
cases [17]. Themain reason is that scans on columnar storage
layouts avoid accessing other unneeded attributes.

2.3 Sequential Scan
In recent years, many approaches have been proposed on
accelerating sequential scans on the columnar storage [12,
15, 19, 20, 29, 32]. The state-of-the-art scan approaches take
various measures to reduce the amount of accessed data to
enhance the overall performance.

2.3.1 Early Pruning on Bit-Level Storage Layout. Bit-level
storage layouts including Bitweaving [19] and ByteSlice [12]
utilize a technique called early pruning to accelerate sequen-
tial scans. The technique physically partitions a code into

Table 1: The throughputs of data access patterns on
one core of Intel Xeon E5-2695 v4

Seq. Random Seq. Random
Read Read Write Write

Throughputs 4.43 0.27 4.71 0.24(Gb/s)

multiple sub-values, and early pruning offers the opportu-
nity of skipping the least significant bits when all values
in a group satisfy (or not satisfy) a predicate with the most
significant bits. Taking the Vertical Bit-Parallel method in
Bitweaving (called Bitweaving/V) as an example, Bitweav-
ing/V breaks down a column of codes into fixed-length mem-
ory blocks, called segments. Each segment contains n codes,
where n is the width of a processor word. The n k-bit codes
are decomposed into k n-bit words, where the i-th bit in
the j-th word equals to the j-th bit of the original i-th code.
Bitweaving/V evaluates the n codes in a segment in parallel,
from the most significant bit to the least significant bit. To
evaluate a predicate v < (11011)2, for instance, it can be
known that the code (10100)2 satisfies the predicate at the
second bit. After all the results of the codes in a segment are
known, the scan stops and the rest bits in the segment do not
need to be be accessed. The technique effectively accelerates
the sequential scan with no extra memory overhead.

2.3.2 Lightweight indexes. Lightweight indexes are tech-
niques that skips data by using summary statistics over data
zones. Such techniques include Zone Maps [20], Column
Imprints [29], and Feature Based Data Skipping [32]. For
instance, as a widely used technique, Zone Maps partition
data into zones and record the metadata of each zone, such
as min and max. With data partitioning, the approach skips
zones where all values in the zone satisfy or not satisfy the
predicate. When data does not exhibit clustering properties,
however, the technique is unable to skip data [15, 25].

2.3.3 Lossy Compression. Hentschel et. al. [15] propose a
scan approach based on lossy compression, called Column
Sketches. Column Sketches use a lossy compression map to
compress the base data to smaller codes and store them as a
column called sketched column. Most of the codes are eval-
uated affirmatively or negatively after a sequential scan on
the sketched column, while the base data is further checked
for the remaining uncertain codes. Column Sketches reduce
the amount of data to be accessed for the lossy compression
technique. While Column Sketches achieve much higher
performance improvements than other approaches, the tech-
nique needs to access all compressed codes with a sequential
scan, and random memory accesses to the base data are
needed for checking the uncertain codes.

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

101

102

103

Ti
m

e(
m

s)

ByteSlice
Column Sketches
B + -tree
Zone Maps

Figure 1: Performance comparison between the state
of the art approaches

2.4 Performance Analysis
There is a competition between index scans and sequential
scans in access path selection. By varying predicate selec-
tivities, Figure 1 shows the performance of B+-tree, ByteS-
lice, Zone Maps, and Column Sketches when evaluating a
predicate on a column with one billion 32-bit values under
uniform distribution. The experimental platform is described
in Section 6. In our experiment, the B+-tree demonstrates
higher performance than sequential scans with a selectivity
of less than 1.0%, while sequential scans outperform the B+-
tree for predicates with higher selectivities. There is a huge
performance gap between the two scans for different selec-
tivities, which is also verified in [17]. Consequently, access
path selection is needed to achieve the best performance.
Memory accesses are the main overhead in in-memory

data processing. We evaluate the throughputs of different
memory access patterns and show the results in Table 1. The
throughput of sequential read is around 15.4× higher than
that of random read, while sequential write is 18.6× faster
than random write. This is because current CPUs can iden-
tify the sequential memory access pattern and prefetch the
following data into the cache. Instead, random memory ac-
cesses result in cache misses, and a CPU core should wait for
the data to be fetched into the cache. Therefore, the memory
access pattern significantly influences scan performance.

To gain insights into the performance of scan approaches,
we utilize perf_event_open1 to measure the last level cache
(LLC)misses of the four scan approaches, i.e., Column Sketches,
ByteSlice, Zone Maps and BinDex. Since each LLC miss re-
sults in an memory access, we use it as the metric to demon-
strate the memory access overhead of scan approaches. Fig-
ure 2 shows the experimental results that are normalized
to Column Sketches. The performance numbers reported
are the average results of 100 randomly chosen selectivities
under uniform distribution. Among the three sequential scan

1http://man7.org/linux/man-pages/man2/perf_event_open.2.html

Column
Sketches

ByteSlice Zone Maps BinDex0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
LL

C
M

iss
es

Figure 2: Normalized last level cache misses of four
scan approaches

approaches, Column Sketches demand the least number of
memory accesses. ByteSlice uses early pruning to reduce the
amount of memory to be accessed, while Zone Maps have
the highest number of memory accesses because they are
unable to skip zones for the evaluated predicate. Compared
with other approaches, BinDex has a 11.6-26.8× lower num-
ber of LLC misses. This shows that BinDex can dramatically
alleviate the expensive memory access overheads.

3 BINDEX: AN OVERVIEW
BinDex is a two-layered index data structure that generates a
result bit vector for a scan operation, where each bit indicates
whether the corresponding value satisfies the predicate. In
this section, we take Figure 3 as an example to demonstrate
the methodology of BinDex.

3.1 BinDex Data Structure
A critical concept in BinDex is virtual value space. A column
indexed by BinDex has a virtual value space, in which all
values are sorted in ascending order. Given N values x1...N
in a column, the virtual value space is partitioned into K
virtual areas, denoted as A = {A1,A2, ...,AK }. Each virtual
area serves as a bin and contains around N /K sorted values.
In Figure 3, the 16 values in the virtual value space are parti-
tioned into four virtual areas, each of which contains four
values. Please note that the values in the column are still
stored in the original order, where the virtual value space is
only a concept in BinDex which is not stored separately.

Based on the virtual value space, there are three main data
structures in BinDex, i.e., an area map, a set of filter bit vec-
tors, and a position array. The area map S = {S1, S2, ..., SK−1}
maps a value to a virtual area and is used by both the two lay-
ers. Each element in the area map Si contains a (value, count)
pair, which denotes the start value of the virtual area Ai+1
and the number of values contained from A1 to Ai . If a con-
stant c satisfies Si−1.value ≤ c < Si .value , it locates in the
virtual area Ai . In our example, there are three elements in
the area map. The second element (114, 8) denotes that the
first value in virtual area A3 is 114, and there are 8 values in
A1 and A2.

63 253 8 22 74 123 174 114 254 20 235 203 43 160 52 91

Base Data

!" (0 ≤ %& < 52):
Filter Bit Vectors *

!+ (0 ≤ %& < 114):

!. (0 ≤ %& < 203): 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1

3 10 4 13 15 1 5 16 8 6 14 7 12 11 2 9

8 20 22 43 52 63 74 91 114 123 160 174 203 235 253 254

Position Array 0

Virtual Value Space:

1" 1+ 1. 12Virtual Areas:

Area Map 3
(52, 4) (114, 8) (203, 12)

%" %+ %. %2 %4 %5 %6 %7 %8 %"9 %"" %"+ %". %"2 %"4 %"5

0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0

1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1

Filter Layer

Refine Layer①

②

③

Figure 3: The data structure of BinDex

The first layer of BinDex is called filter layer, which utilizes
binning to construct a set of bit vectors. The bit vectors are
used to generate draft scan results for a predicate. Based
on the virtual area, the filter layer consisting of K − 1 filter
bit vectors, denoted as F = {F1, F2, ..., FK−1}. The ith filter
bit vector Fi is an order-preserving array consists of N bits,
where each bit indicates whether the corresponding value
is in the first i virtual areas, i.e., a bit in the filter bit vector
Fi is set as 1 if the corresponding value is less than Si .value .
In Figure 3, the bits for values less than 114 (the start point
of the virtual area A3) are set as 1 in the bit vector F2. When
evaluating a predicate, the filter layer first selects a bit vector
that is closest to the final result as the candidate result bit
vector. Since the bits for most values that satisfy the predicate
are set as 1 in the candidate result bit vector, only a small
portion of the values need to be probed.
The second layer is called refine layer. It refines and cor-

rects the draft result from the filter layer to deliver the final
result bit vector. In the refine layer, the rowIDs of all values
in the virtual value space are sequentially stored in a data
structure, called position array. In a candidate result bit vec-
tor, only part of the values in a virtual area do not satisfy
the predicate. We first locate the range of values whose bits
need to be corrected with a binary search (details in Sec. 4.2),
then their rowIDs in the position array are found. As the
values in the virtual value space are sorted, their rowIDs are
stored sequentially in the position array. With the range of
rowIDs, the corresponding bits in the filter bit vector are
corrected. In BinDex, the expected number of values that
need to be probed for a predicate is 1/4 the number of values
in a virtual area (see Section 4.1). Please note that BinDex is
flexible, where any index (e.g. B+-tree) that supports efficient
range query to quickly locate the uncovered value range in
the filter bit vector can be used in the refine layer. Because
BinDex aims at accelerating the select operator in analytical

databases where data updating is not frequent, we design the
refine layer as a position array to improve refine efficiency
and save memory space.
Overall, BinDex maintains the benefits of traditional in-

dexes since it avoids accessing most of the data that does not
satisfy a predicate in the filter layer. The refine layer miti-
gates the random memory access overheads by reorganizing
the rowIDs of data for sequential accesses. The two layers
tightly collaborate to accelerate the scan operation.

3.2 Example: Scan with BinDex
In this subsection, we use the example case in Figure 3 and
take the predicate “x < 69” to illustrate the scan procedure
with BinDex. We are going to explain how to perform opera-
tions including >,≤, ≥, = and BETWEEN in Section 4.3.
Since the constant 69 falls in the range [52, 114), S1 is

located through a binary search on the area map (1○). Then
the filter bit vector F2 is copied as the candidate result bit
vector (2○). Since all the bits for values in [8, 114) are 1 in
F2, the bits for values in [69, 114) should be unset as 0 to get
the correct result bit vector. Please note that F1 can also be
selected because it contains partial results except for values
in the range [52, 69), which should be set as 1 in the refine
layer. We will elaborate the selection of filter bit vectors to
minimize the number of probes in Section 4.1.
In the refine layer, we first locate the first value that is

larger than 69, which is 74. Then the rowIDs for values in [69,
114) are located in the position array. As shown in Figure 3,
there are two values in the range, i.e., 74 and 91, whose
rowIDs are 5 and 16, respectively (3○). Then the rowIDs in
the position array are sequentially accessed to unset the
corresponding bits (5th and 16th) in the result bit vector as
0. When the procedure completes, the final result bit vector
for the predicate “x < 69” is generated.

4 BINDEX DESIGN AND
IMPLEMENTATION

BinDex adopts three main design decisions to enhance the
scan performance. First, the selection of the optimal filter
bit vector minimizes the number of probes for a predicate
(Section 4.1). Second, sequentially accessing the rowIDs ad-
dresses the random read overheads. Meanwhile, rowIDs are
used to prefetch the bits to be written in the result bit vec-
tor, mitigating the random write overheads (Section 4.2).
Third, evenly partitioning the number of values among vir-
tual areas controls the number of probes in each virtual area
(Section 4.4). With the techniques adopted, BinDex achieves
consistently high performance for predicates with different
operators, selectivities, and data distributions.

4.1 The Selection of Filter Bit Vector
In BinDex, a filter bit vector is selected in the filter layer as
a draft of the result bit vector. Given a predicate x < c , there
are generally two candidate filter bit vectors. We use Akc to
denote the virtual area that the predicate constant c belongs
to. Values locate inAkc are all “uncertain values" which could
not be affirmed or negated by the filter bit vector. Then both
Fkc−1 and Fkc can be chosen as the draft result bit vector
since values in area Akc are set as 1 in Fkc but unset as 0
in Fkc−1. Therefore, they are treated differently in the refine
layer to obtain the final result bit vector. If Fkc−1 is chosen,
the corresponding bits of values that satisfy the predicate in
Akc should be set as 1. On the contrary, the corresponding
bits of values that do not satisfy the predicate in Akc should
be unset as 0 in Fkc .
In the example case (Figure 3), to evaluate the predicate

x < 60, either F2 or F1 can be selected since 60 locates in A2.
If F2 is selected, the bits of x1, x5 and x16 should be reset to
0, since they don’t satisfy the predicate but are set as 1 in
F2. However, if F1 is selected, only the bit of x15 should be
set as 1. This example demonstrates that there can be a huge
variance in the number of probed values with different filter
bit vectors. The number of probes influences the number of
memory accesses, which exerts a huge impact on the overall
performance. Therefore, a filter bit vector that is as similar
as possible to the result bit vector should be selected.

To evaluate a predicate x < c in BinDex, we firstly conduct
a binary search over the areamap to locate the corresponding
virtual area Akc . Then we use a binary search over the area
Akc to find the last value xic that is less than c , here ic denotes
the corresponding position in the virtual area space. Here the
binary search is performed via the position array, where the
rowIDs are used to access the corresponding values in the
base data for comparison. After locating xic , the number of
values to be probed in Fkc−1 and Fkc can be calculated as ic −
Skc−1.count and Skc .count − ic , respectively. Fkc−1 is selected

as the candidate result bit vector if ic < 1
2 (Skc−1.count +

Skc .count) or Fkc for otherwise.
With K virtual areas, there are on average N /K values in

each virtual area. The number of values need to be probed
(Nm) to get the result bit vector is calculated as

Nm(c) =

{
ic − (kc − 1) · N /K , if ic−(kc−1)·N /K

N /K < 1
2

kc · N /K − ic , if 1
2 ≤

ic−(kc−1)·N /K
N /K ≤ 1

(1)
We assume that the predicate constants in queries have

a uniform distribution among the base data, thus ic is an
uniform random variable. The mathematical expectation of
Nm is

E(Nm) =
K

N
·

kc N
K∑

ic=
(kc −1)N

K

Nm =
K

N

N 2

4K2 =
N

4K
(2)

We can see that the expected number of probed values is 1/4
of the values in a virtual area.
In BinDex, we also use another two bit vectors in query

evaluation, i.e., bit vectors with all bits set/unset as 0 or 1.
For instance, to evaluate the predicate x < 20 in Figure 3, the
all-0 bit vector instead of F1 is used to minimize the number
of probes. The all-1 bit vector is selected when evaluating the
predicate x < 254. We do not store the two bit vectors, but
generate them with calloc() and memset(), which overhead
is lower than that of copying a stored one.

4.2 Result Refining
On average, N

4K values need to be verified with a filter bit vec-
tor. The positions of the values, i.e., either {PSkc −1 .count+1, ..., Pic }
or {Pic+1, Pic+1, ..., PSkc .count }, are stored sequentially within
the position array. Therefore, the rowIDs in the position array
can be accessed with sequential memory accesses. However,
the to-be-modified bits in the selected filter bit vector are
not sequentially stored. As a result, writing the result bit
vector involves random memory accesses. As discussed in
Section 2.4, the overhead of random memory accesses can
seriously impact the scan performance. In BinDex, the over-
head has been significantly mitigated since only 1

4K of the
values need to be probed. Moreover, we utilize the rowIDs
stored in the position array to perform software pipelining
to further mitigate the random write overhead. The rowIDs
are used to calculate the addresses of the bits in the candi-
date result bit vector, with which prefetching is adopted to
load the subsequent bits into the CPU cache to address the
random write overhead.

4.3 Scan Algorithms
Algorithm 1 shows the pseudocode of the BinDex scan pro-
cedure in evaluating predicates with the “<” operator. Given

Algorithm 1: BinDex scan for a predicate with "<" op-
erator
Input :a predicate “x < c” on column X1...N , filter bit

vector F1...K , area map S , position array P
Output : the result bit vector

1 kc = binary_search_area(c, S);
2 ic = binary_search_pos(c, P, X);
3 if ic < 1

2 (Skc−1.count + Skc .count) then
4 ks = kc − 1, pstar t = Sks .count + 1, pend = ic ;
5 else
6 ks = kc , pstar t = ic + 1, pend = Sks .count ;
7 end
8 Fr = bit_vector_build(ks);
9 for i ← pstar t to pend do

10 if i + h <= pend then
11 prefetch (&Fr [get_pos(i + h)]);
12 end
13 flip_bit(Fr [get_pos(i)]);
14 end
15 return R;

a predicate x < c , we first locate the virtual area Akc that
contains the last value that is less than c . A binary search
is performed on the value attribute of the area map S (Line
1). Then the rowID of the value (denoted as ic) is located
with binary search in Akc (Line 2). In the binary search on
line 2, since values are sorted in the virtual value space, their
sequentially-stored rowIDs in the position array are used to
access the values in the base data for comparison.

Then we select the filter bit vector that needs the smallest
number of probes and record the range of rowIDs whose bits
need to be modified in the result bit vector (Line 3-7). Line
8 generates the result bit vector, where an all-0 bit vector
is allocated if ks = 0, or an all-1 bit vector is built if ks
equals to the total number of virtual areas. Otherwise, Fks
is copied as the draft of the result bit vector (Line 8). In the
end, the copied bit vector is refined with prefetching (Line 9-
14). The instruction on line 11 prefetches the get_pos(i+h)th
bit of Fr into the cache. get_pos() is a function that fetches
the ith rowID in the position array. Then each prefetched
bit is flipped to get the final result bit vector (Line 13). The
prefetched data will be accessed after h iterations, where
h is the prefetching stride to interleave computation and
memory accesses. In this way, data manipulation pipelines
with data loading to mitigate the random write overheads.

BinDex can be parallelized to utilize multi-core resources
to enhance the overall performance. The best way to par-
allelize BinDex is to have multiple threads cooperatively
copying different parts of the selected filter bit vector to
form the result bit vector. After that, a thread identifies the

6 4 4 2 4 4 4 3 4 4 3 6 4 4 4 4

!"

2 3 3 4 4 4 4 4 4 4 4 4 4 4 6 6

0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0

Base Data

Virtual
Value Space

√

!# 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0

!$ 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

×

×

Figure 4: Index Compression

range of the values to be refined in the position array, and
evenly partitions the range among the threads. Then each
thread refines the result bit vector with the atomic compare-
and-swap (CAS) instruction.
Not only for the < operator, BinDex can achieve simi-

lar performance for operators including >, ≥, and ≤ on the
same ascendingly sorted virtual value space. In the follow-
ing we describe how BinDex handles predicates with other
operators.

“x > c” : With the values in the virtual value space sorted
in ascending order, the general idea to perform the> operator
is to conduct a bit-wise NOT operation on the result bit vector
of the predicate x ≤ c . As the operation would result in large
number of memory accesses, we perform the bit-wise NOT
operation when duplicating the candidate filter bit vector
(bit_vector_copy). This significantly mitigates the overhead,
leading to a similar performance with the < operator.

“x ≤ c” and “x ≥ c” : A predicate in the form of x ≤ c is
transformed to the predicate x < (c + 1). As the values are
compressed into order-preserving codes in modern database
systems, the two predicates have the same result. Same with
x ≤ c , the predicate x ≥ c is transformed to x > (c − 1).

“c1 < x < c2” : We treat the predicate as two predicates
x < c2 and x > c1, where a bit-wise AND operation is
performed on their result bit vectors. Instead of naively per-
forming the procedure, the draft result bit vector is only
generated once. We record the filter bit vector for x < c1 and
x < c2 as Fc1 and Fc2 , respectively. For each word in the bit
vectors, we first perform bitwise NOT on Fc1 and then per-
form bitwise AND between the result and Fc2 . The scheme
writes the approximate bit vector only once, which enhances
the performance of the BETWEEN operator.

“x = c” : Considering the distribution of column data may
be highly skewed, in order to balance the execution time
for different selectivities, we first calculate the number of
matched values with the area map and the position array
(denoted as nm). If nm < N

K , we create an N -bit draft bit
vector with all values unset as 0, then we search over the
virtual value space to get the rowIDs of the column data that
equals to c , and set the corresponding bits in the bit vector as
1. If nm ≥ N

K , a bit-wise XOR is performed on the bit vectors
of predicates x < c and x < (c + 1) to generate the result.
The predicate “x , c” is processed in the opposite way.

4.4 Index Building
Initial Index Building To build BinDex, the virtual value
space is firstly generated by sorting the base data in ascend-
ing order. Please note that the sorted data is removed after
the building procedure. The original rowIDs of the sorted
values are stored in the position array. Then the virtual value
space is evenly partitioned so that each area contains the
same number of values. For the area map S , Si .value is the
first value of Ai+1, and Si .count is the number of values con-
tained from A1 to Ai . With K − 1 elements in the area map,
K − 1 filter bit vectors are built. For the kth filter bit vector
Fk , the value of the ith bit is set as 1 if xi < Sk .value , or
unset as 0 for otherwise.

Index Compression BinDex adopts various approaches
to compress its memory space. Besides generating all-0 and
all-1 bit vectors at run time, BinDex compresses bit vectors
for specific workloads. For workloads with skewed data dis-
tribution, a large amount of values in the column are the
same, which brings the opportunity for bitmap compression.
For instance, as shown in Figure 4, 4 appears 11 times and
spans three virtual areas. When evaluating the predicate
x < 4, F1 is used as the candidate result, while an all-1 bit
vector is used with x < n (n > 4). In fact, F2 and F3 will never
be used in predicate evaluation, which are redundant.
We propose a scheme to compress BinDex: If a value c

spans Ai and Ai+1 (i>0), and the number of c is more than
half the number of values in both the areas, Fi and Si are
removed. Based on the scheme, F2 and F3 are removed, and
the area map only contains S1. The compression scheme can
save a significant amount of memory while still constraining
the number of probes in the refine layer to be within N

4K .
Index Updating In analytical databases, data updating is

not frequent and generally in a bulk appending manner. To
avoid frequently rebuilding the index when appending new
data, the position array of BinDex can be designed as a set of
loosely coupled memory blocks to store rowIDs. When new
data is loaded after the initial index building, the data is ap-
pended to columns. Correspondingly, their bits are appended
to the filter bit vectors, and their rowIDs are inserted into the
memory blocks in the position array to alleviate the updating
overhead. When the relative standard deviation (RSD) of the
virtual area size reaches a specified threshold, which means
the value distribution in virtual areas is imbalance, the in-
dex is rebuilt. The threshold is an adjustable number based
on performance requirements in database systems, which is
used to tradeoff between the worst-case query performance
and index rebuilding cost.

4.5 System Integration
For integrating BinDex into existing systems, we note a fact
that modern column-oriented databases generally adopt late

Table 2: Notations in the performance model

Dataset N number of values
cw rowID width (bits)

Hardware CM time of LLC miss (sec)
CH time of LLC hit (sec)
P number of processor cores
CR time of a random write

with prefetching (sec)
Br data reading bandwidth(Gb/s)
Bw data writing bandwidth(Gb/s)

BinDex K number of virtual areas
L number of rowIDs need to be read

materialization in query processing, where a system creates
intermediate results and postpones retrieving tuples. If the
intermediate results of the select operator are stored in the
form of a bitmap, BinDex can be directly integrated by substi-
tuting the original select operator. If the intermediate results
in the DBMS are stored in other forms such as a rowID list,
we may replace the rowID list with our bitmap and imple-
ment a new fetch operator. The new fetch operator reads the
bitmap generated by select operator and retrieves column
value so that other operators can access.

In using BinDex, access path selection for the select op-
erator may be disabled. Indeed, in Section 6 we show that
BinDex with 32 or more virtual areas is always faster than all
existing sequential scan and index scan approaches. BinDex
can be directly used for columns with integer values. For
columns with other types such as floating point or string,
values should be encoded into integer codes with the corre-
sponding techniques [2, 11], which is a common practice in
modern database systems. For columns with encoded integer
values, BinDex makes no change to the base data layout, thus
all other operators can remain unchanged.

5 PERFORMANCE MODELING
In BinDex, a higher number of filter bit vectors / virtual areas
leads to higher performance and larger memory space. In
production systems with memory constraints or specific per-
formance requirements, tradeoffs should be made between
the memory space and performance. We develop a perfor-
mance model to help users achieve the goal. In the model, the
scan process with BinDex is divided into four phases. Table 2
shows the parameters and notations used in the model.

Search on the area map In area search, binary search is
performed on the area map to locate the virtual area. Since
the area map is frequently used whose size is small (less than
1 KB), we take it as residing in the last level cache, and we
calculate the search time as TA = log2 K ·CH .

Copy filter bit vector The copying process involves se-
quential reads to the original filter bit vector and sequential

writes to the allocated result bit vector. Since the operation
continually saturates memory bandwidth, we calculate the
time of copying the filter bit vector as TC = N /Br + N /Bw .

Search on the position array After a virtual area Ak is
chosen, the portion of the position array that belongs to Ak
is searched to locate the range of values to be probed. Since
the size of the position array is large, we take the binary
search on the position array and the reference to the base
data as random memory accesses. The time of searching on
the position array is calculated as TP = log2(N /K) ·CM .
Refine result bit vector The time of refining result bit

vector depends on the number of virtual areas. Wemodel this
phase as two parts. The first part is reading the rowIDs in the
position array, and the second part is randomly writing to
the corresponding positions in the result bit vector. BinDex
cannot saturate the memory bandwidth in the refine phase.
With multiple cores performing the operation in parallel, the
execution time is calculated as: TR = L ·CH /P + L ·CR/P .

The overall scan time with BinDex is calculated as follows.

T (N ,K) = TA +TP +TC +TR

= log2 K ·CH + log2
N

K
·CM +

N

Br
+

N

Bw
+ (CH +CR) · L/P

When L equals to N /4K , the equation calculates the av-
erage performance of BinDex, since on average 1/4 of the
values in a vritual area are probed. T (N ,K) estimates the
worst case performance when L equals to N /2K , i.e., half
of the values in a virtual area need to be accessed. In a pro-
duction system with a given memory space constraint M ,
the maximum number of virtual areas without index com-
pression is calculated as k = M/N − cw + 1. As BinDex
adopts a compression scheme, we use equi-depth histograms
to sample and estimate the number of bit vectors that can be
compressed (denoted as k ′). Then the performance of BinDex
with memory constraintsM can be estimated by substituting
K = k + k ′ into T (N ,K).

6 EXPERIMENTAL ANALYSIS
In this section, we evaluate the performance of BinDex under
a variety of workloads and configurations.

6.1 Experimental Setup
Hardware and SoftwareWe run experiments on amachine
equipped with an Intel Xeon E5-2695 v4 Broadwell processor
running at 2.1GHz. The processor has 18 cores and a 45MB
L3 cache. The server is equipped with a 1TB disk and 128 GB
DDR4 DRAM. The operating system is 64-bit Ubuntu Server
18.04 with Linux Kernel version 4.15.0-54. The programs
are compiled using g++ 6.5 with optimization flag -O3. The
needed data are preloaded into memory before experimental
runs. All experiments are performed with the data residing

in the main memory, where the needed data are preloaded
before experiments.

Benchmark In the experiments, we create a table with
one billion values in each column. Both uniform and skewed
workloads are used in the evaluation. For the uniform work-
load, values are uniformly distributed integers between [0, 2k),
where k is the code width ranging from 4 bits to 32 bits. The
popularity of the values in the skewed workload follows a
Zipf distribution of skewness 1 and 2. We control the selec-
tivities of the predicates in the experiments by varying the
predicate constant c .
The number of virtual areas in BinDex is set as 128 by

default, and the performance with different number of virtual
areas is reported in Section 6.7. When conducting predicate
evaluation, each approach makes use of all the 18 cores.
Except for the experiments that vary the query selectivities,
the numbers reported in the experiments are the average
performance under 100 randomly chosen selectivities. For
each selectivity, the performance are the average results with
20 experimental runs.

CompetitorsWe compare BinDex against ByteSlice, Zone
Maps, Column Sketches, and B+-tree. Besides the open source
ByteSlice project, we write the code for other baselines ac-
cording to the original paper and try to optimize the per-
formance by adopting all the optimizations mentioned. For
Column Sketches, we follow the experimental settings and
use single byte column sketch. The B+-tree has a fanout of
200 and adopts prefetching in the implementation. All the
approaches (including B+-tree) output a bit vector as the
scan result. The experimental results of these approaches are
consistent with their original papers.

6.2 Performance with Uniform Data
Distribution

In this subsection, we evaluate the performance of the <
operator on uniformly distributed numerical data. Figure 5
compares the performance of BinDex with other approaches
by varying the selectivity from 0 to 1 with different code
widths. For all workloads, BinDex significantly outperforms
all the competitor approaches. For instance, for 32-bit code
width BinDex achieves 2.1×, 2.9× and 5.6× higher perfor-
mance than Column Sketches, Byteslice and Zone Maps,
respectively. Column Sketches outperform other sequential
scan approaches for 16-bit and 32-bit code widths. For the
8-bit code width, Column Sketches exhibit no performance
advantage as at least a one-byte sketch should be used, thus
the amount of accessed data is not reduced. For very low and
high selectivities, Zone Maps are effective in accelerating
scan operations. This is because most of the values satisfy or
do not satisfy the predicate, and Zone Maps are able to skip

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

20

40

60

80

Ti
m

e(
m

s)

ByteSlice
Column Sketches

BinDex
Zone Maps

(a) Code width = 32 bits

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

10

20

30

40

50

60

Ti
m

e(
m

s)

ByteSlice
Column Sketches

BinDex
Zone Maps

(b) Code width = 16 bits

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

10

20

30

40

Ti
m

e(
m

s)

ByteSlice
Column Sketches

BinDex
Zone Maps

(c) Code width = 8 bits

Figure 5: Scan performance on datasets with uniform distributions

4 8 12 16 20 24 28 32
Code Width (# of bits)

20

40

60

80

Ti
m

e(
m

s)

ByteSlice
Column Sketches
BinDex
Zone Maps

Figure 6: Performance by varying
code width from 4 to 32 bits

10−4 10−3 10−2
Selectivity

20

40

60

80

Ti
m
e(
m
s)

B+ -Tree
BinDex

Figure 7: Performance comparison
with B+-tree

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

10

20

30

40

50

Ti
m

e(
m

s)

ByteSlice(>)
Column Sketches(>)

BinDex(<)
BinDex(>)

Figure 8: Performance of the > oper-
ator

large number of zones by only comparing their min/max val-
ues. However, Zone Maps become inefficient for most cases
as zones are hard to skip under the uniform data distribution.
Figure 6 compares the average performance of the ap-

proaches by varying the code width from 4 bits to 32 bits.
ByteSlice and Column Sketches show the same performance
with the code widths of less than or equal to 8 bits, because
these approaches can not reduce data accesses with small
code widths. Instead, BinDex is the only approach that can
accelerate scans for small code widths, which delivers up to
1.8 times higher performance than other approaches. With
code widths larger than 8 bits, the execution time of Zone
Maps increases since the data needs to be accessed is propor-
tional to the code width. Column Sketches deliver consistent
performance with varying code widths, which is around 2.2
times lower than BinDex.

B+-tree outperforms sequential scan approaches for pred-
icates with extremely low selectivity (< 1%). In Figure 7, we
compare the performance of B+-tree and BinDex. As shown
in the figure, BinDex achieves similar performance with B+-
tree under low selectivity (0.001% - 0.4%). This is because
both approaches initialize an all-zero bit vector, while the
number of accessed rowIDs and flipped bits are the same.
When selectivity increases (> 0.4%), the filter bit vectors in
BinDex take effect which largely reduces the number of

rowIDs to be accessed, therefore leading to a huge perfor-
mance improvement.

6.3 Performance with Skewed Data
Distributions

In this subsection, we evaluate the performance of the ap-
proaches with skewed data distributions. With the skew
factor varying from zipf = 0 (uniform distribution) to zipf
= 2 (heavily skewed distribution), Figure 9a shows the ex-
ecution time of predicates with the < operator. As shown
in the figure, BinDex consistently outperforms all the other
approaches under the skewed data distributions. On aver-
age, BinDex delivers 1.7 - 6.5 times speed up than the other
approaches for the skewed data distributions with zipf=1,
and 2.3 - 10.2 times speed up with zipf=2. When the skew
factor increases, the execution time of ByteSlice increases
correspondingly. This is because for the Zipf distribution,
increasing the skew factor has generated large number of
same values. For most of the queries, the constant c lies in
the dense region of the zipfian curve. As a result, the most
significant bits in a segment would be mostly the same while
the least significant bits need to be accessed to know if the
values satisfy the predicate or not. Hence, early stopping is
less effective with skewed data distribution, which is con-
sistent with the experimental results reported in previous

0 1 2
Zipf Parameter

0

20

40

60

80

Ti
m

e(
m

s)

BinDex
ByteSlice

Column Sketches
Zone Maps

(a) Performance comparison by varying skewness

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

20

40

60

80

100

120

Ti
m

e(
m

s)

ByteSlice
Column Sketches

BinDex
Zone Maps

(b) Performance with skewed data distribution
(zipf = 1)

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

20

40

60

80

100

120

Ti
m

e(
m

s)

ByteSlice
Column Sketches

BinDex
Zone Maps

(c) Performance with skewed data distribution
(zipf = 2)

Figure 9: Scan performance on datasets with Zipf distributions

< BETWEEN =(uniform) =(skewed)0

20

40

60

80

Ti
m

e(
m

s)

ByteSlice
Column Sketches
BinDex

Figure 10: Performance comparison
of different operators

1 2 3 4 5 6 7 8
Prefetch Stride

0

2

4

6

8

10

12

14

16

Ti
m

e(
m

s)

w/o Prefetch
w/ Prefetch

Refine Layer

Figure 11: BinDex performancewith
different prefetch strides

Initial
Building

Loading 0.1% 1% 5% 10%
10−1

100

101

102

Ti
m

e(
s)

B + -Tree BinDex

Figure 12: The time of index build-
ing and updating

studies [12]. On the contrary, the execution time of Column
Sketches and BinDex decreases. This is because the values
can be efficiently filtered as lots of them are the same, and
the number of probes are significantly reduced, leading to
higher performance.
Figure 9b and Figure 9c compare the performance of the

approaches with skewed workloads (zipf=1 and zipf=2), re-
spectively. The early stopping technique, i.e., ByteSlice, be-
haves differently with the two skew factors.With skew factor
zipf=1, the performance of ByteSlice improves with the in-
crease of selectivity. This is because, the query constant lies
in the sparse region of the zipfian curve for high selectivities,
which is larger than most values in the column. Therefore,
early stopping works as most values can be known if they
satisfy the predicate by only accessing the most significant
bits. Figure 9c shows that ByteSlice works poorly in heavily
skewed data distribution, because the query constant locates
in the dense area of the Zipfian curve for selectivities less
than 0.9. Column Sketches obtain slight performance im-
provement for skewed data as frequent values are mapped
to unique sketch codes, therefore reducing the amount of
probes. To conclude, skewed workloads have little impact
on the performance of BinDex.

6.4 Other Operators
Figure 8 shows the performance of BinDex, Column Sketches
and ByteSlice on predicates with the > operator under uni-
form workloads. All the approaches achieve similar perfor-
mance for the < and > operators. For sequential scan ap-
proaches such as Column Sketches and ByteSlice, the < and
> operators make no difference as all values in the column
need to be accessed and evaluated, leading to the same costs
for both computation and memory accesses. For BinDex’s
virtual value space where values are sorted in ascending or-
der, the filter bit vectors need to be bitwise reversed to serve
as the approximate results for the > operator. We perform
bitwise NOTwhen copying the filter bit vectors which avoids
introducing extra memory accessing overhead. As shown in
the figure, the performance of the > operator is almost the
same with that of the < operator in BinDex.
Figure 10 compares the efficiency of BETWEEN and =

operators to the < operator. For the BETWEEN operator,
evaluations are conducted under uniform workloads. The
number of rowIDs accessed in the refine layer for BETWEEN
operator is twice that of < operator. However, as introduced
in Section 4.3, we merge the process of bit vector copying of
the two predicates into one, which significantly alleviates the
memory access costs. With this optimization, the execution

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

10

20

30

40

50

60

70

Ti
m

e(
m

s)

BinDex(16)
BinDex(32)
BinDex(128)

BinDex(512)
Column Sketches

Figure 13: The performance of
BinDex with different number of
virtual areas

Filter layer Refine layer0

5

10

15

20

25

Ti
m

e(
m

s)

BinDex(16)
BinDex(32)
BinDex(64)
BinDex(128)
BinDex(256)
BinDex(512)

Figure 14: The execution time of fil-
ter layer and refine layer with vary-
ing number of virtual areas

Q1 Q6
TPC-H queries

0

2

4

6

8

Sp
ee

du
p

MonetDB
MonetDB-BinDex

Figure 15: The performance im-
provement of MonetDB with
BinDex on TPC-H benchmark

time of the filter layer only increases by 41%, and the total
execution time of the BETWEEN operator is 61% higher than
that of the < operator, which is still 3.8× and 1.5× faster than
that of ByteSlice and Column Sketches, respectively.

For the “=” operation, as described in Section 4.3, BinDex
adopts two different approaches under low and high selec-
tivities. We use uniform (selectivity ≪ 0.001) and skewed
(zipf=1, selectivity> 1

K) data distributions to evaluate the per-
formance of the two approaches. For the uniform distribu-
tion, the number of bits to be flipped in the refine layer is
very small, and the performance of BinDex is 3.5× and 4.9×
higher than that of Column Sketches and ByteSlice, respec-
tively. For such predicates, initializing the all-zero result bit
vector is the main overhead in BinDex. When the selectivity
is larger than 1

K with the skewed distribution, the perfor-
mance of processing a “=” operation is similar to that of
processing a “BETWEEN” operation, since the result of pred-
icate “c − 1 < x < c + 1” is equivalent to that of “x = c”. For
such workloads, BinDex achieves 0.75× and 5.3× speedup
over Column Sketches and ByteSlice, respectively.

6.5 Performance Impact by Prefetching
BinDex mitigates the random accesses in the refine layer
with prefetching. BinDex prefetches bits that are h itera-
tions ahead in the loop, where h is called as prefetch stride.
The setting of the prefetch stride considers both the cache
miss penalty and the execution time of each iteration. Fig-
ure 11 shows the performance improvement by prefetching
of BinDex(128) on uniform 32-bit codes. As shown in the
figure, prefetching improves the performance of the refine
layer and BinDex for 14.1-29.9% and 7.6-15.5%, respectively.
By varying the prefetch stride from 1 to 8, the performance
improvement increases with a larger prefetch stride and
stays relatively stable when exceeds a certain threshold (6
in our experiments). We find that setting the prefetch stride
at 6 works for all workloads on our platform, and we use
the setting in our evaluations. It can be optimized on other
targeted hardware platforms via the same experiments.

In the experiment, the filter layer takes 52% of the over-
all processing time, but it generates the correct results for
around 99.8% values. Instead, the refine layer only flips the
bits for 0.2% values but takes 48% of the time. Therefore,
the filter layer is the main factor in enhancing the overall
performance, while prefetching mitigates the random access
overhead in the refine layer.

6.6 Index Building and Incremental Data
Updating

In Figure 12, we evaluate the index building time and the in-
cremental index updating time when new data is loaded. For
a column with one billion values, the initial index building
takes 143 seconds, which is 36.3% slower than a B+-tree.
When new data is loaded, BinDex supports incremental

updating to avoid rebuilding the index from scratch. With
the initial index built for one billion values, we measure the
time of updating the index by appending 0.1%, 1%, 5% and
10% of the values in the base data and compare the efficiency
with B+-tree. As shown in Figure 12, the average updating
efficiency of BinDex is 33.4% lower than that of B+-tree. The
reason mainly lies in the filter layer, where initializing or
expanding the bitmaps introduces non-trivial overheads.

6.7 Performance Impact by Number of
Virtual Areas

The number of virtual areas in BinDex is the main factor
that influences the performance, since it determines the num-
ber of probes in the refine layer. Figure 13 demonstrates the
performance of BinDex with 16-512 virtual areas under dif-
ferent selectivities. BinDex(K) in the figure denotes the per-
formance of BinDex withK virtual areas. As demonstrated in
the figure, the performance of BinDex varies in a large range
with 16-32 virtual areas. This is because predicates with dif-
ferent selectivities lead to a different number of probes in
the refine layer, resulting in the performance variation. For
instance, for 16 virtual areas on a columnwithN values, each
virtual area contains 6.25%N values. The filter bit vector F2

is chosen with a predicate of 10% selectivity, because 3.75%N
(10% − 6.25%) values need to be probed if F1 is chosen, while
F2 only needs to probe 2.5%N (6.25%×2−10%) values. When
the number of virtual areas increases to 32, each virtual area
contains 3.125%N values. Therefore, the number of the val-
ues to be probed is only 0.625%N (10% − 3 × 3.125%) with
F3 selected. Since the number of probed values dramatically
drops from 2.5%N to 0.625%N , the execution time of BinDex
decreases from 44.9 ms to only 15.8 ms. The performance
of Column Sketches is also included in Figure 13, which is
lower than BinDex(32) in all cases, and the average perfor-
mance of BinDex exceeds Column Sketches with 16 virtual
areas. With 512 or more virtual areas, the performance of
BinDex becomes relatively stable with different selectivities.
BinDex(512) achieves around 2.9× higher performance than
Column Sketches.

Figure 14 shows the execution time of the refine layer and
the filter layer with different number of virtual areas. When
the number of virtual areas increases from 16 to 512, the time
of the filter layer hardly changes as the execution time of
its main task stays constant, i.e., copying the filter bit vector.
However, the execution time of the refine layer dramatically
drops with the increase of the number of virtual areas.

6.8 TPC-H Evaluation
We integrate BinDex into MonetDB and evaluate its per-
formance improvement on TPC-H benchmark. To integrate
BinDex into MonetDB, we implement a new select operator
that takes a single column and a predicate as inputs, which
makes the API stay the same with the original select operator.
MonetDB uses a rowID list as its intermediate scan result,
but BinDex outputs a bitmap. For compatibility, we imple-
ment a new fetch operator that works with bitmap, and the
rest of the operators in MonetDB are left unchanged. We use
the explain command to create plans and edit the plans to
use BinDex. Then we feed the revised plan into the MAL
interface of MonetDB to perform the query processing.

Figure 15 compares the performance improvement brought
by BinDex. Comparing with the original MonetDB,MonetDB
with BinDex achieves 4.9% and 7.1× performance improve-
ment for Q1 and Q6 in the TPC-H benchmark, respectively.
Because the majority of the query execution time of Q1 is
spent in performing aggregation, its performance improve-
ment is not apparent. For Q6, in contrast, much more time is
spent on performing scan, thus there comes a much higher
performance improvement.
Currently, the performance is evaluated with one thread,

and we leave the parallelization of BinDex in MonetDB as a
future work. To parallelize BinDex in MonetDB, we need to
revise the query plan generated by the MonetDB optimizer.
The default optimizer in MonetDB uses a “mitosis" way to

parallelize query execution, where it horizontally slices a col-
umn and replicates the query plan per slice. Multiple threads
evaluate replicated plan fragments concurrently, and Mon-
etDB merges their intermediate results in the end. However,
as stated in Section 4.3, the best way to parallelize BinDex
is to have multiple threads cooperatively copying different
parts of the selected filter bit vector and refining in the posi-
tion array. Therefore, to integrate the process into MonetDB,
the select operator needs to be parallelized separately, and
the bit vector generated by BinDex should be sliced and dis-
tributed among the threads as their inputs. Correspondingly,
the query plan generated by the optimizer should be revised
to support the execution flow.

7 PERFORMANCE-SPACE TRADEOFFS
Different with other indexes such as B+-tree, BinDex is able
to tradeoff between performance and memory space. We
introduce memory space as the main dimension in the selec-
tion of scan approaches. According to the additional memory
space needed, we classify the scan techniques as three cate-
gories: (1) Early pruning on bit-level storage layouts [12, 19]
that demands no additional spaces; (2) Column Sketches [15]
that use lossy compression to build a sketch for a column; (3)
BinDex that demands less memory than a B+-tree but larger
memory than other approaches.
We compare the memory space taken by the approaches

with 1 billion values of 32-bit codes. For early pruning tech-
niques on bit-level storage such as Bitweaving and ByteSlice,
they rearrange the storage layouts and require no extra mem-
ory space. Since Column Sketches mainly use 8-bit or 16-bit
sketched columns [15], thus the extra space for the sketched
column is 1-2 GB. Therefore, early pruning technique is the
fastest approach when the memory is less than 1 GB, while
Column Sketches should be chosen with more memory. For
32-bit rowIDs, a B+-tree takes around 8.7 GB extra mem-
ory space for 1 billion values. The memory space taken by
BinDex(32) is around 8.0 GB, which is smaller that a B+-tree.
Installing 32 virtual areas is enough for BinDex to outper-
form other approaches under all selectivities, and the average
performance of BinDex(32) is 24.7% higher than that of Col-
umn Sketches. With 128 virtual areas, BinDex achieves up
to 2.5 times higher performance than Column Sketches, and
the memory taken is around 20 GB. For skewed workloads,
BinDex can further compress the memory space it takes. The
memory of BinDex with 128 virtual areas is 19.6 GB and 5.9
GB for workloads with zipf=1 and zipf=2, respectively.

Based on the memory consumption of each approach and
the systemmemory constraints, database systems can choose
the appropriate scan approach.The performance model in
Sec. 5 can be used to estimate the performance of BinDex,
which shows an error rate of 12.3% in our evaluation. With

Memory Space

Early pruning on
bit-level storage

Column
Sketches BinDex

! 4 + $ ×!

Figure 16: The selection of scan approacheswithmem-
ory constraints

the estimated performance of other approaches, database
systems can choose the appropriate select operator given a
specified memory budget. Since sequential scan approaches
generally derive cycle/code instead of execution time in their
performance models, we leave it as a future work to utilize
performance models to choose scan approaches.
According to our evaluations on several x86-64 servers,

Figure 16 shows the general conceptual graph of the guidance
on selecting scan approaches according to available memory
space on commodity off-the-shelf (COTS) x86-64 platforms.
The following equations formally describe the figure, where
the memory budget is denoted asM in bytes.

BinDex , ifM ≥ (4 +w) · N
Column Sketches, if N ≤ M < (4 +w) · N
Bitweavinд/ByteSlice ifM < N

(3)

In the equations, N denotes the number of values andw de-
notes the rowIDwidth in bytes.We use 4·N bytes as the basic
memory space required for filter bit vectors, since 32 virtual
areas are enough for BinDex to outperform competitors on
our platforms under various selectivities. To conclude, data-
base systems can use memory space as the main dimension
for selecting the best scan approaches in system setup.

8 RELATEDWORK
Sequential Scan: Techniques including compression [1, 3,
31], SIMD [22, 35, 36], and scan sharing [6, 13, 14, 23, 24,
37] have been studied to accelerate the sequential scans.
The early pruning techniques, together with lightweight
indexes [25, 29, 32, 33] and Column Sketches [15], are all
specialized sequential scans that reduce the amount of data to
be accessed, in different ways. The nature of sequential scans
requires to access all the column codes, even not all bits of
each code. Instead, BinDex trades memory for performance
and uses filter vectors to avoid accessing the entire column.

Bitmap indexes: Bitmap indexes work well for catego-
rial data with low cardinality, where each distinct value is
mapped to a bitmap with all the corresponding bits being
set as 1 [34]. Such bitmap indexes perform poorly for high-
cardinality predicates because of the huge amount of bitmaps
that need to be stored and the high overhead of merging
bitmaps in query execution. Range encoding can overcome
the inefficiencies of traditional bitmap to accelerate the range

scan operations [7, 8, 21]. Based on range encoding, bin-
ning further optimizes the scan performance on columns
with high cardinality, where multiple values are covered in
a bin/bitmap to reduce the number of bitmaps [26, 27, 30].
Previous bitmap approaches with binning is similar with the
filter layer of BinDex. However, they do not have the refine
layer and have to probe the base data, which involves ex-
pensive random memory accesses. Instead, the virtual value
space adopted by BinDex partitions sorted data into bins,
based on which the position array dramatically mitigates the
probing overheads with sequential reads and prefetching.

Access Path Selection: [17] studies the access path se-
lection in columnar memory databases, demonstrating that
sequential scans perform better in most cases while index
scans outperform sequential scans on predicates with low
selectivity. [17] also shows that concurrency is an impor-
tant factor that should be taken into account in access path
selection. We plan to evaluate BinDex with high query con-
currency and compare it with sequential scans in the future.
To address the inaccuracy and inefficiency of cost model esti-
mation in access path selection, Smooth Scan [5] adaptively
morphs its behavior between index scan and sequential scan
according to selectivity. Since BinDex can outperform all
the state-of-the-art scan approaches for in-memory column
stores, access path selection is no longer needed when the
requiredmemory space for BinDex is available in the system.

9 CONCLUSION
We presented BinDex, a two-layered index that significantly
enhances scan performance for in-memory column stores
by incorporating the main merits from the existing index
scan and sequential scan approaches. Our evaluation re-
sults showed that BinDex can achieve up to 2.9× higher
performance than state-of-the-art scan approaches, regard-
less of data distribution and query selectivity. The robust and
consistently-high performance delivered by BinDex elimi-
nates the need for access path selection in query executions,
and we proposed a policy that uses the memory space as the
main dimension for selecting the optimal scan approach in
in-memory database systems. For future work, we plan to
integrate BinDex to in-disk database systems.

10 ACKNOWLEDGEMENT
We would like to thank anonymous reviewers of SIGMOD
’20 for their insightful comments and suggestions. This work
was supported in part by National Key R&D Program of
China (Grant No. 2018YFB1004404, 2018YFB1402602), NSFC
(Grant No. 61802066, 61572136), and Shanghai Sailing Pro-
gram 18YF1401300.

REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating

Compression and Execution in Column-oriented Database Systems.
In SIGMOD. 671–682.

[2] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009.
Dictionary-based order-preserving string compression for main mem-
ory column stores. In SIGMOD. ACM, 283–296.

[3] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009.
Dictionary-based Order-preserving String Compression forMainMem-
ory Column Stores. In SIGMOD. 283–296.

[4] Peter A Boncz, StefanManegold, Martin L Kersten, et al. 1999. Database
architecture optimized for the new bottleneck: Memory access. In Proc.
VLDB Endow., Vol. 99. 54–65.

[5] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin
Zukowski, and Campbell Fraser. 2018. Smooth Scan: robust access
path selection without cardinality estimation. The VLDB Journal 27, 4
(2018), 521–545.

[6] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2011. Pre-
dictable Performance and High Query Concurrency for Data Analytics.
The VLDB Journal 20, 2 (2011), 227–248.

[7] Chee-Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design
and Evaluation. In SIGMOD. 355–366.

[8] Chee-Yong Chan and Yannis E. Ioannidis. 1999. An Efficient Bitmap
Encoding Scheme for Selection Queries. In SIGMOD. 215–226.

[9] S. Christodoulakis. 1984. Implications of Certain Assumptions in Data-
base Performance Evauation. ACM Transaction on Database Systems 9,
2 (June 1984).

[10] Douglas Comer. 1979. Ubiquitous B-Tree. Comput. Surveys 11 (1979),
121–137. Issue 2.

[11] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database com-
pression on graphics processors. Proc. VLDB Endow. 3, 1-2 (2010),
670–680.

[12] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. Byteslice:
Pushing the envelop of main memory data processing with a new
storage layout. In SIGMOD. ACM, 31–46.

[13] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012.
SharedDB: Killing One Thousand Queries with One Stone. Proc. VLDB
Endow. 5, 6 (2012), 526–537.

[14] Georgios Giannikis, DarkoMakreshanski, Gustavo Alonso, and Donald
Kossmann. 2014. Shared Workload Optimization. Proc. VLDB Endow.
7, 6 (2014), 429–440.

[15] Brian Hentschel, Michael S Kester, and Stratos Idreos. 2018. Column
Sketches: A Scan Accelerator for Rapid and Robust Predicate Evalua-
tion. In SIGMOD. ACM, 857–872.

[16] Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. 2010.
Exploitingmemory access patterns to improvememory performance in
data-parallel architectures. IEEE Transactions on Parallel & Distributed
Systems 1 (2010), 105–118.

[17] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Ac-
cess Path Selection in Main-Memory Optimized Data Systems: Should
I Scan or Should I Probe?. In SIGMOD. 715–730.

[18] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David
Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexan-
der Zeier. 2011. Fast Updates on Read-optimized Databases Using

Multi-core CPUs. In Proc. VLDB Endow., Vol. 5. 61–72.
[19] Yinan Li and Jignesh M Patel. 2013. BitWeaving: fast scans for main

memory data processing. In SIGMOD. ACM, 289–300.
[20] GuidoMoerkotte. 1998. Small Materialized Aggregates: A LightWeight

Index Structure for Data Warehousing. In Proc. VLDB Endow. 476–487.
[21] Patrick O’Neil and Dallan Quass. 1997. Improved Query Performance

with Variant Indexes. In SIGMOD. 38–49.
[22] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015.

Rethinking SIMD Vectorization for In-Memory Databases. In SIGMOD.
1493–1508.

[23] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki.
2013. Sharing Data and Work Across Concurrent Analytical Queries.
Proc. VLDB Endow. 6, 9 (2013), 637–648.

[24] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and
Guy M. Lohman. 2008. Main-memory Scan Sharing for Multi-core
CPUs. Proc. VLDB Endow. 1, 1 (2008), 610–621.

[25] Wilson Qin and Stratos Idreos. 2016. Adaptive data skipping in main-
memory systems. In SIGMOD. ACM, 2255–2256.

[26] Doron Rotem, Kurt Stockinger, and Kesheng Wu. 2005. Optimizing
Candidate Check Costs for Bitmap Indices. In CIKM. 648–655.

[27] D. Rotem, K. Stockinger, and Kesheng Wu. 2006. Minimizing I/O Costs
of Multi-Dimensional Queries with Bitmap Indices. In SSDBM. 33–44.

[28] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. 1979. Access Path Selection in a Relational Database
Management System. In SIGMOD. 23–34.

[29] Lefteris Sidirourgos and Martin Kersten. 2013. Column imprints: a
secondary index structure. In SIGMOD. ACM, 893–904.

[30] Kurt Stockinger, Kesheng Wu, and Arie Shoshani. 2004. Evaluation
Strategies for Bitmap Indices with Binning. In Database and Expert
Systems Applications. 120–129.

[31] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik.
2005. C-store: A Column-oriented DBMS. In Proc. VLDB Endow. 553–
564.

[32] Liwen Sun, Michael J Franklin, Sanjay Krishnan, and Reynold S Xin.
2014. Fine-grained partitioning for aggressive data skipping. In SIG-
MOD. ACM, 1115–1126.

[33] Liwen Sun, Michael J Franklin, Jiannan Wang, and Eugene Wu. 2016.
Skipping-oriented partitioning for columnar layouts. Proc. VLDB En-
dow. 10, 4 (2016), 421–432.

[34] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2017. An Experimental Study of Bitmap Compression vs.
Inverted List Compression. In SIGMOD. 993–1008.

[35] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner,
Alexander Zeier, and Jan Schaffner. 2009. SIMD-scan: Ultra Fast In-
memory Table Scan Using On-chip Vector Processing Units. Proc.
VLDB Endow. 2, 1 (2009), 385–394.

[36] Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database
Operations Using SIMD Instructions. In SIGMOD. 145–156.

[37] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2007.
Cooperative Scans: Dynamic Bandwidth Sharing in a DBMS. In Proc.
VLDB Endow. 723–734.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Scan Operation
	2.2 Secondary Index Scan
	2.3 Sequential Scan
	2.4 Performance Analysis

	3 BinDex: An Overview
	3.1 BinDex Data Structure
	3.2 Example: Scan with BinDex

	4 BinDex Design and Implementation
	4.1 The Selection of Filter Bit Vector
	4.2 Result Refining
	4.3 Scan Algorithms
	4.4 Index Building
	4.5 System Integration

	5 Performance Modeling
	6 Experimental Analysis
	6.1 Experimental Setup
	6.2 Performance with Uniform Data Distribution
	6.3 Performance with Skewed Data Distributions
	6.4 Other Operators
	6.5 Performance Impact by Prefetching
	6.6 Index Building and Incremental Data Updating
	6.7 Performance Impact by Number of Virtual Areas
	6.8 TPC-H Evaluation

	7 Performance-Space Tradeoffs
	8 Related Work
	9 Conclusion
	10 Acknowledgement
	References

