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ABSTRACT
Textual password security hinges on the guessing models adopted
by attackers, in which a suitable password composition representa-
tion is an influential factor. Unfortunately, the conventional models
roughly regard a password as a sequence of characters, or natural-
language-based words, which are password-irrelevant. Experience
shows that passwords exhibit internal and refined patterns, e.g.,
“4ever, ing or 2015”, varying significantly among periods and regions.
However, the refined representations and their security impacts
could not be automatically understood by state-of-the-art guessing
models (e.g., Markov).

In this paper, we regard a password as a composition of several
chunks, where a chunk is a sequence of related characters that
appear together frequently, to model passwords. Based on the con-
cept, we propose a password-specific segmentation method that can
automatically split passwords into several chunks, and then build
three chunk-level guessing models, adopted from Markov, Proba-
bilistic Context-free Grammar (PCFG) and neural-network-based
models. Based on the extensive evaluation with over 250 million
passwords, these chunk-level models can improve their guessing
efficiency by an average of 5.7%, 51.2% and 41.9%, respectively, in an
offline guessing scenario, showcasing the power of a suitable pass-
word representation during attacks. By analysing these efficient
attacks, we find that the presence of common chunks in a password
is a stronger indicator for password vulnerability than the character
class complexity. To protect users against such attacks, we develop
a client-side and real-time password strength meter to estimate the
passwords’ resistance based on chunk-level guessing models.
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1 INTRODUCTION
Human-created textual passwords are still widely used and will
likely remain the dominant authentication mechanism in the fore-
seeable future for their low deployment costs and remarkable sim-
plicity [13, 14, 41, 63, 68]. Attackers use increasingly advanced
tools to guess passwords, with data-driven probabilistic guessing
models being the latest development [43, 47, 59]. By modeling the
probability distribution behind a set of observed passwords, these
models perform efficient guessing attacks by generating candidate
passwords and comparing them with targeted sets. Therefore, these
data-driven models are founded on the probability distribution of
passwords, in which password interpretation practices can result in
different distributions. Prior works have seemingly modeled pass-
word interpretations as generally a sequence of characters [16, 21],
characters with the same classes [66], or external natural-language-
based words [59], which are all password-irrelevant knowledge.
Users could have their own tricks when creating passwords, e.g.,
leet patterns like 4ever (forever), giving rise to memorable (and pre-
dictable) units [15, 31, 69] and enabling users to create an easy way
to remember passwords while still meet the requirement of “strong”
passwords. Typical password compositions have such peculiari-
ties that need to be taken into account in developing data-driven
models.

When passwords are modeled as generic text sequences by
data-driven models, it becomes hard to find the appropriate com-
position units of passwords. The original whole-string Markov
model [45] and neural-network-based FLA (Fast, Lean and Accu-
rate) model [43] basically adopt a character-level model, which
regards a single character as a basic unit to compose a password.
However, organizing passwords by characters might be too fine-
grained. In contrast, the template-based Probabilistic Context-free
Grammars (PCFG) model [66] divides a password into several units
based on character classes, which sequentially used when compos-
ing a template. For instance, the template for “lastforever” is 𝐿11 1,
which is only related to character classes. Modeling passwords
by such templates might be too coarse-grained. In a word, these
models capture either character-level or template-level knowledge,
leading to the granularity of password composition representations
either too fine-grained or coarse-grained.

To mitigate the problem of password composition granularity,
extensive prior works [35, 42, 59] are always based on hand-craft
rules or password-irrelevant knowledge (i.e., words) to optimize
password representations. Ma et al. [42] proposed a variable or-
der Markov model (termed Backoff), which regards the longest
character sequences whose frequency is above a threshold as a

1𝐿 refers to letters. In addition, 𝐷 and 𝑆 refer to digits and symbols, respectively
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unit and gradually falls back. Veras et al. [59] employed natural-
language-based techniques to segment passwords into small and
meaningful units and proposed a fine-grained PCFG model (termed
Semantic_PCFG). Despite the fact that these aforementioned stud-
ies mitigate the granularity problem to some extent, they suffer
from the automatic extraction of refined composition representa-
tions, for that passwords exhibit their internal and refined patterns
that are different from natural languages [56].

To investigate refined password composition representations,
we introduce the concept of chunk, which is a sequence of related
characters that appear together frequently to compose a password.
The concept here is password-relevant obtained from the inter-
nal statistics of password datasets and intuitively similar to the
chunking process [44] in psychology 2. For example, the password
“p@ssw0rd4ever” could be divided into two chunks (p@ssw0rd,
4ever), which strike a balance between the granularity of charac-
ters and templates.

In this work, we take a step to model passwords via a refined
composition of chunks that are extracted from the internal statistics
of datasets and apply chunks to chunk-level guessing models to
understand their security impacts. We propose a password-specific
segmentation method (termed PwdSegment) that can learn chunks
insides passwords and build three chunk-level guessing models
adopted from the Markov, PCFG and FLA models. The PwdSegment
method extends the Byte-Pair-Encoding (BPE) algorithm [25, 48, 52]
and allows passwords to be automatically interpreted into sev-
eral chunks. Based on the resulting chunks, we build a chunk-level
Markov model upon Backoff, which we call CKL_Backoff, a chunk-
level PCFG model (termed CKL_PCFG) and a chunk-level neural-
network-based model (termed CKL_FLA). We apply the various
average length of a resulting chunk vocabulary to these models.
Particularly, we design and build CKL_Backoff and CKL_FLA by
replacing characters with shorter chunks (e.g. average length of 1.8),
CKL_PCFG is built with the novel template consisting of longer
chunks (e.g. average length of 4.5). The empirical evaluation shows
that all three chunk-level models have substantially higher guessing
performance than state-of-the-art models.

Based on these efficient attacks, we quantitatively investigate
the impacts between several security-related factors and password
strength. Previous works [33, 55] generally identified the length
and the number of character classes as important factors affecting
security. In our study, we find that the frequency of chunks in a
password is a stronger indicator for password vulnerability than
the lack of character class diversity (i.e., passwords are weaker
when composed of high-frequency chunks), despite the fact that
the length is still the most influential. Given the risks posed by
chunk-level guessing attacks, we design and implement a client-
side password strength meter by compressing CKL_PCFG to 5.0 MB
for a real-time feedback, which can remind common chunks in a
generated password and identify more unsafe passwords than other
widely-used meters (e.g., the FLA meter [43]). Besides, our meter
provides the interface for developers to conveniently integrate into
password managers [1–3].

We summarize our main contributions as follows.

2Chunking refers to the process of taking individual pieces of information and grouping
them into a meaningful whole for a sound memory [44].

• We investigate and evaluate a refined password composition
unit (i.e., chunk) by an automatic password-specific parser
PwdSegment, demonstrating that previously identified char-
acters, templates or words are less effective in modeling pass-
word guessing than chunks.

• We propose a chunk-level Backoff, PCFG and FLA guess-
ing model. Through an extensive evaluation, we find that
these models outperform the state-of-the-art models by an
average of 5.7%, 51.2% and 41.9%, respectively, demonstrat-
ing significant vulnerability with passwords using common
chunks.

• We design and implement a client-side password strength
meter based on the compressed CKL_PCFGmodel tomitigate
the risks from chunk-level attacks. Our meter can remind
users that commonly-used chunks are vulnerable, which is
an underestimated threat in security.

Roadmap. In Section 2, we present the threat model and password
chunks. We elaborate on the design of CKL_Backoff, CKL_PCFG
and CKL_FLA in Section 3.1, 3.2 and 3.3, respectively. In Section 4,
we evaluate these chunk-level models’ guessing performance. Af-
terwards, we present security recommendations and applications
in Section 5. In Section 6, we discuss practical values. In Section 7,
we introduce related works. Section 8 summarizes this paper.

2 PRELIMINARIES AND PASSWORD CHUNKS
We explicate the threat model and datasets used in this paper. Then
we elaborate on the extraction of chunks along with their properties.

2.1 Threat Model
The objective of guessing models is to quantify how many guesses
it would take for successfully cracking a password, including mostly
but not limited to online targeted attacks [64] or offline trawling
attacks [20, 42, 43, 47, 58, 62, 66]). In this paper, we refer most of the
related works and mainly focus on offline trawling attacks as the
threat model, while online targeted attacks are outside the scope of
this work since the offline password guessing is common in digital
forensics [12, 54].

In offline trawling guessing attacks, an attacker attempts to re-
cover passwords under a larger number of guesses, e.g., 1014 [24, 55]
as the maximum guesses, because it will ensure a practical attacker
scenario with available computing power. A far large number of
guesses, e.g., 1020, usually only has its theoretical significance but is
limited with practical values. Particularly, offline attacks generate
these candidate passwords in descending probability order based
on models. These candidate passwords are then used to be hashed
by using the hashing algorithm (e.g., MD5, Argon2) to compare
with the cipher-text password, in which the matching probability
is the cracking rate.

2.2 Datasets
This section introduces six leaked datasets used in our paper with
over 250 million plain-text passwords, including three from English
sites and three from Chinese sites (shown in Table 1). They were
disclosed publicly on the Internet and have been extensively used
in trawling offline password models [26, 38, 61, 68]. Rockyou [5] is
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Table 1: Summary of password corpus used in this paper;
The 𝐶𝑣 describes the degree of dataset dispersion.

Region Datasets (𝐶𝑣 ) Year Account
Valid (Removed%)

Account
Unique

Account
Length ≥ 16

Rockyou (0.27) 2009 32,584,165 (0.06%) 14,270,373 250,242
Neopets (0.29) 2016 67,672,205 (1.58%) 27,474,769 1,081,602English
Cit0day (0.33) 2020 86,835,796 (0.00%) 40,589,949 1,869,877

∗English 187,092,166 (0.01%) 72,095,944 3,201,721

CSDN (0.20) 2011 6,425,243 (0.01%) 4,031,226 68,817
Youku (0.21) 2016 47,607,615 (0.08%) 47,462,025 395,701Chinese
178 (0.22) 2011 9,071,979 (0.09%) 3,461,974 7,431

∗Chinese 63,104,837 (0.07%) 54,955,225 471,949

Total 250,197,003 (0.45%) 127,051,169 3,673,670

a popular game information website; Neopets [8] is a famous on-
line pet information website. Cit0day is a multi-language dataset,
in which most of them are from English, offering access to user-
names and email services for thousands of websites. The Cit0day
data breach claimed that up to 226 million usernames and pass-
words were leaked, yet we collected around 80 million plain-text
passwords in total. CSDN [7] is a Chinese programming forum.
Youku [9] provides video services. 178 [6] is a website providing
game information. Most users of CSDN, Youku and 178 are Chinese
speaking users, while users of Rockyou, Neopets and Cit0day are
mostly English speaking. To obtain valid passwords, we remove
non-ASCII passwords and too long passwords with more than 32
characters [43, 63]. Such unusually long strings are unlikely gener-
ated by users or password managers due to their default settings of
12, 16 or 20 characters in most of the managers (e.g., LastPass [3],
Dashlane [2], or 1Password [1]). Moreover, they are often beyond
the scope of attackers who care about cracking efficiency [12] (for
completeness, we evaluate these longer passwords in Appendix A.1).
We count the complexity statistics of each dataset by the coefficient
of variation (𝐶𝑣 ) [23], whose value is proportional to the degree of
dataset dispersion. We observe from Table 1 that newer datasets
become more and more discrete, evidenced in that Cit0day is the
most discrete. We choose these diverse sets (three recent leaked
datasets and the other three datasets are a bit old) of different eras
to observe the temporal change in datasets. Our research in this
paper only presents the aggregated statistical information rather
than individual features for the requirement of ethical practice.

2.3 PwdSegment: A Password-Specific
Segmentation Method

We present a password-specific segmentation method (termed Pwd-
Segment) to interpret a password into several chunks. Conceptually,
PwdSegment trains a Byte-Pair-Encoding (BPE) algorithm based on
training data of plain-text passwords for obtaining chunk vocabular-
ies. This principle is referred to the parser toolWordSegment [27] of
training an n-grammodel based on a trillion of the natural-language
corpus. The BPE algorithm, originally proposed in 1994 as a data
compression technique [25], is widely used in machine translation
for the task of subword segmentation (e.g., the RoBERTa model [39]
proposed by Facebook and GPT-2 model [50] proposed by Open
AI.), which keeps the frequent words intact while splitting the rare
ones into multiple units. The raw BPE algorithm first trains on the
plain-text corpus. Then, it iteratively merges the most frequent pair

of tokens with a single, new (i.e., unseen) token, which constitutes
the subword (i.e., chunk) vocabulary. Each merge operation pro-
duces a new chunk by replacing the most frequent pair of characters
or character sequences (e.g., “w”, “0”) with a new, unused subword
(e.g., “w0”). The merge operation is repeated for a specified number
of times as configured before (i.e., a hyper-parameter), resulting in
a chunk vocabulary of proportional size.

Vocabulary
avg_len = 4.5

Merge operation
repeat the step 
iteratively until

avg_len ≥	threshold

4ever: 5
p@ssw0rd123: 4

p@ssw0rd:3

Input
password: frequency

p @ s s w 0 r d 1 2 3: 4
p @ s s w 0 r d 4 e v e r : 3

l a s t 4 e v e r : 2

l: 2
a: 2
s: 2

t: 2 

Step-1:
(w 0) -> (w0)

p @ s s w0 r d 1 2 3
p @ s s w0 r d 4 e v e r

l a s t 4 e v e r

Step-2:
(w0 r) -> (w0r)

p @ s s w0r d 1 2 3
p @ s s w0r d 4 e v e r

l a s t 4 e v e r
… 

Figure 1: An example of PwdSegment
PwdSegment extends the BPE algorithm by using the config-

urable parameter of average length (for short, avg_len) of chunk
vocabularies to replace the number of the merge operations. Pwd-
Segment counts all pairs of characters and stops the merge process
early when the avg_len of the resulting chunk vocabulary equals
or exceeds the threshold length we set. Compared with the number
of merge operations, PwdSegment could be parameterized with a
threshold avg_len to tune the segmentation result with different
granularity more conveniently, where a longer avg_len leads to a
more coarse-grained result. Besides, the avg_len can describe the
length nature of a chunk vocabulary, not as confusing as the num-
ber of merge operation. We use an example (shown in Figure 1) to
illustrate the workflow of PwdSegment as follows.

(1) Setup: Prepare a training set of plain-text passwords and con-
figure the expected avg_len of the resulting chunk vocabulary.
(2) Input: Count the number of passwords occurred in the training
set and split passwords into character sequences. For instance, the
password “p@ssw0rd123” appears 4 times, we label it with “p @ s
s w 0 r d 1 2 3 : 4”
(3) Merge operation:Merge character pairs iteratively in descend-
ing order of frequencies. In step-1, the character pair “w 0”, whose
frequency is the highest (appears 7 times), is merged into w0; Note
that, “p @” also appears 7 times, PwdSegment chooses “w 0” based
on dictionary sequences, then the input is updated accordingly
(shown in Merge operation of Figure 1); In the step-2, the top char-
acter pair is “w0 r”, which also appears 7 times, is merged into w0r;
Then the next step-3 follows the same practices and merges “w0r d”
into w0rd. We detail the specific changes of each merge operation
in Appendix A.2.
(4) Generate a chunk vocabulary: Repeat the procedure above
until the 𝑎𝑣𝑒_𝑙𝑒𝑛 of resulting chunks is equal to or greater than
the threshold, or all character pairs have the same frequency. The
resulting chunk vocabulary consists of either characters or chunks.
Finally, PwdSegment segments passwords based on the chunk vocab-
ulary, e.g., the “p@ssw0rd4ever” could be interpreted as “p@ssw0rd,
4ever”.
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(a) Rockyou (b) Cit0day (c) CSDN (d) Youku (e) COCA

Figure 2: Top-150 password chunks and natural-language words. Passwords exhibit patterns that are irrelevant to words. We
colour these patterns with different colours, i.e., leet (4ever), syllables (ing), keyboard (123456789), dates (1995) and words (the)
are coloured with red, orange, purple, deep-blue and green, respectively. The chunks that does not belong to patterns above
are coloured with grey.

2.4 Property Analysis of Resulting Chunks
2.4.1 Difference between password chunks and natural-language-
based words. To further compare their differences, we list the top-
150 chunks and words. For chunks, we select the coarse-grained
resulting chunk vocabulary with the longer avg_len threshold of
4.5, since most of chunks (around 50%) in fine-grained resulting
chunks (i.e., avg_len of 1.8) are with only one or two characters. For
natural-language-based words, we extract words from Corpus of
Contemporary American English (COCA) [18], which is a large and
up-to-date English corpus. Figure 2 shows results after removing
single or two characters for cleaner presentation, from which we
have the following observations:

• The password chunks exhibit a clear difference from those natural-
language-based words. Digits contribute a lot to password chunks,
while letters are the only character class for composing a word.
Except for words, we find that chunks show other memory pat-
terns. For example, leet 3 (4ever, iloveu), syllable 4 (ing, wang,),
keyboard (123456789, qwerty), and date (2015).
• The number of pattern chunks that exactly matches (a full match-
ing) these leet, syllable, keyboard and date patterns take up to an
average of 0.10% (31,899) , 2.27% (546,284), 2.03% (439,230) and 1.21%
(195,382) across four datasets respectively, suggesting that it is not
enough only to consider natural-language-based words [36, 71]
for splitting passwords accurately. Further, The top-N leet chunks
(shown in Table 2) show that users prefer using “4” to replace
“for”, evidence in 4ever or just4you, which deserves attention for
this replacing rules produce passwords much weaker than a typ-
ical letter-digit combination. Besides, for top-10 syllable chunks
(shown in Table 3), the widely-used syllable chunks are mostly
prepositions of an or in, or word suffixes for English chunks, and
pinyins of Chinese surnames (li or wang) for Chinese chunks. No-
tably, the Chinese family names are often adopted (e.g., the top-1 li
is the most commonly used Chinese family name). For other popu-
lar chunks that do not exhibit patterns above (e.g., 001 or 777), we
argue that they could behave as the stopwords among passwords
due to their high frequency. Besides, the newer dataset Cit0day
includes more date chunks.
3Leet refers to chunks with commonly-used transformation rules, including shape
similarity, e,g„ p@ssw0rd (password), and sound pronunciations, e.g., 4ever (forever),
making chunks easier to remember.
4Syllables refer to the combinations of English affixes and Chinese pinyins, where the
English affix is a morpheme attached to a word stem to form a new word or word form.
(e.g., ing) and the Chinese pinyins are the pronunciation of Chinese characters (e.g.,
wang, ao)

Table 2: Top-N leet chunks. Note that the leet chunks from
CSDN only contains 181 unique ones. We use “–" when the
rank is larger than 181.
Rank Rockyou Cit0day CSDN Youku

1 4ever 16,787 4ever 1,023 p@ssw0rd 356 4ever 205
2 love4ever 1,486 4me2 71 P@ssw0rd 353 l0ve 69
3 2cute4u 1,145 s4me 67 4ever 289 x1ao 31
4 4EVER 1,105 l0ve 61 l0ve 71 l0ng 20
5 2hot4u 949 w00d 54 w0rd 30 a1a2a3 17
6 sk8er 811 l0v3 54 just4you 26 5ai1 12
7 l0ve 764 w0rd 44 il0ve 19 il0ve 10
8 il0ve 687 4Ever 42 p@ss 18 s0ng 10
9 l0v3 534 P@ssw0rd 40 pa$$w0rd 16 P@ssw0rd 10
10 love4u 528 L0ve 39 P@ss 16 y@ng 9

134 L0ve 80 f4be 15 P@ssw0 4 9d6f 3
181 passw0r 67 p@ss 14 l4s9 1 1e35 3
212 love4e 51 7a1b 13 – – ce1c 3
461 laur3n 35 passw0r 10 – – sa1s 2

Total (%) 0.1603 0.1921 0.0156 0.0202

• For the semantics in chunks, we argue that chunks could behave
as the basic composition units in passwords, which should be a
novel language with its own unique grammars. Still, we notice
something interesting that around dozens of chunks are incom-
plete (e.g., love4e, passw0r) in recognized leet chunks (shown in
Table 2). Actually, the next part of “love4e” and “passw0r” may not
be “ver” or “d” explicitly. For example, “love4eva”, “love4emily” or
“love4every1”, which could be split into “love4e” and “(e)va, (e)mily,
(e)very1”, also appear frequently. We also observe that there are a
dozen of chunks like passw0rt or passw0rld. This case is similar and
possibly acceptable with the word “password”, which consists of
“pass” and “word” in English grammar. As a result, these incomplete
chunks should not be simply regarded as an error, but actually also
behave as a composition unit that reflects the peculiarities of the
password language, which is still unfamiliar to us. We argue that
PwdSegment can automatically capture and generalize chunk vo-
cabularies with unfamiliar semantics with a parameterized avg_len.

We detail the specific technique of identifying these memory
patterns in Appendix A.3. We also show the results of a fine-grained
resulting chunk vocabulary (i.e., avg_len of 1.8) in Appendix A.4,
whose findings is almost the same as concluded above. Notably, a
fine-grained chunk vocabulary includes more syllables (e.g., ing).

2.4.2 Chunks’ Part-of-Speech distribution. To further investigate
the difference between chunks and words, we compare the dis-
tribution of Part-of-Speech (POS) between password letters (i.e.,
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Table 3: Top-10 syllable chunks.
Rank Rockyou Cit0day CSDN Youku

1 an 10,614 in 2,940 xiazhili 3,649 li 2,657
2 in 10,341 er 2,602 li 3,555 yu 2,211
3 er 9,421 an 2,391 yu 2,952 wei 1,823
4 ka 8,520 ka 2,220 wang 2,875 lin 1,744
5 ing 7,781 ma 1,855 wei 2,737 yang 1,721
6 al 7,167 en 1,796 lin 2,680 wang 1,718
7 cute 6,947 ed 1,699 yang 2,538 jie 1,624
8 za 6,831 ing 1,671 feng 2,520 ai 1,602
9 ma 6,786 za 1,652 chen 2,498 chen 1,589
10 you 6,335 ca 1,579 hua 2,347 jun 1,532

Total (%) 2.2401 1.1456 3.4833 2.2138

Figure 3: Distribution of Part-of-Speech between passwords
and words in natural languages. The other includes all other
types that do not belong to any of given categories above.

four typical password datasets) and natural-language words (i.e.,
the COCA [18]) using the toolkit of NLTK [10] with multiple PoS
libraries. We conclude the result shown in Figure 3 as follows: con-
trary to the natural-language text, passwords are more likely to
contain nouns but with much fewer verbs and adverbs, reflect-
ing that users rarely use verbs to create passwords. Besides, we
note that Cit0day includes more adjectives than other datasets,
indicating that users are prone to use adjectives to create their pass-
words recently, possibly because adjectives are suitable to express
their emotions. We further investigate that the top three adjectives
are “new”, “big”, and “happy”, which reside largely in “newyork”,
“bigdog”, and “happy123”.

2.4.3 Chunks follow Zipf’s law. Wang et al. [60] proposed that the
distribution of passwords follows a natural law of Zipf’s law, which
states that the frequency of a password is inversely proportional
to its rank. There are two variants of Zipf’s law for passwords:
PDF-Zipf and CDF-Zipf models. Password frequencies follow both
the PDF-Zipf model if we drop the tail passwords (e.g., passwords
that appeared less than five times) and the CDF-Zipf model with
the entire passwords. The Kolmogorov-Smirnov Test [46, 60] (for
short, KS test “DKS”) measures how close the theoretical Zipf’s
distribution is with the real distribution. The smaller the “DKS”
is, the better the fit with the theoretic distribution. We conclude
that the chunks’ frequencies are also well modeled by PDF and
CDF-Zipfs’ law according to the sufficiently low values of KS tests
(shown in Table 4).

3 CHUNK-LEVEL GUESSING MODELS
To investigate the password security under chunk representations,
we propose three chunk-level guessing models adopted from the

Table 4: Fitting results of PDF and CDF-Zipfs’ law.
𝑎𝑣𝑔_𝑙𝑒𝑛 model Statistics Rockyou Cit0day CSDN Youku

1.8
PDF

Coverage 99.9% 100.0% 100.0% 100.0%
DKS 0.1059 0.0462 0.2875 0.2005

Coverage′ 100% 100% 100% 100%
CDF DKS

′ 0.0663 0.0879 0.0734 0.0828

4.5
PDF

Coverage 99.5% 29.8% 73.8% 30.4%
DKS 0.0597 0.0930 0.1000 0.0896

Coverage′ 100% 100% 100% 100%
CDF DKS

′ 0.0848 0.1174 0.0781 0.1353

whole-stringMarkovmodel, template-based PCFGmodel, and neural-
network-based FLA model. In this section, we introduce the design
and implementation of these three chunk-level models.

3.1 Whole-String Markov Models
Originally, Narayanan and Shmatikov [45] applied the context-
dependent whole-string Markov model (also call 𝑛-gram) to guess
passwords. An n-gram model, which is also known as a Markov
model of order 𝑛 − 1, assumes that the current character is only
dependent on the prior𝑛−1 characters. For example, a 3-grammodel
(order-2 Markov) requires two prior characters to determine the
next character. Formally, we denote the probability of the character
𝑐𝑙 following the string 𝑐1𝑐2 ...𝑐𝑙−1 as follows:

P (c𝑙 |c1c2 ...cl−1) =
N (c1c2 ...c𝑙 )
N (c1c2 ...c𝑙−1)

where 𝑁 (𝑐1𝑐2 ...𝑐𝑙 ) refers to the number of a continuous character
string 𝑐1𝑐2 ...𝑐𝑙 in a training dataset. Then, the probability of a pass-
word 𝑐1𝑐2 ...𝑐𝑙 of an n-gram model (Markov model of order 𝑛 − 1) is
denoted by the product of transition probabilities as follows:

𝑃 (𝑐1𝑐2 ...𝑐𝑙 ) =
𝑙+1∏
𝑖=1

𝑃 (𝑐𝑖 |𝑐𝑖−𝑛+1 ...𝑐𝑖−1)

where the 𝑐𝑖 refers to the 𝑖th character in a password. When 𝑖 ≤ 0
or 𝑖 > 𝑙 , then the 𝑐𝑖 (i.e., 𝑐0, 𝑐𝑙+1) refers to a symbol that does not
exist in the dataset, and is used to denote the start or the end of the
passwords.

3.1.1 Traditional character-level backoffmodels. An𝑛−grammodel,
especially when 𝑛 is large, faces the data sparsity problem that
many transition probabilities for given characters are 0. To address
the issues of sparsity and order selection, Ma et al. [42] proposed
a variable order Markov model for password cracking based on
Katz’s Backoff model [32]. The Backoff model adds the smoothing
technique and introduces a fallback mechanism to estimate the
next character accurately. For example, if the prefix is “p@ssw0r”,
using the whole prefix to determine the next character could be
more accurate than using only “w0r”. If a prefix rarely appears
(e.g., “a#!Dce”), Backoff triggers the fallback mechanism and uses
only a shorter prefix (e.g.,“ce”) to estimate the next character. The
Backoff model chooses the longest character prefix whose count is
above the threshold 𝜙 to determine the next character. There are
two cases to compute the transition probability from 𝑐1𝑐2 ...𝑐𝑙−1 to
𝑐1𝑐2 ...𝑐𝑙 : In case one, 𝑐1𝑐2 ...𝑐𝑙−1’s count is above the threshold 𝜙 ,
then the probability is simply 𝑁 (𝑐1𝑐2 ...𝑐𝑙 )

𝑁 (𝑐1𝑐2 ...𝑐𝑙−1) ; In case two, when the
𝑐1𝑐2 ...𝑐𝑙−1’s count is below the threshold, then we look for a shorter
prefix to determine the next character by subtracting one character
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iteratively until a shorter prefix’s count is above the threshold.
Finally, the transition probability of using a shorter prefix should
be normalized since the go back mechanism would increase the
probability.

3.1.2 Chunk-level whole-string Backoff models. We design a chunk-
level guessing model, CKL_Backoff, based on the Backoff model
since it adds the smoothing technique to reduce the sparsity prob-
lems and order selection issues. One main difference between
CKL_Backoff and Backoff is that CKL_Backoff uses a chunk to
replace a character as the basic unit to calculate transition probabil-
ities. To capture chunks, we build the CKL_Backoff model with the
resulting chunk vocabulary of PwdSegment with a short avg_len
trained on training sets. Another difference is that our CKL_Backoff
model limits the number of chunks considered during the fallback
mechanism to a predefined threshold to determine the next chunk;
in contrast, the character-level Backoff chooses the longest charac-
ter prefix in a password. This is for that a prefix of the max number
of chunk combinations is sufficiently enough compared with that
of the longest characters to achieve a successful guessing model,
based on the fact that the length of chunks is longer than that of
characters. Besides, the closer prefix could have a greater effect for
accurately estimating the next chunks. Moreover, the longest prefix
of chunks would induce exponential storage space. The chunk-level
model has much more combinations of chunks (i.e., more transition
probabilities) than a character-level one due to the exponential num-
ber of chunks (e.g., the vocabulary with the avg_len 1.8 in training
sets of Rockyou and CSDN is 466 and 935, respectively) compared
with that of characters (e.g., 94).

Given a threshold 𝜙 and the max prefix size of 𝜒 chunks, let
𝑐𝑘𝑖 denote the 𝑖-th chunk that composes a password, and let the
𝜆𝑖, 𝑗 denote the substring from 𝑐𝑘𝑖 to 𝑐𝑘 𝑗 (including 𝑐𝑘𝑖 and 𝑐𝑘 𝑗 )
in a password 𝑐𝑘1𝑐𝑘2𝑐𝑘3 ...𝑐𝑘𝑙 . Then we define the probability of a
password composed by more than one chunk in CKL_Backoff as

𝑃 (ck1 ...ck𝑙 ) =
𝑙+1∏
𝑖=1

𝑃 (ck𝑖 |𝜆max (0,𝑖−𝜒 ),𝑖−1)

where

𝑃 (ck 𝑗+1 |𝜆𝑖,𝑗 ) =
{𝑁 (𝜆𝑖,𝑗+1 )

𝑁 (𝜆𝑖,𝑗 ) , if 𝑁 (𝜆𝑖,𝑗+1) ≥ 𝜙,

𝑃 (ck 𝑗+1 |𝜆𝑖+1, 𝑗 )𝜔 (𝜆𝑖,𝑗 ), otherwise

and

𝜔 (𝜆𝑖,𝑗 ) =
∑

ck:𝑁 (𝜆𝑖,𝑗 ,ck)≥𝜙

𝑁 (𝜆𝑖,𝑗 , ck)
𝑁 (𝜆𝑖,𝑗 )

, 0 ≤ 𝑖 < 𝑗 <= 𝑙

Same as the character-level model, each password is considered to
start with a start symbol 𝑐𝑘0 and an end symbol 𝑐𝑘𝑙+1. Below, we
give a concrete example based on the result of PwdSegment with a
shorter avg_len (i.e., 1.8) to illustrate the process of CKL_Backoff.

Example-1: “p@ssw0rd4ever” → p @ s sw 0 r d 4 ever
Let the threshold value 𝜙 be 10 and max prefix size be as large as 7
for an example. Then CKL_Backoff chooses the prefix of 7-chunks
to estimate the next chunk, once the 7-chunks’ count is less than
10, CKL_Backoff would go back to a shorter prefix. Suppose that

the count of max prefix is all larger than the threshold 10 except
the 𝜆2,8, which is the max prefix to estimate the 9-th chunk of ever.
CKL_Backoff adopts the direct prefix of 7-chunks to estimate all
other chunks except the 9-th chunk ever, whose transition probabil-
ity’s calculation should trigger a go-back mechanism by decreasing
1 iteratively from the current max size 7-chunks. Suppose that the
count of a shorter prefix 6−chunks (𝜆3,8) for 9-th ever is larger than
10, then the probability of “p@ssw0rd4ever” is deduced as follows:

𝑃 (p@ssw0rd4ever) = 𝑃 (𝑝 |ck0) × 𝑃 (@ |ck0𝑝) ... × 𝑃 (4 |𝜆1,7)
× 𝑃 (ever |𝜆3,8) ×𝜔 (𝜆2,8) × 𝑃 (ck10 |𝜆6,9)

where

𝜔 (𝜆2,8) =
∑

ck:𝑁 (𝜆2,8,ck)≥10

𝑁 (𝜆2,8, ck)
𝑁 (𝜆2,8)

Parameter selection. For the threshold 𝜙 , we follow the setting
of 10 as recommended by prior work [42]. As for the max n-grams,
we use 5, namely, the longest prefix is 5-chunks to estimate the
next chunk due to the trade-off between a runnable storage and
efficiency. For the avg_len of PwdSegment, we assign a short avg_len
strategy, i.e., the avg_len shorter than 1.8, for the following rea-
son. CKL_Backoff is a context-relevant model with a strong ability
of capturing the context relevance (i.e., chunk combinations), we
therefore choose the parameter within a shorter 𝑎𝑣𝑔_𝑙𝑒𝑛 range for
more chunk combinations. By contrast, the number of chunk com-
binations between longer chunks will be greatly reduced, limiting
the model’s ability to capture context. We discuss this trade-off
using more experimental results in Section 4.1.3.

3.2 Template-Based PCFG Models
Weir et al. [66] originally extended the context-independent PCFG
model for guessing passwords effectively. In the original template-
based PCFG model, one converts a password into a template based
on character classes including letters (𝐿), digits (𝐷) and symbols (𝑆).
Those consecutive characters that belong to the same category are
grouped into a unit (i.e., a tag), which sequentially constitutes the
template. We abstract the password probability formula as follows:

𝑃 (c1c2 ...c𝑙 ) = 𝑃 (tag1tag2 ...tag𝑙 ) ∗
𝑙∏

𝑖=1
𝑃 (pwd𝑖 |tag𝑖 )

The the password “p@ssw0rd4ever” as an example, the probability
is modeled as:

𝑃 (p@ssw0rd4ever) = 𝑃 (𝐿1𝑆1𝐿3𝐷1𝐿2𝐷1𝐿4) × 𝑃 (p |𝐿1)
× 𝑃 (@ |𝑆1) × 𝑃 (ssw |𝐿3) × 𝑃 (0 |𝐷1)
× 𝑃 (rd |𝐿2) × 𝑃 (4 |𝐷1) × 𝑃 (ever |𝐿4)

where 𝑃 (L1S1L3D1L8S1D1) denotes the probability of a template,
𝑃 (p |L1) describes the probability that “p” appears in letter instanti-
ations (i.e., the actual letter combinations) with length 1, similarly,
𝑃 (@|S1) refers to the probability that “@” appears in symbol in-
stantiations of length 1, and applies for the rest case. In [66], these
instantiations’ probabilities are obtained from training sets except
that the letter instantiations’ probabilities are directly from external
dictionaries. Later, Ma et al. [42] proposed to assign all probabilities

Session 1A: Cybercrime  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

10



totally based on the counted occurrences in training sets. After
training, the model contains these grammars and their probabili-
ties, which is used to generate candidate passwords for comparing
with the target dataset. The model substitutes the template tags
(e.g., 𝐷1) using their actual character combinations and outputs the
candidate passwords in descending order of probabilities.

3.2.1 Chunk-level template-based PCFG models. Our chunk-level
PCFGmodel constructs the templates based on the resulting chunks
of PwdSegment. The major differences between CKL_PCFG and
original PCFG reside in the tag of a template, which are explained
as follows:

• L, U, D, S: These denotes those tags in the template which are
composed of merely single type of characters including the lower-
case letters, uppercase letters, digits and symbols respectively.
• DM: This denotes those tags which are composed of exactly two
types of characters, which are referred to as Double Mixed type
(e.g., 4ever).
• TM: This denotes those tags which are composed of ThreeMixed
type of characters (e.g., p@ssw0rd).
• FM: This denotes those tags which are composed of FourMixed
types of characters (e.g., P@$$w0RD).

Example-2: “p@ssw0rd4ever” → p@ssw0rd 4ever
The “p@ssw0rd4ever” is divided as p@ssw0rd and 4ever, of which
the template is TM8DM5. The probability is calculated byCKL_PCFG
as follows:

𝑃 (“p@ssw0rd4ever”) = 𝑃 (TM8DM5 ) × 𝑃 (p@ssw0rd |TM8) × 𝑃 (4ever |DM5)

CKL_PCFG trains the model, i.e., the probabilities of novel tem-
plates (e.g., TM8DM5) and their instantiations (e.g., p@ssw0rd|TM8)
learned from training sets. Then, same as original PCFG, CKL_PCFG
generates candidate passwords by substituting these tags of “L, U,
D, S, DM, TM, FM” with instantiations of the same length learned
from training sets. Finally, CKL_PCFG outputs the candidate pass-
words in descending order. Compared with the complicated tem-
plate 𝐿1𝑆1𝐿3𝐷1𝐿2𝐷1𝐿4 in original PCFG, the representation like
TM8DM5 could be more suitable to describe the composition of the
“p@ssw0rd4ever”.

Parameter selection. There is only one hyper-parameter, i.e.,
the avg_len of PwdSegment, for CKL_PCFG. Given the fact that
CKL_PCFG is essentially a context-independent guessing model,
which means the model cannot capture the context relevance (i.e.
chunk combinations) between chunks in a password, we hereby
choose the parameter with longer avg_len ranges, i.e., longer than
3.5, to ensure a close contextual connection within chunks.

3.3 Neural-Network-Based FLA Models
Melicher et al. [43] applied the neural-network-based LSTM model
(also called FLA) to the field of password guessing in 2016. Con-
ceptually, FLA predicts the probability of the next character in
a password based on previous characters, which constitute the
context. The FLA model is trained to generate a password by se-
quentially choosing the next character with the highest transition

probability given the previous character combinations. Similar to
Markov models, FLA uses symbols to denote the start and ending of
a password. Melicher et al. [43] focused on character-level models
and claimed no established dictionary of words for a word-level
FLA. Although they implement the experiments using syllable-level
models based on 2,000 different tokens, they observed only trivial
improvements due to the default dictionary.

3.3.1 Chunk-level FLA models. Similarly, the essential difference
between our CKL_FLA and character-level FLA is that CKL_FLA
replaces characters with chunks segmented by PwdSegment with a
shorter 𝑎𝑣𝑔_𝑙𝑒𝑛. Our CKL_FLA is trained to generate the probabil-
ity of the next chunk in a password given the context of previous
chunks. To train a CKL_FLA model, we first encode the input of a
password composed of chunks to a one-dimensional array based
on the dictionary order. Afterwards, CKL_FLA converts the ar-
ray to an vector by an embedding layer, in which the context is
transformed into an embedding of size embedding_dim, with the
resulting two-dimensional vector of size context_length × embed-
ding_dim. When there are fewer chunks than the context length, we
pad the input with zeros. Note, we use an embedding layer rather
than a one-hot encoding layer to reduce the problem of the sparsity
of the embedding vector due to the larger size of chunks. Then
the embedded vector is fed into LSTM neural networks, which is
exactly hidden layers. Finally, the dense layer converts the hidden
layers into the output size. The output is the possible subsequent
chunks with probabilities and CKL_FLA chooses the next chunk
with the highest probability. To generate passwords from the model,
we enumerate all passwords whose probability is above a given
threshold.
Example-3: “p@ssw0rd4ever” → p @ s sw 0 r d 4 ever
For example (shown in Figure 4 ), given previous chunks of p @ s
sw 0 r d 4, we first encode them to an array (e.g., [4,8,6,7,1,5,3,2]) by
the dictionary order. Then we query the network for the probability
of the next chunk by steps of embedding, hidden and dense layers.
The network outputs that the most possible next chunk is the ever.
Later, when the next chunk is the ending symbol, the network
completes the password “p@ssw0rd4ever”;

Encoding to [3,4,5,7,6,2,1]
using the dictionary order

Context: p @ s sw 0 rd 4

Input Neural Network

love: 0.001
mail: 0.001
…
ever: 0.9
END: 0.001

Output

LSTM
Hidden 
Layer

Dense 
Layer

Embedding 
Layer

Figure 4: An example of CKL_FLA. The next chunks along
with their probabilities are the output of the network.

Parameter selection. CKL_FLA is a small model withwith 1,245,128
parameters. For most of hyper-parameters, we follow the settings
in the character-level FLA model [43]. For instance, we follow the
context_length of 10 and adopt 2 LSTM layers. We use Adam op-
timizer and adopt 30 training iterations for converging. Notably,
we add the embedding_layer of 64 dimensions to embed the input
context for reducing the sparsity of matrix. We choose 64 as the
embedding dimension as it shows almost no performance drop com-
pared to larger embedding sizes, which could introduce more time
costs. Unlike character-level FLA, we use a LSTM layer with 256
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Figure 5: Impacts of the hyper-parameter avg_len for three chunk-level guessing models.

hidden-state dimensions followed by a fully connected layer with
128 dimensions, which offers the best trade-off between the time
and efficiency based on preliminary experiments. For the avg_len
of PwdSegment, we refer the principle in whole-string CKL_Backoff
and select a shorter avg_len strategy (i.e., shorter than 1.8).

4 EVALUATION
4.1 Experimental Setup
4.1.1 Experimental scenarios. Our experiments adopt cross-site
guessing scenarios [43, 63], i.e., we train a model using an old
dataset (i.e., leaked in earlier years) and then apply the model to
crack a recently leaked dataset. For English, we train a model
using Rockyou to crack Neopets and Cit0day, while for Chinese,
we train a model using CSDN to crack Youku and 178. We refer
to works [47] that remove the duplicate passwords that occur in
training sets from evaluation sets to demonstrate the models’ ability
to generate new (or unseen), valid passwords. Besides, we randomly
sample 10% of passwords in evaluation sets to ensure larger training
sets and eliminate the impact of small training sets [38, 47] since that
data-driven models should be theoretically guaranteed that training
sets are larger than evaluation sets. We introduce the Min_auto
strategy [58] that shows the performance of usingmultiple guessing
methods since single models could be biased.

Kelly et al. [33] reported that the password policy of basic16,
i.e., “Passwords must have at least 16 characters without any re-
strictions”, is a better policy. Long passwords have been claimed as
secure nowadays [30, 33, 34, 53]. Therefore, we add the long pass-
word guessing scenario to explore whether the chunk-level models
could also improve in cracking long passwords. In all password
guessing scenarios, all-length passwords are used to measure the
performance, while in long password guessing scenarios, we extract
the passwords whose length is at least 16 from datasets and then
refer to these passwords as long passwords. We train a model using
a training set of long passwords to crack an evaluation set of long
passwords. For the unity of experiments, we apply the same chunk
vocabularies learned from a training set of all passwords to segment
both all and long passwords, in which long passwords generally
imply more chunks 5. This is also for generating high-quality chunk
vocabularies due to the small number of long passwords for training
a PwdSegment. For completeness, we also evaluate the performance
of longer passwords with more than 32 characters in Appendix A.1.

4.1.2 Experimental hardware summary. We deploy CKL_Backoff
and CKL_PCFG on the CPU server with Intel Xeon Silver 4210
5The number of chunks in long passwords is averagely 7.66, compared with that of
4.49 in all passwords among four evaluation sets. The longer passwords with more
than 32 characters contain an average of 17.23 chunks.

processor and deploy CKL_FLA on the GPU server with the Nvidia
GeForce GTX 2080 Ti since the neural-network models could take
advantage of the parallel processing power. We adopt the Monte
Carlo [20] algorithm to calculate the number of guesses for a pass-
word by enumerating all chunk combinations and selecting the
combination with the highest probability. For CKL_Backoff, we
refer to the previous work [20], which store no model by integrat-
ing the training process into the Monte Carlo process. When the
training set is Rockyou, it takes around 36.0MB and 5.3MB storage
space for training CKL_PCFG and CKL_FLA. For time cost, it will
take around 3 days for CKL_FLA with batch size 128.

4.1.3 Experimental hyper-parameter selection. We empirically eval-
uate impacts of the hyper-parameter of 𝑎𝑣𝑔_𝑙𝑒𝑛, instead of hand-
picking one, on chunk-level models by experimental scenarios of all
password guessing described in the prior Section 4.1.1. Given the
ranges analyzed in Section 3 on their principles, we experiment in
CKL_Backoff and CKL_FLA with three shorter avg_len (i.e., 1.2, 1.5
and 1.8), CKL_PCFG with the longer avg_len (i.e., 3.5, 4.0 and 4.5).
As shown in Figure 5, we observe that using different 𝑎𝑣𝑔_𝑙𝑒𝑛 on
given ranges can achieve almost the same guessing efficiency, indi-
cating that chunk-level models are insensitive to hyper-parameters.
We observe that CKL_Backoff achieves the best performance under
avg_len of 1.8, CKL_FLA performs differently on four datasets, and
CKL_PCFG performs the best under avg_len of 4.5. To balance time
cost and efficiency, we settle on the manageable hyper-parameter
avg_len of 1.8 for CKL_Backoff and CKL_FLA, the avg_len of 4.5
for CKL_PCFG. For example, PwdSegment will take 90 hours for
training on Rockyou with the longer avg_len of 5.0, yet only takes
12 hours with the avg_len of 4.5.

To our knowledge, few scientific methods can find the best hyper-
parameter. Instead, a large number of empirical experiments is a
promising way. Still, rather than a hand-picking one with avg_len,
we perform a sensitivity analysis by theoretical analysis and three
groups of experiments and settle on two selected avg_len for these
chunk-level models due to the trade-off between cost and efficiency.

4.2 Experimental Results
4.2.1 Results of CKL_Backoff. We report a direct comparison of the
guessing performance for CKL_Backoff (the following CKL_Backoff
is with the 𝑎𝑣𝑔_𝑙𝑒𝑛 of 1.8) compared with three improved character-
level Markov models as follows:

• 4-gram [20]: The 4-gram model (i.e., the Markov model with
order-3) as recommended in literature [38].
• Backoff [42]: The variable order Markov guessing model.
• OMEN [22]: The practical and fast Markov model using an Or-
dered Markov Enumerator (OMEN).
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Figure 6: Guessing performance of CKL_Backoff against other state-of-the-art Markov models. The Min_auto represents an
idealized guessing approach, in which a password is considered guessed as long as any of these guessing models cracks it.

As shown in Figure 6, CKL_Backoff outperforms the state-of-the-art
Markov models in all password guessing scenario. CKL_Backoff
manages to increase the crack rate by an average of 5.7% (from
3.0% to 11.0%) than the individual best-performing model (i.e., 4-
gram) under 1014 guesses. When cracking long passwords, we find
that CKL_Backoff achieves an improvement in English long pass-
words, while none in Chinese long passwords, possibly due to the
poor chunk vocabularies. In PwdSegment, the CSDN training set
(6,425,243) is much smaller than Rockyou (32,584,165), which may
result in a weaker chunk vocabulary.

These character-level Markov models are too fine-grained (i.e.,
passwords are created characters by characters), which could lead
to inefficiency. CKL_Backoff mitigates this problem by leveraging
the chunk knowledge, which makes it easier to guess passwords
with high-frequency chunks. Still,Min_auto outperforms individual
models by a notable margin, suggesting that using multiple guess-
ing methods should still be better than using any single method
for accurate strength estimation, even though that CKL_Backoff
outperforms other approaches individually.
4.2.2 Results of CKL_PCFG. Here, we evaluate CKL_PCFG (the
following CKL_PCFG is with the avg_len of 4.5) compared with
three improved PCFG models as follows:

• Semantic_PCFG [59]: The optimized PCFGmodel using the natural-
language-based word knowledge.
• V4.1_PCFG [65]: The latest PCFG model using hand-craft rules.
• Hybrid_PCFG [35]: An improved PCFG model which adds the
hybrid templates to model the whole password.

As shown in Figure 7, CKL_PCFG significantly outperforms all state-
of-the-art models in all and long password guessing scenarios. Par-
ticularly, the CKL_PCFG model outperforms the best-performing
competitor (i.e., Semantic_PCFG) by an average of 51.2% (from 11.5%
to 131.9%) and 139.9% (from 85.7% to 214.2%) when cracking all and
long passwords, respectively. In addition, we observe a remarkable
improvement in Chinese datasets in CKL_PCFG. This could be be-
cause the improved PCFG models are oriented for English datasets
based on English knowledge (i.e., words). CKL_PCFG bridges the

gap by automatically capturing their training sets’ internal and
statistical knowledge, showcasing its significant generality.

4.2.3 Results of CKL_FLA. Finally, we empirically evaluate the
guessing performance of CKL_FLA (the following CKL_FLA is
with the avg_len of 1.8) compared with the character-level FLA
model [43]. As shown in Figure 8, CKL_FLA is better at guessing
all passwords, improving the guessing efficiency by an average
of 41.9% (from 12.5% to 83.8%), and yields a similar guessing per-
formance when cracking long passwords. The moderate guessing
performance in cracking long passwords could be because that FLA
itself can solve the problem of long-distance dependence by long
short-term memory networks, while modeling chunks may over-fit.
Notably, the individual CKL_FLA model performs almost the same
performance as Min_auto when cracking all passwords, indicating
that CKL_FLA could crack almost all passwords cracked by FLA.
Still, CKL_FLA cracks other unique passwords.

4.3 Analysis of Results
4.3.1 Performance comparison across three chunk-level guessing
models. Here, we make a detailed performance comparison for
three chunk-level guessing models, i.e., CKL_Backoff, CKL_PCFG
and CKL_FLA. For the absolute cracking rate, CKL_PCFG performs
the best in all and long password guessing scenarios and cracks
an average of 90.1% (from 78.6% to 98.2% ) and 39.2% (from 5.2%
to 64.9%), respectively. CKL_Backoff runs the second and cracks
an average of 88.7% of all passwords, while CKL_FLA cracks an
average of 84.5% of all passwords. When cracking long passwords,
CKL_Backoff and CKL_FLA crack an average of 33.4% and 36.8%
long passwords, respectively. For the relative improvement than
best-performing competitors, CKL_PCFG also performs the best,
i.e., CKL_PCFG manages to increase the cracking rate by averagely
51.2% than Semantic_PCFG, while CKL_FLA and CKL_Backoff im-
prove their performance by 41.9% and 5.7% than FLA and 4-gram,
respectively, when cracking all passwords. These improvements
suggest that all types of data-driven password guessing models
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Figure 7: Guessing performance of CKL_PCFG against other state-of-the-art PCFG models.
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Figure 8: Guessing performance of CKL_FLA against the character-level FLA model.

could gain by capturing the chunk representations, which could be
closer to users’ creation habits.

4.3.2 Performance comparison across four evaluation sets. We note
that the cracking rate in 178 is the highest (e.g., almost 100% in
all password cracking), while that in Cit0day is relatively lower
(e.g., less than 6% in long password cracking), indicating that the
178 dataset is most vulnerable and Cit0day is relatively secure.
We speculate that this phenomenon could be caused by 178 being
old and Cit0day being the newest. Over time, system administers
design more sophisticated password creation policies to improve se-
curity. Meanwhile, users become more security-conscious to create
their better passwords. Particularly, through brief experiments, we
find that 178 is flooded with too many homogeneous-passwords
(e.g., “111111111”), as counted up to 2.7% (13.1% for long passwords
in 178) while these homogeneous-passwords are almost extinct in

other datasets. We also find that Cit0day contains lots of random-
seeming strings 6 compared with other English datasets 7. Given
the evidence that Cit0day is the most discrete dataset (shown in
Table 1), the temporal change (i.e., the distribution of this newer
dataset has changed) might explain their lower cracking rate. Still,
even if the distribution of Cit0day has changed over time, chunks
are applicable for interpreting these recent passwords. Meanwhile,
chunk-level models achieve performance improvement. For the
other two datasets whose leaked time is between 178 and Cit0day,
we note that their cracking rates are in the middle, confirming that
the leaked time of datasets has a certain impact on security.
4.3.3 Discussion of long password guessing. Although an improve-
ment from chunk-level models has been shown, the improvement
in long passwords is not as large as expected for that long pass-
words usually contain more chunks. We make a deeper discussion
6E.g., the top-3 in all and long passwords of Cit0day are “neda0409, x4ivygA51F,
Groupd2013” and “h54rsjrF5J46788998, blablablablaasdasd, 4aad27137bbe266c”,
respectively.
7E.g., the top-3 in all and long passwords of Neopets are “ladgj, petpet12, neopets00”
and “12121212121212121212, 10000000000000000000, neopets123456789”, respectively.
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Table 5: Cracking rates across long passwords with the dif-
ferent number of chunks. We combine the long passwords
with less than 5 or larger than 9 chunks as a whole for their
special small number. E.g., the long passwords with fewer
than 5 chunks occupy around an average of 13% among
four evaluation sets. The CL_B, CL_P, and CL_F represent
CKL_Backoff, CKL_PCFG, and CKL_FLA, respectively.

Num (%) Neopets (%) Cit0day (%) Youku (%) 178 (%)

CL_B CL_P CL_F CL_B CL_P CL_F CL_B CL_P CL_F CL_B CL_P CL_F

≤ 5 (13) 63 77 63 46 64 50 86 93 92 70 80 66
6 (30) 28 44 30 9 16 10 41 55 43 63 73 62
7 (25) 20 30 21 8 15 9 34 50 34 68 49 69
8 (16) 13 16 13 1 2 1 13 20 12 20 36 27

≥ 9 (16) 2 2 3 0 0 0 70 10 60 8 5 4

of specific cases around long passwords with different numbers of
chunks 8 and show their cracking rates under three chunk-levelmod-
els in Table 5, from which we conclude that CKL_PCFG achieves
a higher cracking rate when cracking long passwords with
fewer (i.e., fewer than 8) chunks, while CKL_Backoff is more
suitable for cracking those long passwords with more (i.e. more
than 9) chunks. These findings can help us to choose an appropriate
chunk-level model when we try to efficiently guess different types
of long passwords.

4.3.4 The principle behind the improvement. The principle behind
the appealing improvements could be that real-world passwords
tend to cluster in a distribution. The password distribution is typi-
cally non-uniform and composed of several dense zones (i.e., some
characters often co-occur) due to the heavy reuse behaviours from
multiple accounts [17, 29]. The chunks, which constitute dense
zones (e.g., the user habits of expression compositions #1, leet 4ever
or other patterns), are still treated as independent characters in
standard models. The chunk-level models could improve the prob-
ability of these chunks, i.e., 𝑃 (𝑐1𝑐2𝑐3) > 𝑃 (𝑐1) × 𝑃 (𝑐2) × 𝑃 (𝑐3).
The probability of chunks that constitute widespread and popular
passwords is increased.

4.3.5 Limitations. First, even if chunks become the basic compo-
sition unit, it loses the property of the characters it is composed
of. For example, “passw0rd” and “password” should have been re-
garded as similar by characters, yet they could be two chunks with
no relevance, and chunk-level models would not be aware of their
similarity. Second, Cit0day is a multi-language (most of them are
English) dataset with a collection of numerous (thousands of) web-
sites, resulting in an overall result and an ignoring result of an
individual website.

5 SECURITY IMPLICATIONS AND
APPLICATIONS

5.1 Security Implications
To better guide security community standards, it is critical to un-
derstand what types of passwords are hard to crack. Based on the
successful attacks of chunk-level models, we apply them to get
a quantitative understanding of how different factors influence

8We adopt the longer resulting chunk vocabulary (e.g., with avg_len 4.5) after removing
single or two characters for reducing false positive, since around 50% chunks in the
shorter resulting chunk vocabulary are one or two characters.

password security. We select two widely-used factors (i.e., pass-
word length, the number of character classes) and the frequency of
chunks 9 in a password and adopt the weighted Spearman’s rank
correlation coefficient (𝜌𝜔 ) [26] to quantitatively evaluate their
correlation to password security as measured by chunk-level mod-
els. A higher correlation means the factor is a more reliable gauge
of password strength. As shown in Table 6, we conclude that the
frequency of chunks in a password is more indicative of password
security than widely-recognized character class complexity (i.e.,
passwords are weaker when composed of commonly-used chunks),
although the length is still the most influential factor [33].

Table 6: Correlations (𝜌𝜔 ) between three factors and pass-
word security by weighted Spearman correlation; The len,
class and freq represent length, the number of character
classes and the frequency of chunks, respectively.

Models Neopets (𝜌𝜔 ) Cit0day (𝜌𝜔 ) Youku (𝜌𝜔 ) 178 (𝜌𝜔 )
len class freq len class freq len class freq len class freq

CKL_Backoff 0.49 0.25 0.29 0.43 0.37 0.46 0.55 0.42 0.24 0.56 0.27 0.30
CKL_PCFG 0.53 0.40 0.31 0.47 0.37 0.41 0.48 0.35 0.29 0.42 0.18 0.36
CKL_FLA 0.60 0.25 0.32 0.54 0.36 0.45 0.37 0.12 0.13 0.21 -0.14 0.15

Actionable takeaways for security recommendations. First,
user-generated passwords may still be vulnerable to guessing at-
tacks; even if they look secure or adhere to character class complex-
ity, a proper password manager should be recommended. Second, a
significant limitation for human-created password security may be
due to the presence of high-frequency chunks, suggesting that in
addition to just requiring more character classes or longer length,
service providers must carefully consider common chunks, e.g., a
human-created password like “p@ssw0rd4ever” can weaken secu-
rity. Possibly, perceiving the risk element of common chunks is
valuable for managers’ strategy [40], which could alarm for a user-
generated password containing vulnerable chunks when storing
the password in the manager.

5.2 Characteristics Distribution
Here, we investigate some characteristics, including the memory
patterns and security distribution for all cracked passwords across
chunk-level models and their best-performing competitors. Note,
the CKL_Backoff, CKL_PCFG and CKL_FLA’s best-performing com-
petitors are 4-gram, Semantic_PCFG and FLA, respectively.

5.2.1 Memory pattern distribution. To show the capability of mem-
ory pattern passwords, we compare the number of pattern pass-
words in all cracked passwords across different models. As detailed
in Section 2.4, we mainly consider four types of patterns (i.e., leet,
syllable, keyboard and date) and regard passwords that partly match
the defined patterns as memory pattern passwords. We show the
results in Figure 9(a), from which we conclude that without chunk-
level models, these pattern passwords’ strength can be severely
overestimated.

5.2.2 Security distribution. To show the security distribution for all
cracked passwords across different models, we use two widely-used

9We rate the frequency of chunks as the average frequency of chunks in a password
segmented by PwdSegment with longer results as unified. When segmenting, we adopt
the maximum weight segmentation strategy.
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Figure 9: Memory pattern and strength distribution for all
cracked passwords across chunk-levelmodels and their best-
performing competitormodels. In strength distribution, the
“weak”, “medium”, and “strong” passwords refer to those
with guesses < 106, 106 ≤ guesses < 1014, and guesses ≥ 1014
evaluated by FLA and zxcvbn.

utility tools of password strength meters (FLA [43] and zxcvbn [67])
to evaluate their strength.

We classify password security strength into the “weak”, “medium”,
and “strong” categories, using the estimated guesses for online and
offline guessing [24] as boundaries. As shown in Figure 9(b), we
find that the number of weak passwords cracked by these mod-
els are not much different, yet chunk-level model can crack more
passwords with “medium” and “strong" strength, indicating our
chunk-level models have a better advantage over their competitors
with cracking strong passwords compared to weak passwords.

5.3 Practical Password Strength Meter
We enable a password strength meter based on CKL_PCFG 10,
since CKL_PCFG achieves the highest cracking rate. Considering
the deployment challenges in a browser, the storage of 36MB of
CKL_PCFG is still too large for real-time feedback. We further com-
press the raw CKL_PCFG model into a manageable one with 5.0MB
storage using the g-zip technique while the accuracy is preserved.
Our CKL_PCFG meter is being hashed and deployed in the client
since CKL_PCFG includes the statistical information of datasets
(e.g., the template probabilities) that should be preserved from be-
ing gained by attackers. Our meter reminds users of the hazards
of common chunks by employing a blocklist, which consists of the
top-1000 long chunks (these top-1000 chunks already take up to 21%
∼ 26% among total chunks with avg_len of 4.5) while reducing the
weight of checking character class complexity. Figure 10 shows the
interface of our meter, in which common chunks become visible (if
10The meter is open-sourced in https://github.com/snow0011/CKL_PSM/tree/main
along with the used common chunk vocabularies.

clicked), e.g., a common chunk (4ever) is labelled as red for a warn-
ing. We refer to the literature [24] and apply three security levels,
including “weak (guesses < 106), medium (106 ≤guesses< 1014),
strong (guesses≥ 1014)” in our meter. As users who perceive vulner-
ability to threats tend to adopt secure practices [28, 70], we believe
that reminding chunks could reduce the use of common chunks.

p@ssw0rd4ever CheckCheck

p@ssw0rd 4ever
Score Medium Guesses 3.88e9 Probability 9.03e-12

Dangerous chunks 4ever

Figure 10: Interface of our password strength meter.

Table 7: Accuracy (𝜌𝜔 ) and coverage (%) across meters; The
𝜌𝜔 is calculated by weighted Spearman correlation of our
given models to evaluation sets, the Coverage (%) refers to
the percentage of passwords in evaluation sets.

Meter Neopets Cit0day Youku 178
𝜌𝜔 % 𝜌𝜔 % 𝜌𝜔 % 𝜌𝜔 %

CKL_PCFG 0.563 95.3 0.748 83.5 0.310 80.6 0.307 100.0

FLA 0.246 76.1 0.673 64.7 0.291 44.2 0.170 62.8
zxcvbn 0.496 99.4 0.756 98.0 0.306 99.1 0.405 99.3

5.3.1 Quality comparison across meters. To evaluate the quality
of our meter, we follow prior two metrics of accuracy [26] and
unsafe errors [43]. To obtain general results across meters in real
world, we choose the experimental scenario without de-duplication
between training and testing sets. For accuracy, we refer to prac-
tices [26] that count how meters’ guesses for a given password is
correlated with occurrence frequencies in an evaluation set using
the weighted Spearman coefficient (𝜌𝜔 ). As shown in Table 7, our
meter always achieves better accuracy than the FLA meter, and in
half of the cases, it is better than zxcvbn. In Neopets, CKL_PCFG
has a correlation of 0.563, compared with 0.246 and 0.496 in FLA
and zxcvbn, respectively.

The unsafe errors [43] refer to rating guessable passwords as
“strong” or namely, overestimation of password strength. Carnavalet
et al. [19] found that many different meters give highly inconsis-
tent feedback for the same password. Overestimation of password
strength can be disastrous since the seemingly secure passwords
could be actually not safe or very vulnerable. We investigate these
meters’ unsafe errors and show the average results of four evalua-
tion sets in Table 8, from which we conclude our meter can have
fewer unsafe errors based on the greater importance of the first
column (since it refers the number of passwords whose strength
is severely overestimated by other meters). For example, our me-
ter rates 1, 875 passwords as being guessable within 100 and 102
guesses, while the FLAmeter rates them as larger than 1014 guesses.
Both two metrics indicate that our meter will be better among given
meters.

6 DISCUSSION
Practical values.Our study offers practical values as follows. First,
by the stronger correlation between vulnerable passwords and the
presence of high-frequency chunks than character class complex-
ity, we shed light on an underestimated security factor of using
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Table 8: Unsafe errors among meters. The first column should be more important since it refers the number of passwords
whose strength is severely overestimated by other meters. For example, our CKL_PCFG meter evaluates 1,875 passwords (i.e.,
an average of four evaluation sets) as guessed between 100 and 102 guesses, while the FLA meter rates them as larger than
1014 guesses. Overestimates of strength are shown in shades of red, underestimates in purple, and accurate estimates in green.
Color intensity rises with the number of passwords in a cell.

FLA CKL_PCFG

>100 >102 >105 >108 >1011 > 1014

>100 0 0 0 0 0 0
>102 10 6 0 0 0 0
>105 82 30 76 27 0 0
>108 324 22 20 185 36 0
>1011 233 5 3 13 80 18
>1014 1,875 620 1,679 2,085 1,563 996

zxcvbn CKL_PCFG

>100 >102 >105 >108 >1011 > 1014

>100 204 36 1 0 0 0
>102 589 580 636 107 20 4
>105 1,060 65 1,073 1,568 457 53
>108 629 3 68 629 1,165 596
>1011 40 0 0 4 36 277
>1014 1 0 0 0 0 84

common chunks. With this understanding, users would be willing
to choose a password manager to create their valued passwords.
Second, our password strength meter, which is open-sourced, pro-
vides a practical application with a blocklist with common chunks,
and an interface for developers to conveniently integrate into pass-
word managers. Finally, chunk-level models provide insights into
typical password compositions that can be used to more effectively
guess certain complex-looking passwords (i.e., passwords meeting
requirements of meters or managers like “p@ssw0rd4ever”). These
insights are important in many fields (e.g., digital forensics). Consid-
ering today’s challenges in digital forensics for password cracking
(e.g., for law enforcement agencies to recover encrypted data of
criminals), high guessing efficiency is a necessity [54], especially
efficiently cracking complex-looking passwords.
Future works. In future, we would explore more chunk-level guess-
ing models including the gated recurrent units (GRU) or the con-
volution neural networks (CNN), providing a deeper discussion of
how chunks play a role in neural-network-based guessing models.

7 RELATEDWORK
7.1 Password Composition Representations
The password security could be dived into a better understanding
of password composition by means of breaking passwords into
components and characterizing their structural patterns. Jakobsson
et al. [31] firstly attempted to understand password composition
focusing on the percentage of word components such as dictionary
words, numbers. For long passwords, Rao et al. [51] found that users
tend to create long passwords using grammatical structures and
further. Booneau et al. [15] concluded that multi-word passphrases
have some promise to improve security over traditional passwords.
Li et al [37] constructed an empirical analysis of the Chinese user
habits when creating passwords. For other composition habits,
Ur et al. [57] conducted a qualitative lab study to uncover the
misconceptions about weak and strong passwords, adding “!” in the
end of passwords could not result in strong passwords, while users
typically mistook them as strong. Recently, researchers found that
centralized password reuse information [29] in password creation.

7.2 Password Guessing Models
Password cracking models are largely divided into data-driven
guessing models and rule-based guessing tools (e.g., Hashcat [4]).
The data-drivenmodels are roughly divided into whole-string based
and template-based models. For whole-string based models, in [45],

Narayanan and Shmatikov proposed to use standard Markov mod-
eling techniques to reduce the search size of password space. Later,
Castelluccia et al [16] introduced the concept of n-gram to the
Markov guessing models. Recently, Durmuth et al. [22] proposed an
improved Markov-based password guessing model, namely Ordered
Markov Enumerator (OMEN). Meanwhile, Melicher et al. [43] lever-
ages the neural network to build a whole-string guessing model.
From the template-based view, PCFG is a typically representative
model originally proposed by Weir et al. [66]. Veras et al. [59] devel-
oped an improved PCFG with the novel templates using password-
irrelevant word information. Komanduri et al. [35] considered the
different classes of characters and proposed a hybrid PCFG that
add the modeling of the whole password. Later, Weir et al. [65]
proposed the latest version 4.1 of PCFG that adds the hand-crafted
patterns (e.g., keyboard patterns). Another similar scheme is pre-
sented in [36], where Li et al. studied the security impact of personal
information via PCFG models. There are also many other password
cracking tools available, among which the most popular two is
rule-based John the Ripper (JtR) [38], and Hashcat [4].
8 CONCLUSION
This paper takes a step towards a more refined, delicate or sophis-
ticated way of composing passwords (i.e., chunk) to replace the
conventional rough ones (i.e., character, templates or words). Partic-
ularly, we develop a password-specific segmentation method Pwd-
Segment and propose three chunk-level guessing models. Through
extensive evaluation, CKL_Backoff, CKL_PCFG and CKL_FLA man-
age to increase the guessing efficiency by an average of 5.7%, 51.2%
and 41.9% than their best-performing competitor models, showing
that all types of data-driven models could indeed gain by modeling
the promising chunk representations. By analysing the efficient
attacks, we regard the common chunks as an underestimated threat
of password security, for that high-frequency chunks in a pass-
word contribute a larger vulnerability impact than the widely-used
character class complexity. To mitigate these risks, we enable a
client-side password strength meter based on CKL_PCFG with sub-
second latency, offering warnings of common chunks for security.
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A APPENDIX
A.1 Experiments for passwords with length

longer than 32 characters
For completeness, we also show the results for those extremely long
passwords (i.e., longer than 32 characters) and observe their crack-
ing rates separately. We note that the number of these extremely
long passwords with more than 32 characters is much smaller. Con-
cretely, in Chinese datasets, CSDN, Youku and 178 contain 0, 141,
and 1 of these extremely long passwords, respectively. While in
English datasets, Rockyou, Neopets and Cit0day contain 1,534,
208 and 7,585 of these extremely long passwords, respectively. We
thus make this evaluation in English datasets. Following the ex-
perimental scenarios described in Section 4.1.1, we train Rockyou
and combine Neopets and Cit0day as an evaluation set, and show
the results in Figure 11. Particularly, CKL_Backoff achieves a higher
efficiency after 1010 guesses, while CKL_FLA performs similarly
with the character-level FLA model. CKL_PCFG cracks the same
passwords with competitors, as evidenced in Min_auto strategies.
Although our chunk-level models do not improve the guessing effi-
ciency significantly, this may be because that these extremely long
passwords are generally strong enough to resist guessing attacks,
base on the less than 3% cracking rates. This phenomenon also
confirms that the length is still a dominate factor for password
security [30, 33, 53].

Further, we observe that these cracked extremely long passwords
are homogeneous, indicating their vulnerability. Besides, to bet-
ter understand their properties, we observe and count that most
(around 67.91%) of these longer passwords are Email addresses,
possibly because that users tend to adopt their Email addresses’
formats as their secure passwords for easy memorization. As for
the average number of chunks, we count that these longer pass-
words contain more chunks (i.e., 17.23) among four evaluation sets
averagely.

A.2 Detailed changes after each merge
operation of PwdSegment

We note there may be three changes in the size of the chunk vocab-
ulary after each merge operation:

• +1: adding the newlymerged chunk to the generated vocabularies
and the original two chunks are still preserved. (The two original
chunks do not always appear together at the same time.)
• +0: adding the newly merged chunk, and one of the original two
chunks is preserved, the other is eliminated. (One of the original
chunks appears exactly as another original chunk appears.)
• -1: adding the newly merged chunk, and both of the original
chunks disappeared. (The two original chunks always appears to-
gether at the same time.)

Actually, the size of chunk vocabularies usually increases and then
decreases trivially as the number of merge operations increases.

A.3 Detailed techniques of identifying
memory patterns used in this paper

The following is the specific techniques to identify four memory
patterns.
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Figure 11: Guessing performance of longer passwords with more than 32 characters across three chunk-level guessing models.

(a) Rockyou (b) Cit0day (c) CSDN (d) Youku (e) COCA

Figure 12: Top-150 chunks in a shorter resulting chunk vocabulary (i.e., avg_len of 1.8).

• Leet: To identify leet patterns, we replace these digits or symbols
with the characters based on the rulelist [49] and our additional
rules 11, then compare the replaced passwords with the password
base dataset (we refer to the Rockyou and CSDN as the base dataset
for English and Chinese passwords, respectively). For example, we
restore p@ssw0rd to password and then once the password is in-
cluded in Rockyou, we label the p@ssw0rd as leet pattern password.
• Syllable: We refer to the English word-build affixes [11] and the
Chinese pinyins together as syllables, where the dictionary includes
exactly 528 (400 with pinyins, and 128 with English affixes) items.
• Keyboard: A substring where each character is adjacent to the
next one in a standard English keyboard, e.g., the same row “zx-
cvbnm”, the same column “1qaz2wsx” or zigzag “1qazse4rfv”;
• Date: We refer to the consecutive four, six and eight digits with
certain patterns as date according to the literature [37].

A.4 Top-150 shorter chunks compared with
words

We also supplement the top-150 chunks in a sh orter resulting
chunk vocabulary (i.e., the avg_len of 1.8) in Figure 12. Similarly,
these four memory patterns (i.e., leet, syllable, keyboard and date)
generally exist in these short chunks. Particularly, the number of
syllable chunks (e.g, ing, wang) is much more significant in short
chunks than that in long chunks (e.g., avg_len of 4.5). For syllable
chunks, most of these common chunks are in the form of English
word suffixes (e.g., ing) and Chinese pinyins (e.g., han). Especially,
the surnames (e.g., wang or eng) are common in consisting chunks
of Chinese datasets. The “love” theme plays an important role in
Chinese culture, reflecting in top-150 chunks of 520 or 1314. These
findings are generally consistent with that in long chunks.
11Our added rules: 8->ate; 2->too,to; 4->for,fore.
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