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Abstract—With the ever-increasing data volume and application
diversity, a modern data analytics job is generally built as a work-
flow consisting of multiple tasks. For either specific functionalities
or higher performance, tasks in a workflow may need to be deployed
on different data processing platforms. This article proposes CLIC,
a highly extensible system for efficient cross-platform data analyt-
ics. To leverage the advantage of diverse platforms while alleviating
development efforts, we propose an embedding-based operator
encoding scheme and a Graph Convolutional Network model for
efficient platform selection. Aiming at flexibly integrating new
operators and platforms, CLIC is designed with a highly extensible
system architecture that decouples the core functionalities from
backend platforms. Experiments show that CLIC can significantly
improve the performance of modern data analysis workflows with
fast platform selection.

Index Terms—Data analysis, data processing, data systems,
systems.

I. INTRODUCTION

R ECENT progresses in Big Data and artificial intelligence
have significantly enhanced and energized data analytics.

With diverse goals in performance and programming efficiency,
data analytics platforms targeting different domains are con-
stantly emerging. For instance, tasks such as data cleaning and
filtering are generally performed on a DBMS or Big Data plat-
forms like Spark [1]; tasks applied on the graph structure such as
relationship discovery are performed by GraphX or Giraph [2];
deep learning models are built and trained by platforms like
Tensorflow [3] and Pytorch [4], to name a few. Besides the func-
tionalities, a data processing platform may deliver much higher
performance for specific tasks due to the specialized system
design. Therefore, an efficient modern data analytics workflow
is usually built as a sequence of tasks that are separately executed
on multiple platforms to leverage their advantages [5], [6], [7].

Since platforms generally have fundamentally different pro-
gramming models, API standards, and performance advantages,
etc., building such a cross-platform workflow while achiev-
ing high performance is complex and intricate. It not only
demands expertise for all involved platforms which causes a
high learning curve, but also needs to develop ad-hoc programs
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to orchestrate them which is time-consuming. These issues
give rise to a spectrum of cross-platform systems that facilitate
the development of cross-platform workflows [5], [6], [8], [9],
[10]. These systems support multiple computing paradigms like
batch processing and machine learning by integrating platforms
from multiple domains as the backends. According to factors
including platform efficiency and data movement overhead, a
cross-platform system automatically selects platforms for the
tasks of a given workflow to maximize its overall performance.
These research prototypes have demonstrated the effectiveness
of cross-platform computing. However, there are still two key
aspects that have not been effectively addressed, which hinders
the adoption of cross-platform data analytics in production
systems.

1) Low System Extensibility: A system should be highly
extensible since it needs to continuously integrate new operators
to build workflows. However, due to the operator encoding tech-
nique, the machine learning model adopted in state-of-the-art
systems, such as Robopt [10], has to be re-trained when integrat-
ing a new operator each time. Besides that, being designed as a
monolithic architecture, system components and supported com-
puting platforms are highly coupled. Consequently, integrating
a new operator or platform needs to build, test, and deploy the
entire system. The current system design incurs high costs to add
a new operator, which severely limits the system extensibility.

2) Inefficient Platform Selection: Platform selection has a
significant impact to the overall performance of a workflow.
Therefore, its procedure should be efficient and robust. To de-
rive the optimal execution plan for a workflow, state-of-the-art
studies [6], [10] leverage cost models to estimate the execution
time of a workflow when running on different platform combi-
nations. With the estimated cost, available execution plans are
enumerated and evaluated in a large search space, resulting in
nontrivial overheads in platform selection. Moreover, the costs
grows with the number of operators and platforms [10]. Conse-
quently, performance is even degraded for small jobs, because
the caused overhead can offset the performance advantages of
selected platforms.

To address the above issues, we propose CLIC, a highly-
extensible cross-platform data analytics system targeting effi-
cient platform selection and flexible operator integration. By
abstracting platform selection as a node classification problem,
CLIC adopts a Graph Convolutional Network (GCN) model to
capture the topological information of a workflow and derive
the optimal execution plan. As the input for the GCN model,
an embedding-based operator encoding technique is adopted to
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generate a dense and fixed-length feature vector to represent each
operator. The graph convolutional process makes the platform
selection extremely fast, with no need to enumerate all combi-
nations. Moreover, it effectively enhances system extensibility
by avoiding re-training the model when adding a new operator.
Besides, CLIC is designed with an extensible architecture where
the core system functionalities and backend platforms are fully
decoupled as separate components. Each backend platform ex-
ists in the form of a container image and is instantiated when
the included operators need to be deployed for execution. In this
way, an operator implementation can be flexibly integrated or
updated at run time, without influencing the core components of
the system.

The contributions of this paper are as follows.
� We propose an end-to-end GCN-based approach to provide

robust and fast platform selection.
� We propose a novel embedding-based operator encoding

method to enhance the system extensibility for integrating
new operators.

� We design and implement CLIC, a highly-extensible cross-
platform system prototype with a decoupled architecture.

The roadmap of this paper is as follows. Section II introduces
the background and motivation. Section III outlines the main ap-
proach of CLIC and overview its extensible system architecture.
The GCN-based platform selection and the embedding-based
operator encoding are described in Section IV. Section V gives
the detail of the design and implementation of CLIC. Section VI
evaluates the prototype system, and Section VII concludes the
paper.

II. BACKGROUND AND MOTIVATION

A. State-of-the-Art Cross-Platform Systems

A modern data analytics workflow usually consists of
multiple data processing tasks such as data collection, data
Extract-Transform-Load (ETL), machine learning model train-
ing, etc. [7]. Since a data processing platform is often devel-
oped for certain scenarios, involved tasks are usually beyond
the specific functionalities of a single platform. Therefore, a
workflow may need to be processed by multiple platforms
collaboratively. For example, benefiting from its memory-based
execution engine, Apache Spark has powerful distributed data
processing capabilities and is commonly used in data ETL.
But to model and analyze data with machine learning, data
scientists tend to choose specialized frameworks like Tensorflow
for the much richer integrated algorithms. In addition to special
functionalities, tasks are also deployed on different platforms
for higher performance. A platform’s internal may have signif-
icantly different execution and communication models, making
them more suitable for specific tasks [11].

A spectrum of cross-platform systems have been developed
to facilitate the development and deployment of cross-platform
workflows [1], [5], [6], [9], [10]. Those systems internally
federate multiple data processing platforms for handling corre-
sponding tasks. They block the platform details by providing
users a set of platform-agnostic interfaces. By automatically

selecting platforms for a workflow, users only need to focus on
data analytics, without caring about underlying platform details.

Platform selection methods in current systems are mainly di-
vided into three classes, i.e., rule-based, cost-based, and machine
learning (ML)-based. 1) Rule-based systems like Musketeer typ-
ically design a series of decision rules to determine the platform
of each task in the workflow. The approach not only requires
large amounts of decision rules, but also has to take care of their
complex dependencies. 2) Cost-based systems like Rheem [6]
and RHEEMix [12] use cost models to estimate the costs of a
task on different platforms, and then select the best platforms for
the workflow. It requires each operator in a task to describe itself
with properties like cardinality, computation complexity, or even
the average CPU-cycles-per-run. As those properties need to be
customized according to different environments, users have to
take substantial efforts to fine-tune those properties to make the
model work when being deployed [10]. Both rule-based and
cost-based approaches demonstrate limited extensibility for the
requirement to either add new rules or build new cost models
when integrating an operator. 3) ML-based methods [10], [13],
[14] are proposed to help select platforms to address issues in
cost-based approaches. Specifically, by encoding a workflow
as a one-hot encoded feature vector, Robopt [10] enumerates
possible platform combinations of operators in terms of vectors.
Then vectors are fed into the ML model to estimate their costs.
For a workflow withn logical operators, each of which hask exe-
cution platforms, there would be a total of nk possible execution
plans. With an ML-based pruning mechanism, Robopt alleviates
the enumeration overhead by reducing unnecessary calculations.
However, ML-based methods have limitations when being ap-
plied in production systems.

B. Motivation

1) System Extensibility: Modern data analytics systems gen-
erally need to handle new data sources with different formats
and train new machine learning models to gain insights. Through
analysis and evaluation, we find that the system design of Rheem
and the machine learning techniques in Robopt limit the system
extensibility of integrating new platforms and operators. First,
Robopt uses one-hot encoding to encode workflows makes it
hard to extend new operators. As the input to models, each bit in
an one-hot encoding vector represents a category, where a bit is
set as 1 if the data fits the corresponding category. Therefore, the
dimension of the vector space equals to the number of operators,
which should be increased with a new operator. Fig. 1 illustrates
this situation when integrating a new SIN operator(represented
by the red dashed line) where all the original vectors’ dimensions
also grow by one. However, the machine learning model trained
in the previous vector space can’t take a vector with a different
dimension as input. As a result, the model has to be retrained.
Second, the monolithic architecture of Rheem (Robopt) binds
backend platforms and the system in the same run time envi-
ronment. In workflow execution, the system executes operators
by directly calling its backend platform through the driver and
passes data as in-memory objects. The tightly coupled system
architecture makes it costly to add new platforms. Consequently,
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Fig. 1. One-hot encoding limits system extensibility.

when integrating a new platform, the whole system must be
compiled, tested, and deployed each time.

2) Efficiency of Platform Selection: Existing approaches
enumerate large number of possible platform combinations for
a workflow [10]. Then it estimates the execution time to se-
lect the deployment plan with the lowest execution time. Even
with optimizations such as pruning, this procedure incurs high
overhead. In our experiments, for a cross-platform system that
has 80 operators and 5 platforms, the average latency with
the approach takes more than one second. Specifically, when
processing small data sets, the cost of platform selection may
become similar to the workflow execution time. To make things
worse, the latency grows with an increasing number of operators
and platforms [10]. As a result, the incurred overhead may
offset the benefits from platform selection, which can even
degrade the overall performance. Moreover, limited by the flat
vectors, Robopt encodes the workflow by the number of special
components, such as loops and junctures, and the one-hot vectors
of its operators. However, since workflows usually have complex
topological structures and different operator dependencies, this
encoding method may fail to the characteristics of a workflow.

In summary, practical cross-platform data analytics demand
an extensible system architecture and an efficient platform se-
lection method. This motivates us to rethink the design and
implementation of a cross-platform data analytics system.

III. SYSTEM OVERVIEW

To address the above challenges, we propose a highly-
extensible cross-platform computing system, namely CLIC. In
this section, we introduce the main approach adopted by CLIC
and overview its architecture.

A. GCN-Based Platform Selection

Different than previous approaches that estimate the costs of
possible execution plans, we model the platform selection pro-
cess as an end-to-end node classification problem. CLIC takes
all platforms as categories and the best platform of an operator as
its class. Then the platform selection is abstracted as determining
the class of each node in a graph, which is a typical node
classification problem [15]. As an effective approach for node
classification [14], [16], Graph Convolutional Network (GCN)
model is adopted to enhance the accuracy and efficiency in
platform selection. GCN is a graph neural network that directly
takes the topological structure as input and extracts relationships

Fig. 2. The procedure of GCN-based platform selection.

between nodes, thus it has the advantage on platform selection
for a structured workflow than basic ML models. Besides, GCN
embeds the search space into an euclidean space where the
optimal points, i.e., the best platforms are computed directly
in real-time, which is much more efficient than the traditional
search.

GCN effectively utilizes the workflow topology information
which involves three key factors that influence platform selec-
tion. 1) There can be data conversion between platforms, where
a data conversion operator needs to be added in the physical
plan. This would influence the platform selection between two
adjacent operators for the incurred overhead. 2) There are data
serialization and deserialization overhead when data being trans-
ferred between platforms. For instance, to pass data from Spark
to PyTorch, data in RDD of Spark needs to be serialized into a
common format before being read by PyTorch. 3) The topology
information such as juncture influences platform selection. For a
juncture (denoted as A), such as the Join operator, the outputs of
its previous operators (denoted as B and C) become the inputs of
operator A. This relationship is usually important for platform
selection because B and C may run faster on different platforms.
If B → A runs faster on one platform but C → A runs faster on
another, it is hard to select the optimal platforms for the three
operators. Therefore, the topology information is important for
improving the accuracy of platform selection. Previous work
such as Robopt [10] has also demonstrated the importance of
topology information.

Together with the GCN model, CLIC improves the system
extensibility with an embedding-based operator encoding tech-
nique. It encodes an operator into a dense and low-dimensional
vector, called operator embedding, whose dimension is pre-
defined and fixed. Because the length of the vector is not bound
with the number of operators, integrating a new operator no
longer needs to retrain the model. As the basis for the GCN
model, the two main techniques significantly enhance the ex-
tensibility in CLIC so that new operators and platforms can be
easily integrated.

Fig. 2 shows the major states in platform selection. The
first state is the initial workflow where the vertex denotes the
operator, and the edge denotes the data dependencies between
operators. The vectorization process encodes each operator to
their corresponding feature vector and generates the second state

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:59:18 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: CLIC: AN EXTENSIBLE AND EFFICIENT CROSS-PLATFORM DATA ANALYTICS SYSTEM 37

Fig. 3. The system architecture of CLIC.

(see Section IV). After that, GCN is utilized to classify operators.
During the classification process, the workflow’s intermediate
state is shown as the third state where all available choices of
an operator are indicated by colored circles, where one color
represents a platform. A possible classification result is denoted
by the triangles where the top and the bottom left operators are
classified to the green platform and the bottom right operator to
the blue platform. Finally, adjacent operators that are classified
to the same platform are packaged as a task. The example in the
figure generates two tasks as the output of the forth state, which
runs on two different platforms. Those tasks are then submitted
to the corresponding platforms for execution.

B. The System Architecture of CLIC

Fig. 3 demonstrates the system architecture of CLIC. CLIC
aims at achieving high extensibility by decoupling the core func-
tionalities such as platform selection and job scheduling from
the underlying platforms. In CLIC, operators of each platform
are packaged as images and stored in the Image Hub while their
corresponding information are stored in a database called Meta-
Store. MetaStore records information like available platforms
of each operator, operator embedding and runtime statistics of
workflows. With this dynamically maintained information, only
the platform image and the corresponding information in the
MetaStore needs to be updated when integrating new operators
or platforms. Since the core of CLIC stays unaffected, the
integration can be flexibly performed at run time. Overall, the de-
coupled architecture of CLIC aims at enhancing its extensibilty
so that the system can dynamically incorporate large number of
new operators.

CLIC supports the full life cycle of a workflow including
building, packaging, executing, and progress monitoring. A
client provides users with various logical operators and data
models for building data processing, machine learning, and
graph computing workflows. A workflow is organized in the
form of a logical Directed Acyclic Graph (DAG) and submitted
for execution. The core functionalities of CLIC are deployed
as separate microservices, including API Server, Controller and

Platform Selector. API Server receives the workflow submit-
ted from a client and hands it over to Platform Selector to
generate the execution plan. In platform selection, operators in
the workflow are first encoded as feature vectors, and then the
GCN Classifier assigns each operator with a platform. In this
process, properties including system configurations, operator’s
properties and embeddings are retrieved from MetaStore to
form the feature vectors. Note that the GCN-based platform
selection can be integrated into any cross-platform systems as a
separate module. With the generated execution plan, Controller
instantiates the platform instances by pulling their images from
Image Hub. The platform image is instantiated in the Kubernetes
cluster as containers. There is a driver running as a process in
a platform instance. The driver receives a task from Controller
and interprets the included operators into the platform’s native
APIs or implementations for execution. After submission, Con-
troller monitors tasks and updates task states and statistics in
MetaStore. CLIC can run on both bare-metal machines and a
cluster with virtual machines on the cloud. By initializing virtual
machines with a Kubernetes environment, CLIC can directly
deploy tasks for execution.

IV. GCN-BASED PLATFORM SELECTION

To capture the workflow topology while enhancing its effi-
ciency, we take platform selection as a node classification prob-
lem in a graph and use GCN model to solve it. Together with the
model, we propose a novel embedding-based operator encoding
method to enhance system extensibility. In this section, we first
describe the embedding-based operator encoding method and
then give details of how CLIC uses the GCN model for platform
selection.

A. Embedding-Based Operator Encoding

The feature vector of an operator is provided to the GCN
model for classification. The structure of the feature vector needs
to cover the key factors that affect platform selection. Besides
that, the vector should be as dense as possible so that it is
conductive for model training. We mainly consider the following
important influential factors, i.e., operator type, data volume, and
hardware setups. We append the factors together to form the final
feature vector as shown in Fig. 6. Below we narrate the encoding
method of each factor separately.

1) Operator Type: Different operators need to be distin-
guished in a workflow for accurate platform selection [10],
[14]. Different from using one-hot encoding whose dimension
is strongly related with the number of operators, we introduce
an embedding-based method to generate fixed length vectors.
The resulting vector is called as operator embedding.

In mathematics, an embedding is a function f(X) → Y that
maps a data point X in one space to point Y in another space.
This is an important preprocessing technique in natural language
processing, where word embedding is used for representing
words in text analysis. Word embedding is typically a real-valued
low-dimensional vector that encodes the meanings and relation-
ships of words. The feature of embedding is that words that are
closer (cosine distance) in the vector space are expected to have
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Fig. 4. Generating embeddings for operators.

Fig. 5. Visualization of the embedding-based encoding.

similar semantic meanings. Those meanings and relationships
can be captured from the corpus and be mapped to the vector
space through neural networks. A representative algorithm for
this is the CBOW [17], which takes words that appear in the same
sentence to have higher relevance. CBOW works to maximize
the joint probability of a word and its adjacent words in a
sentence. Word embedding not only contains enough infor-
mation but also has a much lower dimension comparing with
one-hot encoding. Moreover, the advantage of embedding-based
encoding is that it uses fixed vector length to represent variable
number of items. Therefore, existing embeddings are still valid
after integrating a new item. Because embedding can encode
words in a low-dimensional dense vector, it is gradually being
promoted for vectorizing other types of data like image, video,
and graph.

In CLIC, we propose to treat operators in a workflow like
words in an article, where an operator also has meanings and
relationships with adjacent ones. The semantical meanings, for
example, include operator’s computing paradigm, number and
type of input/output, etc. To generate the operator embedding,
we share the same ideas in the word embedding that 1) allowing
semantically similar operators to have closer (cosine) distance,
and 2) maximizing the joint probability of an operator and its
neighbour operators in a workflow. Therefore, we utilize the
CBOW algorithm to generate operator embedding, which is
illustrated in Fig. 4. It first topological sorts a workflow to get
the linear operator sequence, and then uses a fixed-size sliding
window to traverse the sequence. Each time an operator and a
fixed number of its adjacent words are chosen as the input of
the CBOW model. The model then outputs a vector for each
operator, which is its generated embedding.

Following the above approach, we get an embedding for each
operator. Fig. 5 shows the locations of the resulting embeddings
where only the top-2 dimensions with the highest eigenvalue are
used for visualization. As shown in the figure, the SIN operator
is closer to TAN and far from UNION. This can be explained

Fig. 6. Operator feature vector.

semantically because both SIN and TAN belong to the same
computing paradigm and have the same number and type of
inputs/outputs, etc. Although the real meanings behind are much
more complex than that, we can find that the operator embedding
in CLIC successfully portrays an operator.

One thing to note is that, one can generate the embedding
of any operator as long as the workflows used for training
contains it, even if this operator has not been integrated in
CLIC yet. In other words, the operator embedding technique
is a general encoding method that is independent to computing
platforms. This feature allows CLIC to generate a rich operator
embedding set in advance. After that, when CLIC integrates a
new operator that needs the embedding, it can directly look up
to the embedding set. There are two scenarios when getting the
new operator’s embedding:

1) Its embedding is contained in the embedding set. At this
time, CLIC can retrieve the embedding directly.

2) The operator is not contained in the embedding set, i.e., the
“Out-Of-Vacabulary (OOV)” problem. In this case, some
new workflows that contains this new operator are required
by CBOW to learn its embedding. The resulted embedding
is still in the same space with the existing ones, which have
the same dimensions. Therefore, the GCN model does not
need to be re-trained.

As one of its core advantages, the dimension of operator
embedding is fixed when integrating new operators. The grey
segment in Fig. 6 illustrates the embedding(denoted by dashed
line) of the newly integrated SIN operator that has a consistent
dimension with the old ones, i.e., JOIN, SELECT and COS.
Therefore, the encodings for operators no longer need to be re-
trained, which significantly improves the extensibility of CLIC.

2) Hardware and Workload: Due to the differences on the
design of communication model, execution engine, etc., the
suitable platform under different hardware setups may also be
different. Take the selection of machine learning frameworks as
an example. Tensorflow adopts the parameter server architecture
as its communication model, while PyTorch uses the all-reduce
model. In general, the parameter server works better on a large
number of unreliable and less powerful machines; All-reduce
achieves higher performance for a small amount of fast devices
being linked with high network bandwidth [18].

When measuring the effects of hardware setups, one should
note that factors that can affect the platform performance do
not necessarily affect the choice of the platform, because it may
bring the same effects to all platforms. For instance, a faster
hard drive brings performance improvements for all operators.
In CLIC, we mainly consider the following four factors which
correspond to the green segments in Fig. 6.
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Fig. 7. Selecting platforms with GCN.

� Cluster size: This parameter influences the use of a local
program or distributed platforms that are designed for
different scales.

� Memory size: Different platforms have different usage of
memory, this may influence the choice of memory-based
or disk-based platforms, e.g., Spark versus Hadoop.

� GPU: The factor distinguishes CPU-based platforms like
Spark from platforms that support GPU acceleration like
Tensorflow.

� Network bandwidth: This may influence platforms by their
communication models.

Workload also has a significant impact on platform selection.
Specifically, as the size of a data set grows, the platform that can
achieve highest performance for a given task gradually shifts
from a local program to a distributed platform [6]. Therefore,
we use the size of a data set to indicate the workload, which
corresponds to the pink segment in Fig. 6. Moreover, other data
set features are also considered in CLIC, such as average input
tuple size.

B. GCN-Based Platform Selection

Except graph convolution network, other machine learning
methods can’t directly take topological data as the input but need
to first stack the vectors of all nodes in the graph together to a
two-dimensional matrix, i.e., the “design matrix”. This prerequi-
site leaves out the structural relationship between nodes, which is
the key for describing the computational process of a workflow.
Therefore, those models may have intrinsic deficiencies like
being difficult to converge or converged with poor accuracy.

The GCN model adopted by CLIC is a convolutional neural
network that can be applied directly to graphs. The GCN model
introduces a graph convolutional layer in the network architec-
ture to aggregate topological information to represent nodes,
making it suitable for the platform selection. The output of this
layer is the vector of each operator that is embedded with struc-
tural information, called the graph representation, which can be
further used for classification and regression tasks. Fig. 7 shows
the classification process with GCN, which is mainly divided
into four steps: vectorization, normalization, convolution, and
classification.

1) Vectorization: As a deep learning model, GCN takes a
vector as its input. The first step is vectorization which
encodes each operator in the workflow into an embedding-
based feature vector.

2) Normalization: Normalization is performed to align the
irregular topology to a matrix. For each time, an operator
is selected as the center operator (the red one) and its k − 1
neighbor operators (the blue ones). After that, the feature
vectors are aligned as a k × |V | matrix M (as shown in
the middle grey matrix) where k is a hyper-parameter
and |V | is the dimension of feature vectors that equals
to the sum of the dimensions of the operator embedding,
hardware, and workload factors. Based on the workflow
topology, we get a partial ordering over the nodes to
build the matrix. Because large amounts of workflows
are generated for model training, the training data cover
different orders of operators. Therefore, platforms can be
effectively predicted with a partial ordering of the input
workflow nodes. This step repeats multiple times, each for
an operator.

3) Convolution: Convolution utilizes the convolution kernel
to extract localized features, which is the core step of GCN.
The convolution kernel is a pre-definedK ×K matrix that
acts like a sliding window. The window slides and takes
a K ×K sub-matrix from M to perform the convolution.
The resulted vector in this step is the graph representation
of the center operator, which is used for classification.

4) Classification: This step classifies operators according to
their graph representations. CLIC appends a dense layer
in the end of GCN for classification. The output is the plat-
form probability distributions of each operator, with the
highest one being selected as the target platform. In case
that it incorrectly classifies an operator to an unsupported
platform, we place a mask on the probability distribution
to filter such platforms. The masks are maintained in CLIC
and can be retrieved directly at runtime.

In CLIC, the GCN model takes the initial platform-agnostic
workflow as the input and outputs the optimal execution plan
in which each operator is assigned with a platform as its label.
Comparing with previous approaches that require the enumera-
tion of large number of possible execution plans, this GCN-based
inference procedure is not only orders of magnitude faster, but
also more robust for a larger system with more operators.

C. Training GCN

The adoption of a machine learning or a deep learning model
has the requirement of enough training data. In the GCN train-
ing in CLIC, the training data contains tuples in the term of
< W,H, V, L >, where W is the workflow with a series of
operator, H is the hardware setups of the current environment
that are retrieved on startup,V is the data volume of the workflow
that is dynamically given by users, and L is the label, i.e., the
best platform of each operator in W . W is found by running
all possible platform combinations and selecting the one with
the lowest running time. Take the London crime analysis1 as an
example. W is the workflow consists of {Source, Map, Filter,
Group, CountBy, Sort}, H is varied by controlling the cluster

1https://www.kaggle.com/LondonDataStore/london-crime
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Fig. 8. An example Markov chain for generating training data.

configurations, and V is varied by gradually using 3% of the
crime logs to 100%.

Because generating sufficient training data to train an effective
GCN model is very time-consuming and almost impractical [19],
we construct a Markov chain to mimic the pattern of real-world
workflows. The state set and transition probabilities of a linear
algebra workflow are shown in Fig. 8. To generate workflows
similar to real-world workflows, the Markov chain model is
trained with existing Big Data and machine learning data sets on
Kaggle [20]. There are lots of user-built data analytics workflows
on Kaggle Notebooks. We extract a set of the representative
workflows and take them as the input to train the Markov chain
model. The Markov chain model learns the relationships of
the operators and the possibilities of transitions in the training
workflow set. In this way, the model can generate new workflows
based on real-world relationships between operators, where
adjacent operators are always placed in a legal order.

We construct workflows with different lengths and topologies
based on the Markov chain model. First, we adjust the transition
probabilities to the end state to get workflows with variable
lengths. For instance, with a higher transition probability to the
end state, longer workflows can be generated. Second, we gen-
erate workflows with complex topology. The output workflow
shape of the Markov chain model is a pipeline, i.e., a sequence of
connected operators without branches. Workflows with branches
or other topological shapes are constructed by connecting mul-
tiple pipelines using operators with multiple inputs or outputs
as the hub. An operator with multiple input sources is called as
an input-hub, and an operator with multiple outputs is called
as an output-hub. For example, a Join operator is an input-hub
that joins two database tables. The workflow shown in Fig. 7 is
constructed by an input-hub operator, an output-hub operator,
and four basic operators. We take generated workflows that
have the same hub operator, remove the rest operators after an
input-hub or before an output-hub of one workflow, and connect
the workflows at the hub operator.

With generated workflows, the label, i.e., the platform for
each operator, is determined following the approach in [19].
First, pruning the search space by rules, then running the rest
combinations with various small workloads to find the best
computing platforms for each workflow. When two adjacent
operators are assigned with different platforms, the data con-
version overhead is taken account if necessary. The platform
performance on heavy workloads is generated by interpolation.
At last, repeating the above steps on various hardware setups.
In this way, workflows with arbitrary topology, workloads, and
hardware setups are constructed as the training data for the GCN
model.

V. SYSTEM DESIGN AND IMPLEMENTATION

Besides the robust and efficient platform selection with the
GCN model, CLIC offers platform-independent interfaces for
workflow development and a set of techniques for enhancing
system extensibility. In this section, we illustrate the system
design and implementation details of CLIC.

A. Building a Workflow

The client of CLIC is provided with a series of platform-
irrelevant logical operator and various data models to build the
cross-platform workflow. A logical operator is an abstraction
of an executable functional unit. It describes all information
of the unit such as the function name, required data model,
input parameters and return values, while the implementation
details are excluded. A data model, including table, list, matrix,
and graph, defines how data is organized and what is the basic
processing unit. There can be significant differences between
data models, and each model has its own suitable scenarios.
For example, matrix and table are similar in data arrangement,
while the former implicitly orders dimension columns and all
its elements must have the same data type; On the other hand,
columns in a table are not strictly ordered and can have different
data types. Therefore, while matrix suits for machine learning,
tables are generally served as the data model in relational data
analytics. Graph explicitly links data points therefore is better at
tasks with frequent relationship queries than a table. However,
since a cross-platform workflow may involve multiple data
models at the same time, it is hard to construct an unified data
model for all scenarios due to the above differences.

CLIC bridges the gap between data models by implementing
a series of model conversion operators and offers them to users
as another type of logical operator. Two operators that require
different data models are connected by a conversion operator.
Take the simplest matrix2table conversion as an example. It
transforms a matrix to a table by adding schema to the columns
of the matrix, where the column name is set to the column serial
number, and the data type is consistent with the original data
type of cells. Note that there can be more than one conversion
method between two models. For example, a matrix can be
converted to a graph either by being regarded as an adjacency
matrix or by more complex graph construction algorithms like
HNSW [21].

We use sentiment classification as a case to demonstrate
how CLIC works. The pseudo-code of a simple implementation
is shown in Listing 1. It is a common natural language pro-
cessing task that classifies documents based on the semantics.
The data processing tasks mainly include data ETL (Extract,
Transforming, Loading) and training of a classification model.
As demonstrated in the listing, operators like read_csv, union,
select and train represent the logical operators in the task. The
operators take different types of input, from strings to a data set.
Specifically, LSTM is used as the model for sentiment analysis,
with SGD being set as the optimizer and cross-entropy as its
loss function. At line 7, the operator toMatrix is used as the data
model converter that outputs a matrix for machine learning with
LSTM.
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Listing 1. Pseudo-Code of Sentiment Classification in CLIC.

TABLE I
OPERATOR MAPPING TABLE

B. Executing a Workflow

Operator Mapping: The workflow composed of logical op-
erators is not executable, until each logical operator is mapped
to its native platform APIs or implementations. Since a logical
operator can have different implementations on multiple plat-
forms, we wrap APIs of a logical operator to physical operators
which have the same name, inputs, and outputs. Table I illustrates
the mapping rules from logical operators to physical operators.
These rules are implemented in the platform’s configuration
files and packaged into the docker image. The driver of each
platform loads its mapping table and interprets the received
logical operator to its native APIs or implementations. Besides
that, the table is also used to generate the mask for filtering
available platforms in the GCN model.

Adding Data Conversion Operator: Data conversion oper-
ators may be demanded between two adjacent operators of
different platforms. Therefore, before platform selection, data
conversion operators are not specified in a logical workflow.
After the GCN model predicts platforms for operators in a work-
flow, two adjacent operators may run on different platforms.
Then data conversion operators are added on the fly and deployed
for execution if required. As discussed in Section IV-C, since
the GCN model already considers the data conversion overhead
in its training process, the added operator won’t influence the
effectiveness of platform selection.

Workflow Execution: CLIC controls the execution of a work-
flow and launches the included tasks according to their topolog-
ical dependency. When a task completes execution, Controller
records its completion in the MetaStore and launches its sub-
sequent task and passes input variables. During the process,
clients can query the execution states via API Server. To support
flexible workflows with if-else and while loop clauses, CLIC
also implements a series of flow controllers. A flow controller
dynamically indicates the executing direction of the workflow

that is determined according to the run time value. For a work-
flow with either loop clauses or if-else statements, a set of
controllers is insert into the workflow to direct the execution
flow.

Data Movement: In CLIC, the data movement between tasks
on two platforms is performed by writing and reading interme-
diate results from a unified distributed storage engine. After a
task writes its output as a file, the file name is passed as the
input for the following task in the workflow. In CLIC, we adopt
Alluxio [22] as the middle layer for the storage engine. Alluxio
is compatible for multiple data access interfaces so that different
platforms can access to the same storage engine. Moreover, with
a memory caching layer, Alluxio can accelerate data movement
by alleviating the overhead of disk operations.

C. Extending With New Operators and Platforms

CLIC is designed for flexibly integrating new operators and
new platforms with low overhead. In CLIC, integrating a logical
operator only needs to define its description file and register it
into MetaStore. The description file is a JSON file that contains
information like the operator name, parameter list for building
the workflow, and operator properties like computing paradigm
for constructing the operator embedding. To implement a logical
operator on a specific platform, developers need to first imple-
ment the functionality using platform APIs and wrap it as the
physical operator following the standard of CLIC. After that,
developers need to add a new item in the mapping table and
update the GCN mask for the corresponding logical operator that
are all maintained in MetaStore. Finally, its docker image of the
targeted platform needs to be rebuild and registered into Image
Hub. The Image Hub can be a private repository maintained in
Docker Hub and the registration is simply submitting the docker
image to the repository.

Integrating a new platform should first implement the included
physical operators. Besides that, an essential component for a
platform image is the driver program for interpreting logical
operators and driving task execution. After the driver and opera-
tors are packaged along with the platform in a docker image,
the related items in MetaStore and Image Hub are updated.
Since MetaStore, Image Hub, and platforms are all decoupled
and maintained independently, none of the above processes
need to modify the core components of CLIC. Overall, oper-
ators and platforms in CLIC can be flexibly integrated at run
time.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the ac-
curacy and efficiency of the GCN model and validate CLIC’s
capability of enhancing workflow performance.

A. Experimental Setup

All experiments are conducted on a cluster of 7 nodes,
where each node is equipped with two 2.3 GHz Intel Xeon
Gold 5218 processors with 16 cores, four 32 GB DDR4
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Fig. 9. Evaluation of platform selection for one operator.

RAM, 2 TB SSD and runs on 64-bit Ubuntu 20.0.1. The plat-
forms deployed on the cluster include Java’s Streaming library
(JavaStream), Spark 2.4.5 (Spark), Spark ML 2.4.5 (Spark ML),
GraphX 2.4.5 (GraphX), JgraphT 1.4.0 (JgraphT), GraphChi
0.2.2 (GraphChi), Giraph 1.3.9 (Giraph), PyTorch 1.7.1 (Py-
Torch), python gensim library (gensim), Tensorflow 2.9.1. The
platform images and containers are managed by Kubernetes
v1.20. Alluxio 2.4 is used for data transmission and HDFS 3.2.1
works as the file system under Alluxio.

With the markov chain model, we generate 2.5× 104 work-
flows as the training data, where workflows have an average of
around 40 operators. The data generation takes about 12 hours.
Then the generated workflows are used as the training data to
train the GCN model. The training process takes around a day
on our server.

B. Performance Evaluation of Basic Workflows

Fig. 9 shows the performance of four representative operators
i.e., Word2Vec, PCA, PageRank, and WordCount. In the figure,
the platform chosen by the GCN model in CLIC is indicated by
red stars.

In the evaluation of Word2Vec (Fig. 9(a)), we use the NLTK
dataset containing the different sizes of corpora to represent dif-
ferent workloads. Among supported platforms, gensim achieves
the highest performance when using the corpus of 10,000 vo-
cabularies while Spark ML suffers from the distributed commu-
nication overheads. However, Spark ML gains a performance
advantage when the corpus contains 270,000 vocabularies. This
is because Spark ML is able to utilize multiple nodes for the
enlarged dataset, where the communication overhead becomes
negligible compared with the computation time. CLIC identifies
the difference and selects the best platform in both situations.

Fig. 9(b) shows the accumulated time of 10 PCA runs. The
dataset is the Hotel Booking Demand.2 As shown in the figure,
the GCN model may sometimes get suboptimal results for the
PCA operator, which selects Pytorch other than Tensorflow
for small dataset. Same with other machine learning models,
the GCN model cannot always make the optimal prediction.
Moreover, since huge amounts of data are demanded for training
the GCN model, optimizations are adopted to make platform
predictions for achieving optimal or near-optimal performance.
In this case, because Pytorch, scikit-learn, and Tensorflow have

2https://www.kaggle.com/jessemostipak/hotel-booking-demand

Fig. 10. Performance improvement of London crime analysis.

negligible performance differences for the PCA operator, same
feature vectors are used in model training to significantly reduce
the amount of training data. Therefore, even GCN makes sub-
optimal predictions for such operators, the performance of the
predicted platform is close to that of the optimal one.

The data set in evaluating PageRank is the Twitter follower
network.3 As shown in Fig. 9(c), JgraphT achieves the highest
performance when the graph contains less than 1.8 million
vertexes while Giraph performs the best on the other cases for
its higher efficiency in processing large graphs. Comparing with
GraphX, the Giraph chosen by CLIC can achieve up to 5.1×
performance improvement with the entire dataset.

To evaluate the map-reduce operators, we encapsulate the
WordCount as a coarse-grained operator. As shown in Fig. 9(d),
the single-machine framework JavaStream achieves the highest
when the corpus is small. Instead, Spark is 4.2× faster than
JavaStream when using the full dataset because it can be divided
and computed locally on each node with little global synchro-
nizing overheads. CLIC selects the optimal platforms for both
the PageRank and WordCount operator.

The above experiments demonstrates that CLIC can make
optimal or near-optimal predictions and achieve substantial per-
formance enhancements for most cases.

C. Performance Evaluation of a Big Data Workflow

Fig. 10 compares the performance of a workflow that analyzes
the London Crime dataset. The size of the dataset is 28 GB.
The dataset describes the amounts of criminal reports by month,

3https://snap.stanford.edu/data/twitter-2010.html
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major/minor category, etc. We use percentages in the figure
to denote different sizes of the dataset to evaluate platform
prediction. For instance, 50% means the execution time on only
14 GB of data (28×0.5). The workflow mainly consists of four
procedures: 1) reading data and transforming it to a specified
format; 2) filtering reports to preserve only the ones with certain
crime types, which will remove 90% of the data; 3) sorting
and transforming reports to a human-readable format, and 4)
grouping reports based on quarter.

The execution time for the workflow is shown in Fig. 10. For
performance comparison, we also evaluate the performance on
JavaStream and Spark. The observation is that when the data
size is less than 6%, the computational efficiency of native
JavaStream and CLIC is 2.8× higher than Spark. The reason
is that Spark is set to use all available nodes in a cluster even
when the dataset is small. Consequently, the communication
overheads among distributed workers dominate the execution
time. With the GCN model, CLIC effectively selects JavaStream
for all operators in a small dataset. When the dataset size is larger
than 12%, the amount of data to be processed in the first two
procedures is too large that moving the computation from JavaS-
tream to Spark can benefit from the acceleration of distributed
computing. Therefore, step 1 and 2 are executed on Spark while
step 3 and 4 are executed on Javatream for data set size higher
than 12%. This is the reason that CLIC starts to outperform the
native JavaStream. This benefit is most obvious when the dataset
size reaches 100% where native JavaStream’s performance is
2.4× lower than Spark and 3.3× lower than CLIC. The workflow
demonstrates the effectiveness of cross-platform processing and
the significant performance improvement it brought.

For dataset sizes of lower than 6%, CLIC is slightly slower
than JavaStream. This is because, comparing with the direct
execution of JavaStream, CLIC has three types of extra overhead.
1) Platform selection: It needs to lookup the embedding vectors
for all operators in a workflow and uses the GCN model to predict
platforms. 2) Interpretation: As discussed in Section V-B, there
is a driver program on each platform that loads a mapping table
and interprets the received logical operators to its native APIs
or implementations. 3) Deployment: CLIC deploys tasks on
Kubernetes, where docker containers need to be created and
deployed with the images of corresponding platforms. This
deployment process causes the main overhead that degrades
the performance of CLIC. Therefore, comparing with running
JavaStream directly, CLIC is slightly slower for small data sets
although it chooses the same platform.

D. Performance Evaluation of Cross-Platform Workflows

We take two real-world workflows, i.e., sentiment classifi-
cation and PageRank, to validate CLIC’s ability to execute a
workflow that contains multiple algebras. The topology of the
two workflows are shown in Fig. 11, where sentiment classifi-
cation has a tree topology and PageRank has a linear topology.
We record the execution time of each stage when executing the
workflow, including start session, data I/O, and computation.

In sentiment classification, it first reads corpora to generate
Word2Vec embedding, then it reads and processes paragraphs

Fig. 11. Two workflows with different topologies.

Fig. 12. Performance improvement of cross-platform workflows.

for classification, which is called as phase1. After that, it trains
the deep learning model, which is called as phase2. The training
data set is the Amazon Reviews4 that consists of 3.4 million
Amazon customer reviews (input text) and star ratings (output
labels). Consider that SparkML currently only supports a few
simple machine learning models, we replace the LSTM (Long
Short-Term Memory) module with MLP (Multilayer Percep-
tion) for a fair comparison. As shown in Fig. 12(a), CLIC trains
3.6× faster than Spark. This is because CLIC migrates the model
training process to PyTorch which can utilize GPUs for parallel
training, while the CPU-based Spark cannot reap this benefit.
Although the migration needs to read and write intermediate
results across platforms, it can be seen from the figure that its
overhead is far less than the benefit from GPU acceleration.
Moreover, both platforms achieve 78% training accuracy, while
CLIC can achieve an accuracy of 97% with the LSTM model.

The second workflow is to perform PageRank on the Twitter
follower network.5 As shown in Fig. 11(b), it consists of 1)
extracting and filtering users that are followed by less than five

4https://www.kaggle.com/bittlingmayer/amazonreviews
5https://snap.stanford.edu/data/twitter-2010.html
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Fig. 13. Performance comparison with K-means-based platform selection.

other users (batch processing), 2) constructing a graph, and 3)
performing PageRank on the graph (graph computing). We call
the first procedure as phase1 and the last two procedures as
phase2. With the GCN model, CLIC keeps the phase1 in Spark
and migrates the phase2 to Giraph. The running time compar-
ison between Spark and CLIC is shown in Fig. 12(b), where
Giraph significantly reduces the execution time of the second
phase. Therefore, CLIC finally demonstrates 4.8× performance
improvement.

When processing data on two platforms, intermediate results
need to be written from the first one and read by the following
one. In this example, Spark writes data into Alluxio and Giraph
reads it. As shown in Fig. 12, the read and write overhead is
trivial comparing with the execution time reduction, which takes
around 0.23% and 7.29% of the overall execution time in the
two workflows, respectively. Besides that, launching tasks as
containers on the cloud takes 0.07% and 4.32% of the execution
time, respectively. Considering the performance improvements
from cross-platform computing, these extra overhead is negligi-
ble.

E. Comparison With ML-Based Platform Selection

To evaluate the effectiveness of the GCN model, we develop
another machine learning approach that uses K-means to classify
the node embeddings into a set of clusters. As shown in Fig. 5,
with node embeddings, similar operators have smaller distances.
Therefore, operators that perform similar operations are classi-
fied into the same cluster(s) with K-means. For each operator in
a cluster, we take the most frequently assigned platform as its
vote. Then the cluster is marked with the platform that has the
highest number of votes. With a workflow of multiple operators,
the embedding of each operator is classified in the K-means
clusters to assign a platform. In this approach, each operator has
fixed platform assignment on different workflows.

Taking sentiment classification as an example, Fig. 13 com-
pares the performance improvement with the K-means-based
platform selection and the GCN-based platform selection in
CLIC. With K-means-based platform selection, machine learn-
ing operators including Word2Vec and model training are all
assigned to PyTorch. It enhances the workflow performance by
3.1× because PyTorch can utilize GPUs to accelerate the model
training process. With the GCN model for platform selection,
CLIC assigns Word2Vec to Spark, which achieves higher per-
formance with distributed batch processing. Evaluation results
show that the GCN selected platforms can further enhance the

Fig. 14. Evaluation of the robustness and efficiency of the GCN model.

performance by 11.7%, comparing with the K-means-based
approach.

Approaches with fixed platform selection demonstrate limi-
tations in many cases. As shown in Fig. 9, different dataset size
may lead to different platforms. For instance, PageRank runs
faster on Giraph on most cases while the JgraphT performs better
for small data set. For WordCount, Spark performs better for
larger dataset while JavaStream achieves higher performance for
small dataset. These knowledges can be learned from workflow
running instances with different topology, dataset, and hardware.
This is the reason that GCN-based machine learning can perform
better than other simple approaches that have fixed platform
assignments.

F. The Efficiency of GCN-Based Platform Selection

We evaluate the runtime efficiency of the GCN-based platform
selection and make a comparison with that of Robopt. The
latency here refers to the model inference time of a workflow.
We first evaluate the performance impact from the number of
operators, whose results are shown in Fig. 14(a). As shown in
the figure, the prediction time of CLIC is only around 1 ms with
5 to 80 operators, and the latency is three orders of magnitude
lower than that of Robopt. This is because the GCN embeds the
search space to an euclidean space, which makes the optimal
platform combination can be directly computed with the model,
instead of exhaustively searching in a large space. Moreover, the
inference time can be further optimized with GPU acceleration.

In Fig. 14(b), we evaluate the performance impact with dif-
ferent number of platforms. The latency of CLIC is three to
four orders of magnitude lower that Robopt. More importantly,
it barely increases as the number of platform grows. The reason
behind is that when considering more platforms, the search
space in Robopt grows exponentially therefore taking more
time to search. Differently, CLIC only increases the dimension
of the GCN output with more platforms, which has negligible
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influences on the inference time. Overall, CLIC demonstrates
good extensibility for integrating more operators and platforms.

VII. CONCLUSION

We have made a strong case by designing and implementing
CLIC, a highly extensible system for cross-platform data ana-
lytics. Optimized for data analysis applications, CLIC supports
platform-independent workflow development, agile operator
and platform integration, and modular execution environment
management. As the key for enhancing overall performance,
CLIC efficiently selects platforms for operators in a workflow
by adopting a GCN model and embedding-based operator en-
coding. Experimental results show that CLIC is able to select
appropriate platforms for a data analysis job to enhance its
overall performance. Overall, CLIC demonstrates a promising
holistic solution for effectively leveraging multiple platforms in
data analytics. In the future, we plan to extend CLIC to support
stream processing platforms such as Flink, which demands a
different computing paradigm than the platforms with batch
processing.
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