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ABSTRACT 
Web-based online interactive visual analytics enjoys popularity in 
recent years. Traditionally, visualizations are produced directly 
from querying the underlying data. However, for a very large 
dataset, this way is so time-consuming that it cannot meet the 
low-latency requirements of interactive visual analytics. In this 
paper, we propose a learning-based visualization approach called 
BlinkViz, which uses a learned model to produce approximate visu-
alizations by leveraging mixed sum-product networks to learn the 
distribution of the original data. In such a way, it makes visualiza-
tion faster and more scalable by decoupling visualization and data. 
In addition, to improve the accuracy of approximate visualizations, 
we propose an enhanced model by incorporating a neural network 
with residual structures, which can refne prediction results, espe-
cially for visual requests with low selectivity. Extensive experiments 
show that BlinkViz is extremely fast even on a large dataset with 
hundreds of millions of data records (over 30GB), responding in 
sub-seconds (from 2ms to less than 500ms for diferent requests) 
while keeping a low error rate. Furthermore, our approach remains 
scalable on latency and memory footprint size regardless of data 
size. 

CCS CONCEPTS 
• Human-centered computing → Visualization; Visualization 
toolkits; • Information systems → Database web servers. 
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1 INTRODUCTION 
The continuous appealing of web-based online interactive visual 
analytics tools such as Tableau Online [2] and Apache Superset [1] 
makes more and more companies elaborate strategies to generate ac-
tionable insights. By leveraging these analytics tools, data scientists 
monitor large datasets from various sources, enabling visualizing 
and analyzing on the fy. For example, Tableau Online [2] provides 
business intelligence web application, making users analyze and 
collaborate from anywhere. However, under such circumstances, it 
is vital to produce visualizations in interactive timescales. Previous 
research [20] has shown that once the time to generate a visual-
ization exceeds 500 milliseconds, high latency would signifcantly 
hinder the user’s performance and decision-making behavior. Tra-
ditionally, visualizations are produced directly from querying the 
underlying data, which is stored on premise or cloud servers. Ob-
viously, the larger the data size, the longer the visualization takes. 
Specifcally, for a very large dataset, this way is so prohibitively 
time-consuming that it cannot meet the low-latency requirements 
of interactive visual analytics. For example, it takes more than 20 
seconds to execute a simple aggregation query on a Flights dataset 
with 500 million records, which is unacceptable. 

To reduce the time cost of visualizations on large datasets, there 
are some approaches [4, 10, 17, 29, 38] using samples instead of 
the original data to produce approximate visualizations by trading 
accuracy for faster response to visualization requests. However, 
when the data is large, these sampling-based approximate visu-
alization methods still sufer from a long latency because more 
samples are needed to achieve acceptable accuracy. For instance, 
in the experiments of IFocus [17], when the number of groups in 
a visualization exceeds 20, at least 20% sampling rate is required 
to return relatively reliable visualizations. Therefore, traditional 
visualization methods are tightly coupled to the underlying data or 
samples. 

1734

https://orcid.org/0000-0002-1593-1268
https://doi.org/10.1145/3543507.3583411
https://doi.org/10.1145/3543507.3583411
https://doi.org/10.1145/3543507.3583411
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583411&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yimeng Qiao, Yinan Jing, Hanbing Zhang, Zhenying He, Kai Zhang and X. Sean Wang 

In this paper, we shift the paradigm of visualization as shown in 
Figure 1. Traditional online visualization techniques send requests 
to the data server, perform query on it and return results, which is 
accompanied by large latency. Instead of producing visualizations 
from the underlying data or samples on the data server, we propose 
a learning-based visualization approach called BlinkViz, which uses 
a learned model to substitute data samples to create approximate 
visualizations. The core of BlinkViz comprises several parts. One of 
the main parts is the Mixed Sum-Product Network (MSPN) [14], an 
unsupervised data-driven model that can be used to learn the origi-
nal data distribution. MSPN can be used to answer approximately 
visual requests. However, a single MSPN cannot guarantee a high 
accuracy for approximate visualizations, especially for those visual 
requests with low selectivity1. Hence, to improve the accuracy of 
approximate visualizations, we incorporate a neural network with 
residual structures into the core of BlinkViz and combine it with 
multiple MSPNs. The neural network is a supervised query-driven 
model which can be used to refne prediction results, especially for 
low-selectivity visual requests. 

Figure 1: Framework of BlinkViz 

By decoupling visualization and data and using a learned model 
as a middleware to answer visualization requests, BlinkViz has three 
advantages compared to traditional visualization methods. First is 
fast, as BlinkViz leverages model inference to answer visualization 
requests instead of query processing behind traditional methods. 
Models are generally much smaller than large data, so BlinkViz is 
extremely fast, even on a large dataset with hundreds of millions 
of data records (over 30GB), responding in a sub-second. Second 
is scalable. As we all know, the main time cost of traditional visu-
alization methods is the query processing time. In general, query 
processing time increases along with the size of the data. When 
the volume of data is large, the time overhead of visualization will 
inevitably be large. In contrast, BlinkViz relies only on the model at 
the core, not on the large volume of the data or samples. Therefore, 
BlinkViz remains scalable on latency and memory footprint size 
regardless of data size. Third is lightweight. BlinkViz is lightweight 
due to its small memory footprint. Also, the model can be kept 
small no matter how large the data is. This advantage makes it 
possible to deploy BlinkViz on mobile devices to provide visual-
ization services without relying on the data server, especially in 
collaborative mobile ofce or ofine use scenarios. 
1The selectivity is the fraction of records in a table that is chosen by the predicate. It 
is a number between 0 and 1. 

In summary, we make the following contributions: 
• We shift the paradigm of data visualization and propose 
a learning-based visualization approach BlinkViz, which 
uses a learned model to answer visualization requests in-
stead of data or samples. By decoupling visualizations and 
data, BlinkViz can be extremely fast even on a very large 
dataset and more scalable compared to traditional visualiza-
tion methods. 

• We propose a neural-enhanced model that integrates mul-
tiple mixed sum-product networks with a neural network 
to improve the accuracy of the approximate visualizations 
produced by BlinkViz, especially for low-selectivity visual-
ization requests. 

• We conduct extensive experiments on both a single-table 
dataset and a multi-table dataset to demonstrate the efec-
tiveness and scalability of BlinkViz. For a large dataset with 
hundreds of millions of data records (over 30GB), BlinkViz 
is able to respond in a sub-second while keeping a low error 
rate. Furthermore, our approach remains scalable on latency 
and memory footprint size regardless of data size. 

2 PRELIMINARIES 

2.1 Visual Request Template 
We defne a simple visual request template similar to DeepEye [22] 
as shown in Figure 2. Diferent from visual languages like Vega-lite 
[31], a visual request is supposed to contain common specifcations 
to describe ‘what’ visualizations should be generated rather than 
‘how’ to make it. Thus, we pay more attention to data manipulation 
instead of graphical description. A visual request includes two parts: 
visualization type and data query. 

Figure 2: Visual Request Template 

• Visualization type. The VISUALIZE clause specifes the 
visualization type. In principle, BlinkViz is able to generate 
complex visualizations like high-dimensional charts. For sim-
plicity, this paper focuses on three popular two-dimensional 
visualization types - bar charts, line charts, and pie charts. 

• Data query. Behind each visual request is a typical SQL 
SPJA2 (Select-Project-Join-Aggregation) analytical query, as 
shown in Figure 2. In a two-dimensional chart, the X-axis is 
usually the categorical group-by attribute, and the Y-axis is 
some aggregated value of a specifc column to facilitate data 
analysis. BlinkViz supports common aggregation queries, 
including COUNT, AVG, SUM, etc. 

2SPJA queries are those that consist of any combinations of select, project and join 
operators followed by an aggregation operator. 
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Once a visual request is posed, we need to rewrite it as a SQL 
query and execute it on a relational database for traditional visual-
ization methods, as shown in Figure 1. Instead, BlinkViz will rewrite 
the request to a probabilistic expression and conduct the model 
inference to answer the request. 

2.2 Approximate Visualization 
Since obtaining exact visualizations on large datasets is too time-
consuming, this paper focuses on approximate visualization meth-
ods. Approximate methods can achieve faster response by sacri-
fcing the accuracy of visualizations to some extent. Traditional 
approximate methods are usually sampling-based. In this paper, we 
investigate a learning-based approximate visualization approach. 

2.3 Mixed Sum-Product Networks 
In recent years, the deep generative models have been applied in 
database learning, such as deep autoregressive models [37], Nor-
malizing Flow [34] and VAE [33], to build density estimators of 
data. However, these models above are intractable when answering 
complex queries like marginal probability and expectations, so they 
perform approximate inference with no guarantees. Inspired by 
DeepDB [14], we turn to tractable probabilistic models and choose to 
learn the data distribution via Mixed Sum-Product Networks [23], 
which enables exact inference for complex queries in polynomial 
time. 

Figure 3: Tailored Flights table with corresponding MSPN 

Mixed Sum-Product Networks (MSPNs) is a variant of Sum-
Product Networks (SPNs) [28]. SPN is a probabilistic model that 
learns the joint probability distribution of the variables in a dataset. 
Conventional SPNs learning algorithm [11] recursively splits the 
dataset into clusters of rows or columns. Diferent row clusters are 
combined with a sum node, while column clusters are combined 
with a product node to construct a tree fnally. MSPNs extend 
SPNs to ft hybrid domains by adopting piecewise polynomial leaf 
distributions like histograms. As illustrated in Figure 3, the example 
MSPN learns the joint probabilistic distribution of attributes origin 
and distance in a tailored Flights table. In the beginning, the whole 
table is split into two groups, accounting for 40% and 60% of the 
total data, respectively, and existing as left and right children of 

the root sum node. The left group is dominated by fights from 
JFK Airport, while the right group contains most fights departing 
from LAX Airport. Then, since there is weak correlation between 
attributes origin and distance, both groups are split into two leaves 
connected by a product node. In the end, the leaf nodes represent 
the distribution of corresponding attributes via histograms. 

Now consider an example query to compute the average travel 
distance of fights departing from JFK Airport. In the inference 
stage, this query could be transformed into computing a condi-
tional expectation E(�������� |������ = � ��), which is equal to 
E(�������� · 1������=� �� )/� (������ = � ��), and these two parts 
can be computed by MSPN by two passes as shown in Figure 3(b). 
In the frst pass (red line), the probability of ������ = � �� is in-
ferred bottom-up. In the leaves of the left cluster, the probabilities 
of that are 0.8 and 1, respectively. Then the probabilities propagate 
along the tree, and the value of the left product node becomes 0.8. 
Similarly, the probability of the right product node is 0.4. Hence, 
we have � (������ = � ��) = 0.8 × 0.4 + 0.4 × 0.6 = 0.56. In the same 
way, we can reach the answer of E(�������� · 1������=� �� ) = 328 
by the second pass (blue line). Finally, we have the answer to the 
query E(�������� |������ = � ��) = 328/0.56 = 585.7, which means 
the average distance of fights departing from JFK Airport is 585.7 
kilometers. Following a similar manner as [14], all SPJA queries 
in visualization tasks on both single and multiple relational tables 
can be transformed into probabilistic expressions and answered 
approximately by inference via MSPNs. 

3 BLINKVIZ: A LEARNING-BASED APPROACH 
The overall model architecture of BlinkViz is illustrated in Figure 4. 
Our model consists of two modules, combining the unsupervised 
and supervised learning modules. First, the data-driven unsuper-
vised module uses several MSPN models trained with diferent data 
samples to capture the general distribution of a given dataset. Each 
MSPN model can be considered as a basic distribution function 
of the original dataset and can be used to infer probabilities like 
marginal probability and expectations. Then, in the supervised 
learning module, to enhance the accuracy of these individual mod-
els, we extract some features from MSPNs, which are related to both 
queries and data, feeding them into a neural network with residual 
structures. Finally, it takes the estimations of several individual 
MSPN models as input, aggregates MSPNs’s statistic information, 
and outputs refned predictions. 

3.1 Learning Data Distribution by MSPNs 
BlinkViz aims to train a machine learning model to learn the data 
distribution and then can approximately answer visual requests by 
leveraging this model. As introduced in Section 2, the MSPN model 
might be a good option for our fundamental requirements. Hence, 
in this paper, we choose it to represent the data distribution. 

3.1.1 MSPN Model Training. Figure 5 shows the process of learning 
a MSPN. As described in 2.3, the learning algorithm [11] splits the 
whole dataset by attributes or by records recursively. Each round 
of recursion determines what kind of split operation needs to be 
performed. If there is more than one attribute, they would be split 
into diferent clusters by attributes according to their correlations 
measured by a randomized dependency coefcient (RDC) [21]. And 
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Figure 4: The architecture of Neural-enhanced Mixed Sum-Product Network model 

Figure 5: The process of learning a MSPN 

these clusters are combined by a product node. Then, in each cluster, 
if the amount of records is larger than a threshold, records would 
also be clustered into independent groups by rows, which are united 
by a sum node. Finally, if only one attribute is left and the number of 
records is less than the given threshold, a univariate distribution of 
this attribute is returned and introduces a leaf node of this attribute. 

3.1.2 Exact Inference. With an MSPN available, given a visual re-
quest, we frst rewrite the data query into probabilistic expressions 
as demonstrated in Section 2.3. Then, the conditions in the query are 
evaluated on every relevant leaf node. Afterward, each probability 
and expectation involved in the expression is computed via MSPN 
bottom up. Finally, it returns the result of the entire expression. 
Here we discuss how to handle all kinds of SPJA queries occurred 
in visualization tasks. 

• AVG An AVG query can be considered as computing a con-
ditional expectation. For the example Flights table, given a 
query, e.g., SELECT AVG(distance) FROM Flights WHERE ori-
gin=JFK, which can be transformed into E(�������� |������ = 
� ��) = E(�������� · 1������=� �� )/� (������ = � ��). Both 

E(�������� · 1������=� �� ) and � (������ = � ��) are conve-
nient to infer by MSPN bottom-up, as illustrated in Section 
2.3. 

• COUNT Assuming that the total number of data records of 
the table is � , then the result of query e.g., SELECT COUNT(*) 
FROM Flights WHERE origin=JFK is � × E(1������=� �� ), 
which could be computed in the same manner as AVG. 

• SUM A SUM query can be treated as AVG*COUNT, for exam-
ple, SELECT SUM(distance) FROM Flights WHERE origin=JFK 
is equal to SELECT AVG(distance)· COUNT(*) FROM Flights 
WHERE origin=JFK. It can also be computed in the above 
way, but we need to infer through 3 passes. 

In addition, for dataset consists of multiple tables, MSPNs are 
learned over the full outer join of the tables. Thus, a learned MSPN 
not only can answer queries on a single table, but also queries on 
joins of multiple tables. 

3.2 Neural-Enhanced Module 
For the sake of efciency, like most machine learning models, 
MSPNs are trained with data samples. A single model can only 
capture one side of the data but cannot learn all the features of the 
underlying data exactly. Thus, only utilizing the MSPN model has 
two folds of limitations. For one thing, queries with low selectivity 
frequently occur in exploratory visual analytics, since they often 
produce interesting and valuable insights. However, for these low-
selectivity queries, a single MSPN model might inevitably yield 
results with high error in the tails of the distribution because some 
population is ignored or even missing in the visualization due to 
their rareness. The lower the selectivity of the query, the worse it 
will be. For another, since MSPN is a data-driven model, it will not 
consider the characteristics of workloads. Thus, for some queries, 
e.g., low-selectivity queries, the accuracy of approximate visualiza-
tions can only depend on the learned data distribution. To improve 
the accuracy, we propose to integrate several MSPN models using 
a neural network to enhance the model as shown in Figure 4. 

3.2.1 Model Design. The design of the neural-enhanced module is 
to unify the features of both data and queries by taking advantage 
of both the data-driven and query-driven models. The data-driven 
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MSPN model learns from data directly, which has better generaliza-
tion ability but is easy to miss information about rare populations, 
especially for those low-selectivity queries. On the other hand, cur-
rent query-driven models [8, 19, 32] aim to learn a map between 
queries and results, which identify patterns in the workload but 
lack generalization. We notice that when an MSPN makes an in-
ference for a given query, each node of the MSPN keeps specifc 
probabilistic values (which we name as ‘status vector’), which can 
be considered as a status of the model under corresponding query. 
By extracting them as the statistical features of MSPNs and feeding 
them into the neural network, the network can obtain both data 
and query-related information and get more accurate results. 

Besides, the reason why we use multiple MSPN models is that 
multi-MSPNs can capture a more comprehensive picture of data 
distribution than a single MSPN and balance the errors caused by 
diferent data samples. The training data of MSPNs comes from 
diferent data samples, overlapping with each other and the infor-
mation of rare populations are captured independently. Compared 
with naive ensembles of MSPNs, we incorporate several MSPNs 
with a neural network. The neural network learns a non-linear 
combination of individual MSPNs rather than simple arithmetic 
averaging or voting, which can eliminate some efects of certain 
anomaly predictions that lead to signifcantly deviation from the 
true result. 

As shown in Figure 4, for a given query, each MSPN produces a 
preliminary prediction and yields a status vector during inference. 
The status vectors are concatenated together after the embedding 
layer and then are fed into the neural network with the preliminary 
predictions for training. The encoders, linear layers and decoders 
are all six-layer perceptrons (MLP) with residual structures. During 
training, we use exact query results as ground truth. 

In addition, there are two reasons why we add residual modules 
in the network. One is to protect the integrity of the information 
in the propagation procedures by passing the input directly to 
the output by adopting several residual blocks in neural networks. 
Another is to avoid situations where the error fuctuates too much. 
To this end, we put the average of several preliminary predictions 
in the decoder as a guideline. As a result, it learns the residual 
instead of the complete output. Incorporating residual modules 
can make the learning objective simplifed and easy to train. Thus, 
by leveraging such a neural-enhanced model, we can refne the 
prediction results to get better results. 

3.2.2 Model Training. The inputs of the neural network are the 
predictions and aforementioned status vectors of MSPNs. When a 
query arrives, each MSPN makes inference bottom-up, and each 
node corresponds to certain probability values in this process. For 
example, as shown in Figure 3(b), when computing the proba-
bility in the frst pass, we extract the probabilities by pre-order 
traversal of the nodes and fatten them into a status vector � = 
[0.56, 0.8, 0.4, 0.8, 1, 0.4, 1]. The vector � can be considered as a sta-
tus of the model under current query. By extracting them as the 
statistical features of MSPNs and feeding them into the neural 
network, the network can obtain both data and query-related in-
formation and get more accurate results. 

In the training stage, we generate 100,000 queries according to 
the visual request template and evaluate them by several trained 

MSPNs and PostgreSQL respectively, attaining the above features 
and ground truth. To keep the numerical stability, we also adopt 
min-max scaling and log transformation for data normalization. 
The neural network is randomly initialized without pretraining. We 
set 3 MSPNs and 4 residual blocks by default. And we use the Adam 
optimizer [18] in PyTorch with a learning rate of 0.00025. The loss 
function is L1 loss. 

4 EVALUATION 

4.1 Experimental Setup 
4.1.1 Hardware and Platform. We implement BlinkViz based on 
SPFlow library [24]. All experiments are conducted on a Ubuntu 
Linux 18.04.4 LTS machine with Intel Xeon Silver 5215 CPU, Nvidia 
Titan RTX GPU (24GB), 64GB RAM, and 3.3TB HDD disk. 

4.1.2 Datasets. We conduct experiments on both a real-world 
dataset Flights [3] and a synthetic dataset Star Schema Benchmark 
(SSB) [26]. 1) Flights has a single table with 12 attributes and con-
tains fight delay information. We use the data generator from [9] 
to scale up this dataset, by default to 500 million records (43GB). 
2) SSB is a multi-table (5 tables) dataset to demonstrate the perfor-
mance of complex queries with join clauses. By default, the fact 
table (lineorder) in SSB has 300 million records (33GB). 

4.1.3 Workloads. We use two workloads in experiments. 1) Train-
ing workload: we generate 100,000 queries from the visual request 
template to train the neural network in BlinkViz. 2) Test work-
load: we use ten typical example queries F1-F10 on Flights. For 
SSB dataset, we use the standard SSB queries S1.1-S4.3 to evaluate 
the performance. Both the workloads cover various aggregation 
functions, GROUP BY clauses, and selectivities. 

4.1.4 Baselines. In the experiments, we mainly compare BlinkViz 
with two sampling-based methods, which are often used in the 
existing sampling-based approximate visualization systems. All 
samples are stored in memory. 

• Random Sampling-based Method: a method that executes 
queries on a random sample. 

• Stratifed Sampling-based Method: a method that executes 
queries on a set of stratifed samples. For Flights, we generate 
two stratifed samples based on the attribute combinations 
(���� _����,������_������� ) and (������_�����_���, ���� ), re-
spectively. For SSB, we generate two stratifed samples based 
on the attribute ��_��������� and ��_�������, respectively. 

4.1.5 Performance Metrics. We use three metrics to evaluate the 
performance. 

• Latency: the response time of visual request (query), i.e., the 
time cost for getting the query result. 

|� −�̂ |• Accuracy: the relative error �� (�) = is used to evalu-
� 

ate the accuracy of a specifc query �, where � is the exact 
result from the original data and �̂  is the approximate re-
sult based on samples or the learned model. For group-by 
queries, the relative error is the average error upon each 
group. Specifcally, we set the relative error upon a group to 
100% when the group is missed in the result. 
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Figure 6: Performance on Flights dataset 

Figure 7: Performance on SSB dataset 

• Memory Footprint Size: the size of memory used to store sam-
ples for sampling-based methods or the model for BlinkViz. 

In the following experiments, the latency and accuracy is the 
average result of 10 separate experiments with the same experimen-
tal settings. By default, the sampling rate in the sampling-based 
methods is set at 1%. 

4.2 Experimental Results 
4.2.1 Performance on Flights and SSB datasets. In this set of exper-
iments, we compare the performance of random sampling-based 
method, stratifed sampling-based method, and BlinkViz on both 
Flights and SSB datasets in the default data size. 

Figure 6 shows the performance of the three methods on the 
Flights dataset with 500 million records. As shown in Figure 6(a), 
the relative error of BlinkViz is lower than that of sampling-based 
methods. This is because BlinkViz learns the data distribution not 
only for the large subpopulations by using MSPN but also for the 
rare subpopulations by using the neural network. Specifcally, for 
query F7, the relative error of the random sampling-based method 
is signifcantly higher than that of the stratifed sampling-based 
method and BlinkViz, since the random sample cannot support 
query F7 very well. As shown in Figure 6(b), the latency of BlinkViz 
is signifcantly lower than that of sampling-based methods. All 
typical example queries can be evaluated within tens of millisec-
onds. This is because BlinkViz leverages model inference to answer 
queries instead of querying on the data or samples. The latency 
of the stratifed sampling-based method exceeds 1000ms, since it 
needs extra computations to rewrite the approximate results. 

Figure 7 shows the performance of the three methods on the 
SSB dataset with 300 million records. As shown in Figure 7(a), the 
relative error of BlinkViz is also lower than that of sampling-based 
methods. For queries S3.4 and S4.3, the relative error of sampling-
based methods is signifcantly higher than that of BlinkViz, since the 

Figure 8: Scalability on latency and memory footprint size 
with diferent data sizes on Flights dataset 

samples cannot provide enough tuples to answer the queries which 
have low selectivity. As shown in Figure 7(b), overall, the latency 
of BlinkViz is lower than that of sampling-based methods. For S4.3, 
the latency of BlinkViz is a little bit higher, since the number of 
groups in S4.3 is much more than that in other queries. The more 
groups in a query, the higher the time overhead required by MSPNs 
in BlinkViz. In summary, compared with the two sampling-based 
methods, BlinkViz can return results faster (responding in sub-
seconds) while keeping a lower error rate. 

Table 1 shows the training cost of BlinkViz on the default size of 
Flights and SSB datasets. For both datasets, we fnd that the training 
time of MSPNs is very short compared to that of the neural network, 
since the training time of MSPNs relies on the number of columns 
in a dataset rather than the size of training workload. Therefore, 
when the data is updated, we can retrain the MSPNs in BlinkViz 
online and periodically retrain the neural network ofine. Besides, 
the training time of MSPNs on SSB is longer than that on Flights 
because the MSPNs on SSB are trained on a 5-table join, which 
has more columns than Flights. The same reason causes the size of 
MSPNs on SSB to be larger than that on Flights. Furthermore, the 
size of the neural network on Flights and SSB is similar since the 
number of parameters in the neural network is fxed. 

4.2.2 Scalability Evaluations. We scale up the data size of the 
Flights dataset from 5 million to 5 billion records and conduct 
experiments to evaluate the scalability of BlinkViz and sampling-
based methods. As shown in Figure 8, BlinkViz has good scalability 
on both latency and memory footprint size. In contrast, the latency 
and memory footprint of sampling-based methods increase linearly 
along with the increase in data size. As shown in Figure 8(a), al-
though when the data size is small (e.g., 5 million), the latency of the 
random sampling-based method is lower than that of BlinkViz, its 
relative error is very high. This is because a small size of the sample 
upon a low sampling rate (1% in this setting) cannot guarantee an ac-
ceptable accuracy. Even if we increase the sampling rate to 10%, the 
relative error of the sampling-based methods (Stratifed/Random: 
2.1%/2.2%) is still higher than that of BlinkViz (1.1%), and the delay 
exceeds that of BlinkViz at the same time. In other words, there 
is a trade-of between latency and accuracy for sampling-based 
methods. As for BlinkViz, its latency is mainly the model infer-
ence overhead, which is only related to the number of nodes in the 
MSPNs and the number of parameters in the neural network. 

As shown in Figure 8(b), the memory footprint size of the sampling-
based methods increases as the data size increases. The footprint 
size of the stratifed method is larger than that of the random 
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Table 1: Training cost of BlinkViz on Flights and SSB datasets 

Dataset # of records Data Size 
Training Time Model Size 

MSPNs Neural Network Total MSPNs Neural Network Total 
Flights 500 millions 43GB 128s 3h48min 3h50min 40.5MB 29.9MB 70.4MB 
SSB 300 millions 33GB 578s 5h7min 5h17min 229.9MB 30MB 259.9MB 

Figure 9: Performance with diferent sampling ratios on 
Flights dataset 

Figure 10: Efects of number of MSPN used in BlinkViz 

method since it has two stratifed samples by default. The memory 
footprint of BlinkViz keeps scalable because the size of MSPN is 
bounded by the number of columns in a dataset and the sample 
size [14] instead of the original data size. Besides, the neural net-
work size in BlinkViz is stable since the number of parameters in the 
neural network is fxed. The scalability characteristics of BlinkViz 
make it particularly suitable for big data application scenarios. 

4.2.3 Efects of Sampling Rate on Sampling-based Methods. We 
evaluate the infuence of sampling rate on the performance of 
sampling-based methods, varying the sampling rate from 1% to 
10% on Flights dataset. Specifcally, the sampling rate of BlinkViz is 
fxed at 1%. 

As shown in Figure 9(a), when the sampling rate increases, the 
average accuracy of the sampling-based methods grows as well but 
always worse than BlinkViz (1%). Meanwhile, in Figure 9(b), there is 
a sharp rise in the query latency of sampling-based methods as the 
sampling rate increases, which is unacceptable to users’ interactive 
analytics. The results indicate that even if a larger sampling rate 
would certainly improve the accuracy of the sampling-based meth-
ods, BlinkViz with 1% sampling rate performs better than them, 
presenting unique advantages in both aspects. 

4.2.4 Efects of Number of MSPN Used in BlinkViz. In this experi-
ment, we evaluate the efects of the number of MSPN on the query 
accuracy and storage overhead on the Flights dataset. As shown in 

Figure 11: Efectiveness of neural network module 

Figure 10(a), consistent with our intuition, the query accuracy of 
BlinkViz is improved with the increase of the number of MSPN. This 
is because additional MSPNs can provide more comprehensive data 
distribution. At the meantime, in Figure 10(b), the model size gets 
larger when adding additional MSPNs. However, even if combining 
six MSPNs together, the total model size does not exceed 100M, 
which takes up little storage resources compared with samples and 
is very convenient for transmission between the server and the 
client for ofine use. Thus, users can trade of storage and accuracy 
by adjusting the number of MSPNs based on their own budget. 

4.2.5 Ablations Studies. We conduct a set of ablation experiments 
to evaluate the efectiveness of the structure of BlinkViz, comparing 
the performance on average query accuracy, latency and training 
cost. We vary the selectivity of queries from 0.00001% to 10%, gen-
erate 1,000 queries for each selectivity interval and conduct experi-
ments on the Flights dataset. When generating these queries, we 
calculate the data distributions under diferent group-by attribute 
combinations and leverage them to generate queries with diferent 
selectivity by changing the value ranges of where conditions. 

We start from demonstrating the utility of using multiple MSPNs 
and neural network module, comparing BlinkViz with single MSPN 
model and naive ensemble of MSPNs (the arithmetic average of 
multiple MSPNs’ predictions). Figure 11(a) shows the average ac-
curacy of the queries with various selectivities. We can fnd that 
the relative errors of single MSPN, naive ensemble of MSPNs and 
BlinkViz all increase along with the decrease in selectivity. Since 
adopting multiple MSPNs is able to capture a more comprehensive 
picture of the dataset, the naive ensemble approach achieves higher 
accuracy than single MSPN. And the average accuracy of BlinkViz 
is higher than that of naive ensemble, because the errors with large 
deviation of the original single models still lead to weighty errors 
after averaging while the non-linear combination of multiple predic-
tions through neural network can redress the balance. For latency, 
as shown in Figure 11(b), BlinkViz has a similar average latency to 
other methods. This means that the neural network module adds 
just a little bit of overhead by leveraging GPU acceleration. 
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Table 2: The efect of residual structure 

Residual Training Time Relative Error Storage 
Yes 3h48min 7.03% 43.37MB 
No 12h35min 8.77% 43.37MB 

Figure 12: Case 1 - # of fights departing from Los Angeles to 
JFK Airport each year 

Meanwhile, we conduct experiments on neural network with and 
without residual modules to study the efects of residual structure in 
our model on the same dataset. As illustrated in Table 2, without the 
residual modules, the training time is three times longer than using 
residual structures, indicating that residual blocks speed up the 
convergence of the model. This is mainly because that the shortcut 
connection of residual structure reduces the loss of information, 
achieving high accuracy of predictions. 

4.3 Demo Cases 
To evaluate the efectiveness of BlinkViz from a visual perspec-
tive, we use two cases to demonstrate the visualizations under 
diferent methods. And we use the KL divergence [13] to quantify 
the diference between the exact visualization and approximate 
visualizations produced by diferent methods for a visual request. 

Case 1. As shown in Figure 12, the visualization produced by 
BlinkViz (Figure 12(b)) is quite similar to the exact result (Fig-
ure 12(a)), and the KL divergence between them is very small, since 
BlinkViz has high accuracy in answering approximate visual re-
quests. In contrast, the visualizations produced by the sampling-
based methods (Figure 12(c) and Figure 12(d)) look very diferent 
from the exact result and the KL divergence between them is large. 

Case 2. As shown in Figure 13, from a visual perspective, the 
approximate visualizations produced by the three methods look 
similar to the exact result (Figure 13(a)). But if we look closely, 
we can still observe the diferences (noted by red circles). Overall, 
BlinkViz still performs best with only one obvious diferent point. 
However, as shown in Figure 13(c) and Figure 13(d), the approximate 
visualizations produced by the sampling-based methods have more 
obvious diferences from the exact result than that of BlinkViz. 

Figure 13: Case 2 - # of fights whose airtime >1000 minutes 
and departure delay >1500 minutes. 

5 RELATED WORK 
Approximate Visualization. For faster response to visualization 
requests, existing visualization systems [4, 10, 12, 17, 27, 29, 30, 38] 
use samples instead of the original data to produce approximate 
visualizations. They make a trade-of between the time cost and 
accuracy of visualizations. For example, IFocus [17] progressively 
samples until the relative heights of the bars in the charts approach 
the actual size with a high probability. When the volume of data 
is large, the time overhead and memory footprint size of query 
processing in these sampling-based visualization systems will in-
evitably be large. Obviously, existing sampling-based approximate 
visualization methods cannot scale well enough for the data size. 

Machine Learning-based Visualization. In order to achieve 
more efective visualizations, a series of studies apply machine 
learning techniques to solve visualization-related problems and 
present many opportunities [35]. The visualization pipeline could be 
divided into three parts: data processing, visualization display, and 
human interaction. In the stage of data processing, [36] proposes a 
perception-based supervised method to reduce high-dimensional 
data to 2D projections. In the visualization display stage, there are 
many studies using ML techniques to recommend visualizations, 
such as DeepEye [22], VizML [15], Data2Vis [7], etc. Finally, in the 
human interaction stage, machine learning-based methods are also 
emerging to predict the user’s next exploration behavior [5, 25] 
and automatically generate insights [6, 16]. All these works are 
orthogonal to the learning-based approach proposed in this paper. 

6 CONCLUSION 
This paper proposes BlinkViz, a learning-based approximate visu-
alization approach using neural-enhanced MSPNs. Compared to 
traditional sampling-based methods, BlinkViz is fast, scalable, and 
lightweight. It can respond in sub-seconds, even on a large dataset 
with hundreds of millions of data records, while keeping a low 
error rate. BlinkViz can efectively improve the user experience of 
interactive visual analytics in the big data era. 
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