
BlinkViz: Fast and Scalable Approximate Visualization on Very
Large Datasets using Neural-Enhanced Mixed Sum-Product

Networks
Yimeng Qiao∗ Yinan Jing∗† Hanbing Zhang∗
Fudan University Fudan University Fudan University
Shanghai, China Shanghai, China Shanghai, China

ymqiao20@fudan.edu.cn jingyn@fudan.edu.cn hbzhang17@fudan.edu.cn

Zhenying He Kai Zhang X. Sean Wang
Fudan University Fudan University Fudan University
Shanghai, China Shanghai, China Shanghai, China

zhenying@fudan.edu.cn zhangk@fudan.edu.cn xywangCS@fudan.edu.cn

ABSTRACT
Web-based online interactive visual analytics enjoys popularity in
recent years. Traditionally, visualizations are produced directly
from querying the underlying data. However, for a very large
dataset, this way is so time-consuming that it cannot meet the
low-latency requirements of interactive visual analytics. In this
paper, we propose a learning-based visualization approach called
BlinkViz, which uses a learned model to produce approximate visu-
alizations by leveraging mixed sum-product networks to learn the
distribution of the original data. In such a way, it makes visualiza-
tion faster and more scalable by decoupling visualization and data.
In addition, to improve the accuracy of approximate visualizations,
we propose an enhanced model by incorporating a neural network
with residual structures, which can refne prediction results, espe-
cially for visual requests with low selectivity. Extensive experiments
show that BlinkViz is extremely fast even on a large dataset with
hundreds of millions of data records (over 30GB), responding in
sub-seconds (from 2ms to less than 500ms for diferent requests)
while keeping a low error rate. Furthermore, our approach remains
scalable on latency and memory footprint size regardless of data
size.

CCS CONCEPTS
• Human-centered computing → Visualization; Visualization
toolkits; • Information systems → Database web servers.

KEYWORDS
visualization, sum-product networks, neural networks, approxima-
tion
∗All authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583411

ACM Reference Format:
Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang, and X.
Sean Wang. 2023. BlinkViz: Fast and Scalable Approximate Visualization on
Very Large Datasets using Neural-Enhanced Mixed Sum-Product Networks.
In Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May
04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3543507.3583411

1 INTRODUCTION
The continuous appealing of web-based online interactive visual
analytics tools such as Tableau Online [2] and Apache Superset [1]
makes more and more companies elaborate strategies to generate ac-
tionable insights. By leveraging these analytics tools, data scientists
monitor large datasets from various sources, enabling visualizing
and analyzing on the fy. For example, Tableau Online [2] provides
business intelligence web application, making users analyze and
collaborate from anywhere. However, under such circumstances, it
is vital to produce visualizations in interactive timescales. Previous
research [20] has shown that once the time to generate a visual-
ization exceeds 500 milliseconds, high latency would signifcantly
hinder the user’s performance and decision-making behavior. Tra-
ditionally, visualizations are produced directly from querying the
underlying data, which is stored on premise or cloud servers. Ob-
viously, the larger the data size, the longer the visualization takes.
Specifcally, for a very large dataset, this way is so prohibitively
time-consuming that it cannot meet the low-latency requirements
of interactive visual analytics. For example, it takes more than 20
seconds to execute a simple aggregation query on a Flights dataset
with 500 million records, which is unacceptable.

To reduce the time cost of visualizations on large datasets, there
are some approaches [4, 10, 17, 29, 38] using samples instead of
the original data to produce approximate visualizations by trading
accuracy for faster response to visualization requests. However,
when the data is large, these sampling-based approximate visu-
alization methods still sufer from a long latency because more
samples are needed to achieve acceptable accuracy. For instance,
in the experiments of IFocus [17], when the number of groups in
a visualization exceeds 20, at least 20% sampling rate is required
to return relatively reliable visualizations. Therefore, traditional
visualization methods are tightly coupled to the underlying data or
samples.

1734

https://orcid.org/0000-0002-1593-1268
https://doi.org/10.1145/3543507.3583411
https://doi.org/10.1145/3543507.3583411
https://doi.org/10.1145/3543507.3583411
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583411&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang and X. Sean Wang

In this paper, we shift the paradigm of visualization as shown in
Figure 1. Traditional online visualization techniques send requests
to the data server, perform query on it and return results, which is
accompanied by large latency. Instead of producing visualizations
from the underlying data or samples on the data server, we propose
a learning-based visualization approach called BlinkViz, which uses
a learned model to substitute data samples to create approximate
visualizations. The core of BlinkViz comprises several parts. One of
the main parts is the Mixed Sum-Product Network (MSPN) [14], an
unsupervised data-driven model that can be used to learn the origi-
nal data distribution. MSPN can be used to answer approximately
visual requests. However, a single MSPN cannot guarantee a high
accuracy for approximate visualizations, especially for those visual
requests with low selectivity1. Hence, to improve the accuracy of
approximate visualizations, we incorporate a neural network with
residual structures into the core of BlinkViz and combine it with
multiple MSPNs. The neural network is a supervised query-driven
model which can be used to refne prediction results, especially for
low-selectivity visual requests.

Figure 1: Framework of BlinkViz

By decoupling visualization and data and using a learned model
as a middleware to answer visualization requests, BlinkViz has three
advantages compared to traditional visualization methods. First is
fast, as BlinkViz leverages model inference to answer visualization
requests instead of query processing behind traditional methods.
Models are generally much smaller than large data, so BlinkViz is
extremely fast, even on a large dataset with hundreds of millions
of data records (over 30GB), responding in a sub-second. Second
is scalable. As we all know, the main time cost of traditional visu-
alization methods is the query processing time. In general, query
processing time increases along with the size of the data. When
the volume of data is large, the time overhead of visualization will
inevitably be large. In contrast, BlinkViz relies only on the model at
the core, not on the large volume of the data or samples. Therefore,
BlinkViz remains scalable on latency and memory footprint size
regardless of data size. Third is lightweight. BlinkViz is lightweight
due to its small memory footprint. Also, the model can be kept
small no matter how large the data is. This advantage makes it
possible to deploy BlinkViz on mobile devices to provide visual-
ization services without relying on the data server, especially in
collaborative mobile ofce or ofine use scenarios.
1The selectivity is the fraction of records in a table that is chosen by the predicate. It
is a number between 0 and 1.

In summary, we make the following contributions:
• We shift the paradigm of data visualization and propose
a learning-based visualization approach BlinkViz, which
uses a learned model to answer visualization requests in-
stead of data or samples. By decoupling visualizations and
data, BlinkViz can be extremely fast even on a very large
dataset and more scalable compared to traditional visualiza-
tion methods.

• We propose a neural-enhanced model that integrates mul-
tiple mixed sum-product networks with a neural network
to improve the accuracy of the approximate visualizations
produced by BlinkViz, especially for low-selectivity visual-
ization requests.

• We conduct extensive experiments on both a single-table
dataset and a multi-table dataset to demonstrate the efec-
tiveness and scalability of BlinkViz. For a large dataset with
hundreds of millions of data records (over 30GB), BlinkViz
is able to respond in a sub-second while keeping a low error
rate. Furthermore, our approach remains scalable on latency
and memory footprint size regardless of data size.

2 PRELIMINARIES

2.1 Visual Request Template
We defne a simple visual request template similar to DeepEye [22]
as shown in Figure 2. Diferent from visual languages like Vega-lite
[31], a visual request is supposed to contain common specifcations
to describe ‘what’ visualizations should be generated rather than
‘how’ to make it. Thus, we pay more attention to data manipulation
instead of graphical description. A visual request includes two parts:
visualization type and data query.

Figure 2: Visual Request Template

• Visualization type. The VISUALIZE clause specifes the
visualization type. In principle, BlinkViz is able to generate
complex visualizations like high-dimensional charts. For sim-
plicity, this paper focuses on three popular two-dimensional
visualization types - bar charts, line charts, and pie charts.

• Data query. Behind each visual request is a typical SQL
SPJA2 (Select-Project-Join-Aggregation) analytical query, as
shown in Figure 2. In a two-dimensional chart, the X-axis is
usually the categorical group-by attribute, and the Y-axis is
some aggregated value of a specifc column to facilitate data
analysis. BlinkViz supports common aggregation queries,
including COUNT, AVG, SUM, etc.

2SPJA queries are those that consist of any combinations of select, project and join
operators followed by an aggregation operator.

1735

BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Once a visual request is posed, we need to rewrite it as a SQL
query and execute it on a relational database for traditional visual-
ization methods, as shown in Figure 1. Instead, BlinkViz will rewrite
the request to a probabilistic expression and conduct the model
inference to answer the request.

2.2 Approximate Visualization
Since obtaining exact visualizations on large datasets is too time-
consuming, this paper focuses on approximate visualization meth-
ods. Approximate methods can achieve faster response by sacri-
fcing the accuracy of visualizations to some extent. Traditional
approximate methods are usually sampling-based. In this paper, we
investigate a learning-based approximate visualization approach.

2.3 Mixed Sum-Product Networks
In recent years, the deep generative models have been applied in
database learning, such as deep autoregressive models [37], Nor-
malizing Flow [34] and VAE [33], to build density estimators of
data. However, these models above are intractable when answering
complex queries like marginal probability and expectations, so they
perform approximate inference with no guarantees. Inspired by
DeepDB [14], we turn to tractable probabilistic models and choose to
learn the data distribution via Mixed Sum-Product Networks [23],
which enables exact inference for complex queries in polynomial
time.

Figure 3: Tailored Flights table with corresponding MSPN

Mixed Sum-Product Networks (MSPNs) is a variant of Sum-
Product Networks (SPNs) [28]. SPN is a probabilistic model that
learns the joint probability distribution of the variables in a dataset.
Conventional SPNs learning algorithm [11] recursively splits the
dataset into clusters of rows or columns. Diferent row clusters are
combined with a sum node, while column clusters are combined
with a product node to construct a tree fnally. MSPNs extend
SPNs to ft hybrid domains by adopting piecewise polynomial leaf
distributions like histograms. As illustrated in Figure 3, the example
MSPN learns the joint probabilistic distribution of attributes origin
and distance in a tailored Flights table. In the beginning, the whole
table is split into two groups, accounting for 40% and 60% of the
total data, respectively, and existing as left and right children of

the root sum node. The left group is dominated by fights from
JFK Airport, while the right group contains most fights departing
from LAX Airport. Then, since there is weak correlation between
attributes origin and distance, both groups are split into two leaves
connected by a product node. In the end, the leaf nodes represent
the distribution of corresponding attributes via histograms.

Now consider an example query to compute the average travel
distance of fights departing from JFK Airport. In the inference
stage, this query could be transformed into computing a condi-
tional expectation E(�������� |������ = � ��), which is equal to
E(�������� · 1������=� ��)/� (������ = � ��), and these two parts
can be computed by MSPN by two passes as shown in Figure 3(b).
In the frst pass (red line), the probability of ������ = � �� is in-
ferred bottom-up. In the leaves of the left cluster, the probabilities
of that are 0.8 and 1, respectively. Then the probabilities propagate
along the tree, and the value of the left product node becomes 0.8.
Similarly, the probability of the right product node is 0.4. Hence,
we have � (������ = � ��) = 0.8 × 0.4 + 0.4 × 0.6 = 0.56. In the same
way, we can reach the answer of E(�������� · 1������=� ��) = 328
by the second pass (blue line). Finally, we have the answer to the
query E(�������� |������ = � ��) = 328/0.56 = 585.7, which means
the average distance of fights departing from JFK Airport is 585.7
kilometers. Following a similar manner as [14], all SPJA queries
in visualization tasks on both single and multiple relational tables
can be transformed into probabilistic expressions and answered
approximately by inference via MSPNs.

3 BLINKVIZ: A LEARNING-BASED APPROACH
The overall model architecture of BlinkViz is illustrated in Figure 4.
Our model consists of two modules, combining the unsupervised
and supervised learning modules. First, the data-driven unsuper-
vised module uses several MSPN models trained with diferent data
samples to capture the general distribution of a given dataset. Each
MSPN model can be considered as a basic distribution function
of the original dataset and can be used to infer probabilities like
marginal probability and expectations. Then, in the supervised
learning module, to enhance the accuracy of these individual mod-
els, we extract some features from MSPNs, which are related to both
queries and data, feeding them into a neural network with residual
structures. Finally, it takes the estimations of several individual
MSPN models as input, aggregates MSPNs’s statistic information,
and outputs refned predictions.

3.1 Learning Data Distribution by MSPNs
BlinkViz aims to train a machine learning model to learn the data
distribution and then can approximately answer visual requests by
leveraging this model. As introduced in Section 2, the MSPN model
might be a good option for our fundamental requirements. Hence,
in this paper, we choose it to represent the data distribution.

3.1.1 MSPN Model Training. Figure 5 shows the process of learning
a MSPN. As described in 2.3, the learning algorithm [11] splits the
whole dataset by attributes or by records recursively. Each round
of recursion determines what kind of split operation needs to be
performed. If there is more than one attribute, they would be split
into diferent clusters by attributes according to their correlations
measured by a randomized dependency coefcient (RDC) [21]. And

1736

https://328/0.56

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang and X. Sean Wang

Figure 4: The architecture of Neural-enhanced Mixed Sum-Product Network model

Figure 5: The process of learning a MSPN

these clusters are combined by a product node. Then, in each cluster,
if the amount of records is larger than a threshold, records would
also be clustered into independent groups by rows, which are united
by a sum node. Finally, if only one attribute is left and the number of
records is less than the given threshold, a univariate distribution of
this attribute is returned and introduces a leaf node of this attribute.

3.1.2 Exact Inference. With an MSPN available, given a visual re-
quest, we frst rewrite the data query into probabilistic expressions
as demonstrated in Section 2.3. Then, the conditions in the query are
evaluated on every relevant leaf node. Afterward, each probability
and expectation involved in the expression is computed via MSPN
bottom up. Finally, it returns the result of the entire expression.
Here we discuss how to handle all kinds of SPJA queries occurred
in visualization tasks.

• AVG An AVG query can be considered as computing a con-
ditional expectation. For the example Flights table, given a
query, e.g., SELECT AVG(distance) FROM Flights WHERE ori-
gin=JFK, which can be transformed into E(�������� |������ =
� ��) = E(�������� · 1������=� ��)/� (������ = � ��). Both

E(�������� · 1������=� ��) and � (������ = � ��) are conve-
nient to infer by MSPN bottom-up, as illustrated in Section
2.3.

• COUNT Assuming that the total number of data records of
the table is � , then the result of query e.g., SELECT COUNT(*)
FROM Flights WHERE origin=JFK is � × E(1������=� ��),
which could be computed in the same manner as AVG.

• SUM A SUM query can be treated as AVG*COUNT, for exam-
ple, SELECT SUM(distance) FROM Flights WHERE origin=JFK
is equal to SELECT AVG(distance)· COUNT(*) FROM Flights
WHERE origin=JFK. It can also be computed in the above
way, but we need to infer through 3 passes.

In addition, for dataset consists of multiple tables, MSPNs are
learned over the full outer join of the tables. Thus, a learned MSPN
not only can answer queries on a single table, but also queries on
joins of multiple tables.

3.2 Neural-Enhanced Module
For the sake of efciency, like most machine learning models,
MSPNs are trained with data samples. A single model can only
capture one side of the data but cannot learn all the features of the
underlying data exactly. Thus, only utilizing the MSPN model has
two folds of limitations. For one thing, queries with low selectivity
frequently occur in exploratory visual analytics, since they often
produce interesting and valuable insights. However, for these low-
selectivity queries, a single MSPN model might inevitably yield
results with high error in the tails of the distribution because some
population is ignored or even missing in the visualization due to
their rareness. The lower the selectivity of the query, the worse it
will be. For another, since MSPN is a data-driven model, it will not
consider the characteristics of workloads. Thus, for some queries,
e.g., low-selectivity queries, the accuracy of approximate visualiza-
tions can only depend on the learned data distribution. To improve
the accuracy, we propose to integrate several MSPN models using
a neural network to enhance the model as shown in Figure 4.

3.2.1 Model Design. The design of the neural-enhanced module is
to unify the features of both data and queries by taking advantage
of both the data-driven and query-driven models. The data-driven

1737

BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets WWW ’23, April 30–May 04, 2023, Austin, TX, USA

MSPN model learns from data directly, which has better generaliza-
tion ability but is easy to miss information about rare populations,
especially for those low-selectivity queries. On the other hand, cur-
rent query-driven models [8, 19, 32] aim to learn a map between
queries and results, which identify patterns in the workload but
lack generalization. We notice that when an MSPN makes an in-
ference for a given query, each node of the MSPN keeps specifc
probabilistic values (which we name as ‘status vector’), which can
be considered as a status of the model under corresponding query.
By extracting them as the statistical features of MSPNs and feeding
them into the neural network, the network can obtain both data
and query-related information and get more accurate results.

Besides, the reason why we use multiple MSPN models is that
multi-MSPNs can capture a more comprehensive picture of data
distribution than a single MSPN and balance the errors caused by
diferent data samples. The training data of MSPNs comes from
diferent data samples, overlapping with each other and the infor-
mation of rare populations are captured independently. Compared
with naive ensembles of MSPNs, we incorporate several MSPNs
with a neural network. The neural network learns a non-linear
combination of individual MSPNs rather than simple arithmetic
averaging or voting, which can eliminate some efects of certain
anomaly predictions that lead to signifcantly deviation from the
true result.

As shown in Figure 4, for a given query, each MSPN produces a
preliminary prediction and yields a status vector during inference.
The status vectors are concatenated together after the embedding
layer and then are fed into the neural network with the preliminary
predictions for training. The encoders, linear layers and decoders
are all six-layer perceptrons (MLP) with residual structures. During
training, we use exact query results as ground truth.

In addition, there are two reasons why we add residual modules
in the network. One is to protect the integrity of the information
in the propagation procedures by passing the input directly to
the output by adopting several residual blocks in neural networks.
Another is to avoid situations where the error fuctuates too much.
To this end, we put the average of several preliminary predictions
in the decoder as a guideline. As a result, it learns the residual
instead of the complete output. Incorporating residual modules
can make the learning objective simplifed and easy to train. Thus,
by leveraging such a neural-enhanced model, we can refne the
prediction results to get better results.

3.2.2 Model Training. The inputs of the neural network are the
predictions and aforementioned status vectors of MSPNs. When a
query arrives, each MSPN makes inference bottom-up, and each
node corresponds to certain probability values in this process. For
example, as shown in Figure 3(b), when computing the proba-
bility in the frst pass, we extract the probabilities by pre-order
traversal of the nodes and fatten them into a status vector � =
[0.56, 0.8, 0.4, 0.8, 1, 0.4, 1]. The vector � can be considered as a sta-
tus of the model under current query. By extracting them as the
statistical features of MSPNs and feeding them into the neural
network, the network can obtain both data and query-related in-
formation and get more accurate results.

In the training stage, we generate 100,000 queries according to
the visual request template and evaluate them by several trained

MSPNs and PostgreSQL respectively, attaining the above features
and ground truth. To keep the numerical stability, we also adopt
min-max scaling and log transformation for data normalization.
The neural network is randomly initialized without pretraining. We
set 3 MSPNs and 4 residual blocks by default. And we use the Adam
optimizer [18] in PyTorch with a learning rate of 0.00025. The loss
function is L1 loss.

4 EVALUATION

4.1 Experimental Setup
4.1.1 Hardware and Platform. We implement BlinkViz based on
SPFlow library [24]. All experiments are conducted on a Ubuntu
Linux 18.04.4 LTS machine with Intel Xeon Silver 5215 CPU, Nvidia
Titan RTX GPU (24GB), 64GB RAM, and 3.3TB HDD disk.

4.1.2 Datasets. We conduct experiments on both a real-world
dataset Flights [3] and a synthetic dataset Star Schema Benchmark
(SSB) [26]. 1) Flights has a single table with 12 attributes and con-
tains fight delay information. We use the data generator from [9]
to scale up this dataset, by default to 500 million records (43GB).
2) SSB is a multi-table (5 tables) dataset to demonstrate the perfor-
mance of complex queries with join clauses. By default, the fact
table (lineorder) in SSB has 300 million records (33GB).

4.1.3 Workloads. We use two workloads in experiments. 1) Train-
ing workload: we generate 100,000 queries from the visual request
template to train the neural network in BlinkViz. 2) Test work-
load: we use ten typical example queries F1-F10 on Flights. For
SSB dataset, we use the standard SSB queries S1.1-S4.3 to evaluate
the performance. Both the workloads cover various aggregation
functions, GROUP BY clauses, and selectivities.

4.1.4 Baselines. In the experiments, we mainly compare BlinkViz
with two sampling-based methods, which are often used in the
existing sampling-based approximate visualization systems. All
samples are stored in memory.

• Random Sampling-based Method: a method that executes
queries on a random sample.

• Stratifed Sampling-based Method: a method that executes
queries on a set of stratifed samples. For Flights, we generate
two stratifed samples based on the attribute combinations
(���� _����,������_�������) and (������_�����_���, ����), re-
spectively. For SSB, we generate two stratifed samples based
on the attribute ��_��������� and ��_�������, respectively.

4.1.5 Performance Metrics. We use three metrics to evaluate the
performance.

• Latency: the response time of visual request (query), i.e., the
time cost for getting the query result.

|� −�̂ |• Accuracy: the relative error �� (�) = is used to evalu-
�

ate the accuracy of a specifc query �, where � is the exact
result from the original data and �̂ is the approximate re-
sult based on samples or the learned model. For group-by
queries, the relative error is the average error upon each
group. Specifcally, we set the relative error upon a group to
100% when the group is missed in the result.

1738

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang and X. Sean Wang

Figure 6: Performance on Flights dataset

Figure 7: Performance on SSB dataset

• Memory Footprint Size: the size of memory used to store sam-
ples for sampling-based methods or the model for BlinkViz.

In the following experiments, the latency and accuracy is the
average result of 10 separate experiments with the same experimen-
tal settings. By default, the sampling rate in the sampling-based
methods is set at 1%.

4.2 Experimental Results
4.2.1 Performance on Flights and SSB datasets. In this set of exper-
iments, we compare the performance of random sampling-based
method, stratifed sampling-based method, and BlinkViz on both
Flights and SSB datasets in the default data size.

Figure 6 shows the performance of the three methods on the
Flights dataset with 500 million records. As shown in Figure 6(a),
the relative error of BlinkViz is lower than that of sampling-based
methods. This is because BlinkViz learns the data distribution not
only for the large subpopulations by using MSPN but also for the
rare subpopulations by using the neural network. Specifcally, for
query F7, the relative error of the random sampling-based method
is signifcantly higher than that of the stratifed sampling-based
method and BlinkViz, since the random sample cannot support
query F7 very well. As shown in Figure 6(b), the latency of BlinkViz
is signifcantly lower than that of sampling-based methods. All
typical example queries can be evaluated within tens of millisec-
onds. This is because BlinkViz leverages model inference to answer
queries instead of querying on the data or samples. The latency
of the stratifed sampling-based method exceeds 1000ms, since it
needs extra computations to rewrite the approximate results.

Figure 7 shows the performance of the three methods on the
SSB dataset with 300 million records. As shown in Figure 7(a), the
relative error of BlinkViz is also lower than that of sampling-based
methods. For queries S3.4 and S4.3, the relative error of sampling-
based methods is signifcantly higher than that of BlinkViz, since the

Figure 8: Scalability on latency and memory footprint size
with diferent data sizes on Flights dataset

samples cannot provide enough tuples to answer the queries which
have low selectivity. As shown in Figure 7(b), overall, the latency
of BlinkViz is lower than that of sampling-based methods. For S4.3,
the latency of BlinkViz is a little bit higher, since the number of
groups in S4.3 is much more than that in other queries. The more
groups in a query, the higher the time overhead required by MSPNs
in BlinkViz. In summary, compared with the two sampling-based
methods, BlinkViz can return results faster (responding in sub-
seconds) while keeping a lower error rate.

Table 1 shows the training cost of BlinkViz on the default size of
Flights and SSB datasets. For both datasets, we fnd that the training
time of MSPNs is very short compared to that of the neural network,
since the training time of MSPNs relies on the number of columns
in a dataset rather than the size of training workload. Therefore,
when the data is updated, we can retrain the MSPNs in BlinkViz
online and periodically retrain the neural network ofine. Besides,
the training time of MSPNs on SSB is longer than that on Flights
because the MSPNs on SSB are trained on a 5-table join, which
has more columns than Flights. The same reason causes the size of
MSPNs on SSB to be larger than that on Flights. Furthermore, the
size of the neural network on Flights and SSB is similar since the
number of parameters in the neural network is fxed.

4.2.2 Scalability Evaluations. We scale up the data size of the
Flights dataset from 5 million to 5 billion records and conduct
experiments to evaluate the scalability of BlinkViz and sampling-
based methods. As shown in Figure 8, BlinkViz has good scalability
on both latency and memory footprint size. In contrast, the latency
and memory footprint of sampling-based methods increase linearly
along with the increase in data size. As shown in Figure 8(a), al-
though when the data size is small (e.g., 5 million), the latency of the
random sampling-based method is lower than that of BlinkViz, its
relative error is very high. This is because a small size of the sample
upon a low sampling rate (1% in this setting) cannot guarantee an ac-
ceptable accuracy. Even if we increase the sampling rate to 10%, the
relative error of the sampling-based methods (Stratifed/Random:
2.1%/2.2%) is still higher than that of BlinkViz (1.1%), and the delay
exceeds that of BlinkViz at the same time. In other words, there
is a trade-of between latency and accuracy for sampling-based
methods. As for BlinkViz, its latency is mainly the model infer-
ence overhead, which is only related to the number of nodes in the
MSPNs and the number of parameters in the neural network.

As shown in Figure 8(b), the memory footprint size of the sampling-
based methods increases as the data size increases. The footprint
size of the stratifed method is larger than that of the random

1739

BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Training cost of BlinkViz on Flights and SSB datasets

Dataset # of records Data Size
Training Time Model Size

MSPNs Neural Network Total MSPNs Neural Network Total
Flights 500 millions 43GB 128s 3h48min 3h50min 40.5MB 29.9MB 70.4MB
SSB 300 millions 33GB 578s 5h7min 5h17min 229.9MB 30MB 259.9MB

Figure 9: Performance with diferent sampling ratios on
Flights dataset

Figure 10: Efects of number of MSPN used in BlinkViz

method since it has two stratifed samples by default. The memory
footprint of BlinkViz keeps scalable because the size of MSPN is
bounded by the number of columns in a dataset and the sample
size [14] instead of the original data size. Besides, the neural net-
work size in BlinkViz is stable since the number of parameters in the
neural network is fxed. The scalability characteristics of BlinkViz
make it particularly suitable for big data application scenarios.

4.2.3 Efects of Sampling Rate on Sampling-based Methods. We
evaluate the infuence of sampling rate on the performance of
sampling-based methods, varying the sampling rate from 1% to
10% on Flights dataset. Specifcally, the sampling rate of BlinkViz is
fxed at 1%.

As shown in Figure 9(a), when the sampling rate increases, the
average accuracy of the sampling-based methods grows as well but
always worse than BlinkViz (1%). Meanwhile, in Figure 9(b), there is
a sharp rise in the query latency of sampling-based methods as the
sampling rate increases, which is unacceptable to users’ interactive
analytics. The results indicate that even if a larger sampling rate
would certainly improve the accuracy of the sampling-based meth-
ods, BlinkViz with 1% sampling rate performs better than them,
presenting unique advantages in both aspects.

4.2.4 Efects of Number of MSPN Used in BlinkViz. In this experi-
ment, we evaluate the efects of the number of MSPN on the query
accuracy and storage overhead on the Flights dataset. As shown in

Figure 11: Efectiveness of neural network module

Figure 10(a), consistent with our intuition, the query accuracy of
BlinkViz is improved with the increase of the number of MSPN. This
is because additional MSPNs can provide more comprehensive data
distribution. At the meantime, in Figure 10(b), the model size gets
larger when adding additional MSPNs. However, even if combining
six MSPNs together, the total model size does not exceed 100M,
which takes up little storage resources compared with samples and
is very convenient for transmission between the server and the
client for ofine use. Thus, users can trade of storage and accuracy
by adjusting the number of MSPNs based on their own budget.

4.2.5 Ablations Studies. We conduct a set of ablation experiments
to evaluate the efectiveness of the structure of BlinkViz, comparing
the performance on average query accuracy, latency and training
cost. We vary the selectivity of queries from 0.00001% to 10%, gen-
erate 1,000 queries for each selectivity interval and conduct experi-
ments on the Flights dataset. When generating these queries, we
calculate the data distributions under diferent group-by attribute
combinations and leverage them to generate queries with diferent
selectivity by changing the value ranges of where conditions.

We start from demonstrating the utility of using multiple MSPNs
and neural network module, comparing BlinkViz with single MSPN
model and naive ensemble of MSPNs (the arithmetic average of
multiple MSPNs’ predictions). Figure 11(a) shows the average ac-
curacy of the queries with various selectivities. We can fnd that
the relative errors of single MSPN, naive ensemble of MSPNs and
BlinkViz all increase along with the decrease in selectivity. Since
adopting multiple MSPNs is able to capture a more comprehensive
picture of the dataset, the naive ensemble approach achieves higher
accuracy than single MSPN. And the average accuracy of BlinkViz
is higher than that of naive ensemble, because the errors with large
deviation of the original single models still lead to weighty errors
after averaging while the non-linear combination of multiple predic-
tions through neural network can redress the balance. For latency,
as shown in Figure 11(b), BlinkViz has a similar average latency to
other methods. This means that the neural network module adds
just a little bit of overhead by leveraging GPU acceleration.

1740

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang and X. Sean Wang

Table 2: The efect of residual structure

Residual Training Time Relative Error Storage
Yes 3h48min 7.03% 43.37MB
No 12h35min 8.77% 43.37MB

Figure 12: Case 1 - # of fights departing from Los Angeles to
JFK Airport each year

Meanwhile, we conduct experiments on neural network with and
without residual modules to study the efects of residual structure in
our model on the same dataset. As illustrated in Table 2, without the
residual modules, the training time is three times longer than using
residual structures, indicating that residual blocks speed up the
convergence of the model. This is mainly because that the shortcut
connection of residual structure reduces the loss of information,
achieving high accuracy of predictions.

4.3 Demo Cases
To evaluate the efectiveness of BlinkViz from a visual perspec-
tive, we use two cases to demonstrate the visualizations under
diferent methods. And we use the KL divergence [13] to quantify
the diference between the exact visualization and approximate
visualizations produced by diferent methods for a visual request.

Case 1. As shown in Figure 12, the visualization produced by
BlinkViz (Figure 12(b)) is quite similar to the exact result (Fig-
ure 12(a)), and the KL divergence between them is very small, since
BlinkViz has high accuracy in answering approximate visual re-
quests. In contrast, the visualizations produced by the sampling-
based methods (Figure 12(c) and Figure 12(d)) look very diferent
from the exact result and the KL divergence between them is large.

Case 2. As shown in Figure 13, from a visual perspective, the
approximate visualizations produced by the three methods look
similar to the exact result (Figure 13(a)). But if we look closely,
we can still observe the diferences (noted by red circles). Overall,
BlinkViz still performs best with only one obvious diferent point.
However, as shown in Figure 13(c) and Figure 13(d), the approximate
visualizations produced by the sampling-based methods have more
obvious diferences from the exact result than that of BlinkViz.

Figure 13: Case 2 - # of fights whose airtime >1000 minutes
and departure delay >1500 minutes.

5 RELATED WORK
Approximate Visualization. For faster response to visualization
requests, existing visualization systems [4, 10, 12, 17, 27, 29, 30, 38]
use samples instead of the original data to produce approximate
visualizations. They make a trade-of between the time cost and
accuracy of visualizations. For example, IFocus [17] progressively
samples until the relative heights of the bars in the charts approach
the actual size with a high probability. When the volume of data
is large, the time overhead and memory footprint size of query
processing in these sampling-based visualization systems will in-
evitably be large. Obviously, existing sampling-based approximate
visualization methods cannot scale well enough for the data size.

Machine Learning-based Visualization. In order to achieve
more efective visualizations, a series of studies apply machine
learning techniques to solve visualization-related problems and
present many opportunities [35]. The visualization pipeline could be
divided into three parts: data processing, visualization display, and
human interaction. In the stage of data processing, [36] proposes a
perception-based supervised method to reduce high-dimensional
data to 2D projections. In the visualization display stage, there are
many studies using ML techniques to recommend visualizations,
such as DeepEye [22], VizML [15], Data2Vis [7], etc. Finally, in the
human interaction stage, machine learning-based methods are also
emerging to predict the user’s next exploration behavior [5, 25]
and automatically generate insights [6, 16]. All these works are
orthogonal to the learning-based approach proposed in this paper.

6 CONCLUSION
This paper proposes BlinkViz, a learning-based approximate visu-
alization approach using neural-enhanced MSPNs. Compared to
traditional sampling-based methods, BlinkViz is fast, scalable, and
lightweight. It can respond in sub-seconds, even on a large dataset
with hundreds of millions of data records, while keeping a low
error rate. BlinkViz can efectively improve the user experience of
interactive visual analytics in the big data era.

1741

BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their insight-
ful feedback and comments. This work was supported by Shanghai
Key Laboratory of Data Science and funded by National Natural
Science Foundation of China No. 62072113 and No. 62272106.

REFERENCES
[1] 2013. Apache Superset. https://superset.apache.org/.
[2] 2013. Tableau Online. https://www.tableau.com/products/cloud-bi.
[3] 2020. Flights Dataset. https://github.com/IDEBench/IDEBench-public/blob/

master/data/fights.zip. Accessed: 2021-12-06.
[4] Daniel Alabi and Eugene Wu. 2016. Pfunk-h: Approximate query processing

using perceptual models. In Proceedings of the workshop on human-in-the-loop
data analytics. 1–6.

[5] Eli T Brown, Alvitta Ottley, Helen Zhao, Quan Lin, Richard Souvenir, Alex En-
dert, and Remco Chang. 2014. Finding waldo: Learning about users from their
interactions. IEEE Transactions on visualization and computer graphics 20, 12
(2014), 1663–1672.

[6] Zhutian Chen, Yun Wang, Qianwen Wang, Yong Wang, and Huamin Qu. 2019.
Towards automated infographic design: Deep learning-based auto-extraction of
extensible timeline. IEEE transactions on visualization and computer graphics 26,
1 (2019), 917–926.

[7] Victor Dibia and Çağatay Demiralp. 2019. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33–46.

[8] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057. https://doi.org/
10.14778/3329772.3329780

[9] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2020.
Idebench: A benchmark for interactive data exploration. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1555–1569.

[10] Danyel Fisher, Igor Popov, Steven Drucker, and MC Schraefel. 2012. Trust me,
I’m partially right: incremental visualization lets analysts explore large datasets
faster. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 1673–1682.

[11] Robert Gens and Domingos Pedro. 2013. Learning the structure of sum-product
networks. In International conference on machine learning. PMLR, 873–880.

[12] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. 2018. Efcient Selec-
tion of Geospatial Data on Maps for Interactive and Visualized Exploration.
In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das,
Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 567–582. https:
//doi.org/10.1145/3183713.3183738

[13] Jefrey Heer and Michael Bostock. 2010. Crowdsourcing graphical perception:
using mechanical turk to assess visualization design. In Proceedings of the SIGCHI
conference on human factors in computing systems. 203–212.

[14] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian
Kersting, and Carsten Binnig. 2019. DeepDB: Learn from Data, not from Queries!
Proceedings of the VLDB Endowment 13, 7 (2019).

[15] Kevin Hu, Michiel A Bakker, Stephen Li, Tim Kraska, and César Hidalgo. 2019.
Vizml: A machine learning approach to visualization recommendation. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–12.

[16] Kushal Kafe, Brian Price, Scott Cohen, and Christopher Kanan. 2018. Dvqa:
Understanding data visualizations via question answering. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 5648–5656.

[17] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and
Ronitt Rubinfeld. 2015. Rapid sampling for visualizations with ordering guaran-
tees. In Proceedings of the vldb endowment international conference on very large
data bases, Vol. 8. 521.

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[19] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Al-
fons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In 9th Biennial Conference on Innovative Data Systems Research, CIDR
2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[20] Zhicheng Liu and Jefrey Heer. 2014. The efects of interactive latency on ex-
ploratory visual analysis. IEEE transactions on visualization and computer graphics
20, 12 (2014), 2122–2131.

[21] David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. 2013. The randomized
dependence coefcient. Advances in neural information processing systems 26

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(2013).
[22] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. Deepeye: Towards

automatic data visualization. In 2018 IEEE 34th international conference on data
engineering (ICDE). IEEE, 101–112.

[23] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Flo-
riana Esposito, and Kristian Kersting. 2018. Mixed sum-product networks: A
deep architecture for hybrid domains. In Proceedings of the AAAI Conference on
Artifcial Intelligence, Vol. 32.

[24] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subra-
mani, Nicola Di Mauro, Pascal Poupart, and Kristian Kersting. 2019. SPFlow: An
easy and extensible library for deep probabilistic learning using sum-product
networks. arXiv preprint arXiv:1901.03704 (2019).

[25] Alvitta Ottley, Roman Garnett, and Ran Wan. 2019. Follow the clicks: Learning and
anticipating mouse interactions during exploratory data analysis. In Computer
Graphics Forum, Vol. 38. Wiley Online Library, 41–52.

[26] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The star schema benchmark and augmented fact table indexing. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 237–252.

[27] Yongjoo Park, Michael Cafarella, and Barzan Mozafari. 2016. Visualization-aware
sampling for very large databases. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE, 755–766.

[28] Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new deep
architecture. In 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops). IEEE, 689–690.

[29] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie Kara-
halios, Aditya Parameswaran, and Ronitt Rubinfeld. 2017. I’ve seen" enough"
incrementally improving visualizations to support rapid decision making. Pro-
ceedings of the VLDB Endowment 10, 11 (2017), 1262–1273.

[30] Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, and Alon Y.
Halevy. 2012. Efcient spatial sampling of large geographical tables. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.
Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 193–204. https://doi.
org/10.1145/2213836.2213859

[31] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics 23, 1 (2016), 341–350.

[32] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[33] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and Gautam Das.
2020. Approximate query processing for data exploration using deep generative
models. In 2020 IEEE 36th international conference on data engineering (ICDE).
IEEE, 1309–1320.

[34] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: a normal-
izing fow based cardinality estimator. Proceedings of the VLDB Endowment 15, 1
(2021), 72–84.

[35] Qianwen Wang, Zhutian Chen, Yong Wang, and Huamin Qu. 2021. A Survey
on ML4VIS: Applying MachineLearning Advances to Data Visualization. IEEE
Transactions on Visualization and Computer Graphics (2021).

[36] Yunhai Wang, Kang Feng, Xiaowei Chu, Jian Zhang, Chi-Wing Fu, Michael
Sedlmair, Xiaohui Yu, and Baoquan Chen. 2017. A perception-driven approach
to supervised dimensionality reduction for visualization. IEEE transactions on
visualization and computer graphics 24, 5 (2017), 1828–1840.

[37] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. Proceedings of the VLDB Endowment 13, 3
(2019), 279–292.

[38] Jia Yu and Mohamed Sarwat. 2020. Turbocharging Geospatial Visualization Dash-
boards via a Materialized Sampling Cube Approach. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 1165–1176. https://doi.org/10.1109/ICDE48307.2020.00105

1742

https://superset.apache.org/
https://www.tableau.com/products/cloud-bi
https://github.com/IDEBench/IDEBench-public/blob/master/data/flights.zip
https://github.com/IDEBench/IDEBench-public/blob/master/data/flights.zip
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1145/3183713.3183738
https://doi.org/10.1145/3183713.3183738
http://arxiv.org/abs/1412.6980
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/2213836.2213859
https://doi.org/10.1145/2213836.2213859
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1109/ICDE48307.2020.00105
www.cidrdb.org

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Visual Request Template
	2.2 Approximate Visualization
	2.3 Mixed Sum-Product Networks

	3 BlinkViz: A Learning-based Approach
	3.1 Learning Data Distribution by MSPNs
	3.2 Neural-Enhanced Module

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Demo Cases

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

