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Abstract—Database queries can contain multiple predicates. The optimization of conjunctive predicates is still vital to the overall

performance of analytic data processing tasks. Prior work proposes several memory-efficient storage layouts, e.g., BitWeaving and

ByteSlice, to significantly accelerate predicate evaluation, as circuit-level intra-cycle parallelism available in modern CPUs can be

exploited such that the total number of instructions can be dramatically reduced. However, the performance potential of conjunctive

predicates has not been harvested yet under such storage layouts as there is no accurate cost model to provide necessary insights that

guide the optimization process. In this paper, we propose a hybrid empirical/analytical cost model (Understanding) to unveil the

performance characteristics of such storage layouts when applying to predicate evaluation. Our cost model takes into account effect of

non-linear factors, e.g., cache miss and branch misprediction, and easily applies to different CPUs. The main finding from our cost

model is to distinguish high-cost instruction (which suffers from cache miss and/or branch misprediction) from low-cost instruction

(which enjoys cache hit and correct branch prediction) in the context of predicate evaluation under these storage layouts. Guided by

such a finding, we propose a simple execution scheme Hebe (Optimizing), which is order-oblivious while maintaining high performance.

Hebe is attractive to the query optimizer (QO), as the QO does not need to go through a sampling process to decide the optimal

evaluation order in advance. The intuition behind Hebe is to significantly reduce the number of high-cost instructions while keeping

low-cost instructions unchanged. Our finding from Hebe sheds light on the importance of accurate cost model that guide us to derive an

efficient execution scheme for query processing on modern CPUs.

Index Terms—Database, conjunctive predicates, storage layout, CPU

Ç

1 INTRODUCTION

DECISION support queries often contain conjunctive predi-
cates in data warehouses. For example, most TPC-H

queries contain at least two predicates. The optimization of
queries with conjunctive predicates is challenging since the
exploration space is large. Take the conjunction pð1ÞV pð2Þ
of two predicates pð1Þ and pð2Þ as an example. They are
evaluated with either logical-and & or branching-and && [33].
The conjunction outputs the result bit vector, where one bit
indicates the result of one tuple. The former evaluates the
two predicates independently to generate one-bit result for
each predicate. It then performs the logical and operation on
the two one-bit results. Suppose branching-and will evaluate
pð1Þ first. If its outcome is false, the final result (false) is

determined and there is no need to evaluate pð2Þ. If it is true,
pð2Þ is evaluated and then its outcome determines the final
result. In sum, logical-and is oblivious to the evaluation order
but it has to evaluate all the involving predicates, without
exploring any cut-off condition (i.e., short-circuit) among
predicates (the cut-off condition among predicates is called
inter-predicate cut-off condition). In contrast, branching-and
explores inter-predicate cut-off condition and thus is sensi-
tive to predicate order.

In order to accelerate predicate evaluation, severalmemory-
efficient storage layouts [11], [22] are proposed to reduce the
number of required instructions by exploring intra-predicate
cut-off condition, which exploits the cut-off condition within a
predicate. Intuitively, the final result of a code evaluating a
predicate can be determined after evaluating its partial bits
(not all the bits). These storage layouts vertically partition the
codes of one column, resulting in severalmemory regions to store
the column, where the codes are generated from the column
values using dictionary compression [10], [22]. The memory
region (MR) denotes a data structure that stores data in a
sequence. Under these storage layouts, the early stopping tech-
nique has been proposed to fully exploit the intra-predicate
cut-off condition when evaluating a predicate. To illustrate,
consider two 7-bit codes (v1 ¼ 0000101, v2 ¼ 0100100) try to
evaluate the predicate bp : v < 0110110, where bp indicates that
the predicate p is evaluated under memory-efficient storage
layouts. We can observe that v1 (or v2) can terminate its
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evaluation after evaluating the first two (or three) bits, with
the last evaluated bit underlined. Therefore, there is no need
to evaluate the remaining bits. Through these memory-
efficient storage layouts, the execution of scan with one sin-
gle predicate can achieve high CPU efficiency with the help
of the early stopping technique, which significantly reduces
the number of evaluated instructions and the amount of
memory traffic.

When evaluating conjunctive predicates dpð1ÞV dpð2Þ under
these storage layouts [11], [22], the state-of-the-art approach

is the column-first execution model (denoted by dpð1Þ&& dpð2Þ),
where the tuples that do not satisfy dpð1Þ do not need to evalu-

ate dpð2Þ. In other words, the evaluation of dpð2Þ can take

advantage of the inter-predicate cut-off condition stemming

from dpð1Þ. Meanwhile, both dpð1Þ and dpð2Þ can fully explore
their own intra-predicate cut-off conditions. In sum, the
column-first execution model has explored cut-off condi-
tions in two dimensions (i.e., intra-predicate and inter-predi-
cate) to improve the overall evaluation performance.

Despite the effectiveness of exploiting inter-predicate
cut-off condition (from the column-first execution model)
and exploiting intra-predicate cut-off condition (from early
stopping technique and memory-efficient storage layouts),
we still identify two issues.

S1: Mystifying Performance Characteristics of Conjunctive
Predicates. The performance characteristics under the com-
bining effect of inter-predicate and intra-predicate cut-off
conditions are still unclear yet. Obviously, we leverage both
cut-off conditions to reduce the number of evaluated instruc-
tions to make the computation faster. However, we observe
that the amount of performance gain is not strongly coinci-
dent with the amount of the reduction of instructions. Fig. 1
depicts the trend of “BS_best”, in terms of elapsed time and
instruction, when the selectivity decreases.1 In particular, the
instruction reduction by 30 percent only increases the perfor-
mance by 13 percent. Therefore, the throughput is not
strongly correlated with the number of instructions (as a lin-
ear factor), as non-linear factors, e.g., branch misprediction
and cachemiss, are critical to the overall performance.

S2: Difficult to Decide Evaluation Order of Predicates. Since
database predicates can be very selective, there is plenty of
related work [18], [25], [33], [34], [43] on how do the short-
circuit evaluation (i.e., branching-and &&) to explore inter-
predicate cut-off condition. Its approach is to try to guess

the optimal predicate order using different metrics, e.g.,
selectivity and rank. Since the selectivity of each predicate is
unknown for ad-hoc queries, the query optimizer (QO)
needs to calculate them via sampling [3], [18]. Based on the
estimated selectivity, the QO produces the query execution
plan (QEP) with an optimal evaluation order. Since the
selectivity estimation itself can have errors, the quality of
QEP cannot be guaranteed to be optimal after sampling. To
make things more challenging, we also take the effect of
memory-efficient storage layouts into account when evalu-
ating conjunctive predicates on modern CPUs.

Therefore, the burden of optimizing conjunctive predi-
cates under memory-efficient storage layouts still falls on
the user without any rule-of-thumb guidelines. In this
paper, our goal is to answer the following question:

Can we fully explore potentials of conjunctive predicates under
memory-efficient storage layouts on modern CPUs?

We make the following two contributions to answer this
question. First, we present a hybrid empirical/analytical
cost model (C1) to unveil the performance characteristics
(S1) of conjunctive predicates under memory-efficient stor-
age layouts. Second, we propose an order-oblivious execu-
tion scheme (C2) to optimize conjunctive predicates to
address the issue (S2).

C1: Hybrid Empirical/Analytical Cost Model (Understand-
ing). We propose the hybrid empirical/analytical cost
model to demystify the performance characteristics of con-
junctive predicates under memory-efficient storage layouts
on modern CPUs. First, we highlight two basic execution
patterns which can constitute any form of conjunctive predi-
cates. Second, we propose an empirical model to capture the
performance characteristics of each basic execution pattern.
The benefit of the empirical model is to be aware of CPU
characteristics, e.g., branch mispredication and cache miss,
while abstracting away the complexity from modeling the
effect of branch mispredication and cache miss. Therefore,
our model can be easily applicable to other CPUs. Third, we
propose an analytical model to bridge the gap between
overall performance and instantiated basic execution pat-
terns introduced by the targeted conjunctive predicates. The
benefit of the analytical model is to easily adapt to various
number of conjunctive predicates. The key finding is that
our cost model distinguishes high-cost instructions from
low-cost instructions such that it becomes possible to har-
vest full performance potential when evaluating conjunctive
predicates under memory-efficient storage layouts.

C2: Order-oblivious Execution Scheme (Optimizing). We
argue for an alternative approach for the evaluation of con-
junctive predicates. Instead of using selectivity estimation to
guess the optimal evaluation order of predicates in advance,
our approach explores the inter-predicate cut-off conditions
while keeping the predicate evaluation order-oblivious. We
propose Hebe, a simplified execution scheme for conjunctive
predicates. It is order-oblivious while maintaining high-
performance. Its order-oblivious property is attractive to the
QO that does not need to estimate selectivities and then to
determine the optimal evaluation order of predicates. Besides,
its raw performance is always better than the column-first
executionmodel with an optimal evaluation order.

We have conducted the experiments with synthesized
and TPC-H workloads on two Intel CPUs. The experimental

Fig. 1. Discrepancy between time and instruction reductions: 30 percent
instruction reduction only leads to 13 percent time reduction.

1. BS_best represents the implementation with an optimal evalua-
tion order under the ByteSlice memory layout. The exact experimental
setup is shown in Section 6.1. Fig. 1a is part of Fig. 10a, while Fig. 1b is
part of Fig. 10c.
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result shows that: 1) our hybrid empirical/analytical cost
model captures the performance characteristics of predicate
evaluation under memory-efficient storage layout, and 2)
Hebe can also achieve up to 269 percent performance gain
for the TPC-H queries over the state-of-the-art approach.

Limitations. Our work has two limitations. First, Hebe
does not support user defined functions (UDFs) for predi-
cate evaluation, as memory-efficient storage layout needs
us to partition codes at a finer granularity (e.g., bit or byte)
and then to directly perform operations on such a finer
granularity. Typically, UDFs do not allow such finer-
grained operations. Second, Hebe is not optimal in all the
cases. When the selectivity of a predicate is extremely small,
e.g., less than 0.001, the evaluation of conjunctive predicates
can benefit, in terms of memory traffic, from evaluating this
predicate first. However, we still need to identify this predi-
cate in advance to harvest this benefit.

2 BACKGROUND

2.1 Memory-Efficient Storage Layouts

Prior work [7], [14], [20] stores column values in a com-
pressed form after using the dictionary encoding technique

which is widely used in commercial products, such as IBM
Blink [31] and SAP HANA [9]. Meanwhile, several other
light-weight compression methods [1], [4], [8], [42] are also
used to accelerate main-memory columnar store. In this
subsection, we mainly describe the characteristics of three
memory-efficient storage layouts: VBP [22], BitWeaving/
V [22] and ByteSlice [11]. Literally, all the above memory
layouts can benefit from the early stopping mechanism [22],
with the key idea that it is not necessary to access all the bits
to determine the final result during predicate evaluation.

Vertical Bit Parallel (VBP) Layout. The VBP layout verti-
cally partitions codes at a bit level [22]. The codes are divided
into segments, each of which contains W codes, where W is
the width of a register which accommodates codes. Inside a
segment, W k-bit codes are transformed into k W -bit register
words, where the most significant bits are stored at the lowest
address. The jth bit in the ith word is the same as the ith bit
in the original jth code. Fig. 2a illustrates the transformation
of a segment of 32 13-bit codes to 13 32-bit words. Such
words are stored in a continuous memory space. The conse-
cutive segments are also stored continuously. Therefore, it
only needs one memory region MR1 to store transposed
codes. The performance of scan can be enhanced by early
stopping technique under the VBP layout. However, its per-
formance is not optimal. To illustrate, suppose a cache line
consists of eightwords. A running example is that the outcome
of comparisons on 32 codes is determined after evaluating
the first five words. Then, the other three words can be are
skipped due to early stopping technique. However, VBP still
loads such three words in CPU cache, wasting precious
memory bandwidth for unnecessary data.

Bitweaving/V. Since VBP cannot full utilize early stopping
technique to reducememory traffic, Bitweaving/V [22] (built
on VBP) is proposed to leverage both vertical and horizontal
partitioning. Bitweaving/V partitions a code not only at a bit
level but also in a horizontal fashion such that scans need to
really read less data from memory when cut-off condition is
satisfied. In particular, BitWeaving/V divides all the bits of k
words in a segment into dk=Ge bit groups, each of which is
associated with a memory region to store sequential bits,
where G is the number of bits in a bit group. Fig. 2b depicts
an example with G ¼ 5, where three memory regions are
used to store these words. The running example only needs
to access the first bit groupwhich consists of the first five bits
in the memory region MR1. Thus, compared with VBP, Bit-
weaving/V does not need to load the other three words into
CPU cache, so Bitweaving/V has the potential to save mem-
ory bandwidth. Actually, VBP is a special case of BitWeav-
ing/Vwith only one bit group andG = k.

Fig. 2. A running example is the transposition of a segment that contains
32 13-bit codes to three memory-efficient storage layouts.

Fig. 3. An example predicate: v < 1001112 from a code-centric view to a memory-region-centric view. Such a transformation is the key idea of our
cost model. Essentially, non-linear factors like cache miss and branch misprediction can be easily expressed in a memory-region-centric view, in
terms of access probability s.
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ByteSlice. The byte-level columnar layout ByteSlice [11]
vertically distributes bytes of a k-bit code across dk=8emem-
ory regions, as the minimum bank width of a SIMD register
is 8-bit in modern CPUs. ByteSlice is like BitWeaving/V in a
sense that both leverages vertical and horizontal partition-
ing. However, ByteSlice uses the basic unit of byte, instead
of bits, when vertically partitioning codes. Therefore, Byte-
Slice can fully leverage the data-level parallelism inside
SIMD instructions. Fig. 2c shows the transposition under
the ByteSlice layout. In particular, each 13-bit code is parti-
tioned into two memory regions.

2.2 Memory Efficient Storage Layouts on CPUs

Fig. 3a shows an example with 16 6-bit codes evaluating the
predicate v < 1001112 under BitWeaving/v. The first code is
“100000” in the first column. Its first two bits “10” are evaluated
first. Its outcome has not been determined yet, since they are
equal to the first two bits “10” of the literal. Therefore, it pro-
ceeds to the second two bits. It can safely terminate since they
are different, then the evaluation proceeds to the second code.
The bits which are evaluated are marked gray in the figure.
Accordingly,we compute the access probability s after process-
ing t significant bits for each code. The calculation is based on
the assumption from the previous work [11]: the probability of
a code matching the constant c at any bit position is 0.5. After
scanning the most significant t bits of one code, its outcome is
not determined only when theymatch the corresponding t bits
of the literal, and then s is 0:5t. Furthermore, when applying
the early stopping technique tomodernCPUs, its access proba-
bility is strongly associated with the hardware characteristics:
width of vector register (W ) and cache line size (CL).

From Vector Register Point of View. The CPU evaluates
four codes at a time in a segment which is implemented
with a vector register (W = 8 bits). So it requires four vector
registers (�1 , �2 , �3 and �4 ) to accommodate 16 codes. The
evaluation can safely terminate when all the codes in the
same vector register satisfy the intra-predicate cut-off condi-
tion introduced by early stopping technique. Fig. 3a shows
that �1 , �2 , �3 or �4 requires two, three, one or two evaluation
rounds, respectively. Accordingly, its associated access
probability sv of each layout is shown in Table 1, since the
number of codes in a vector register is W , W

G or W
8 for VBP,

BitWeaving/V or ByteSlice, respectively.
From Cache Line Point of View. The memory is loaded into

the cache hierarchy in cache-line-sized chunks.2 Suppose

the size (CL) of one cache line is 16 bits. Analogously, only
when all the codes in one cache line can be skipped, a reduc-
tion in memory bandwidth can be achieved. The corre-
sponding number of codes in a cache line is CL, CLG or CL

8 for

VBP, BitWeaving/V or ByteSlice, respectively. Therefore,
the associated access probability (sc) is calculated accord-
ingly, as shown in Table 1.

3 HYBRID EMPIRICAL/ANALYTICAL MODEL

In this section, we propose a hybrid empirical/analytical
performance model, which demonstrates the underlying
performance characteristics of conjunctive predicates under
memory-efficient storage layouts.3 We start with the design
methodology, followed by basic execution patterns and the
design details of the hybrid model. The detailed experimen-
tal setup can be found in Section 6.1.

3.1 Design Methodology

In this subsection, we summarize two concrete challenges
and then present the overall design methodology of our
hybrid cost model about how to address two challenges H1
and H2.

H1: Unclear Compound Effect of Cut-off Conditions. The per-
formance characteristics of conjunctive predicates under the
compound effect of inter-predicate and intra-predicate cut-
off conditions are still unclear due to its flexible execution
model. For example, one segment (e.g.,�1 ) in Fig. 3a) of codes
is evaluated, and then we proceed to the next segment (e.g.,
�2 ). Within a segment, the evaluation result on one memory
region (e.g.,MR1) determines whether the evaluation on the
next memory region (e.g., MR2) is required or not under
early stopping technique that explores the intra-predicate
cut-off condition. Moreover, the input filter (e.g., 1011) can
provide inter-predicate cut-off conditions. Thus, the whole
segment �2 does not need to be evaluated. To make things
worse, the input filter varies with conjunctive predicates.

H2: Various CPU Platforms. We want to apply our cost
model to predict the performance of conjunctive predicates
on various CPUs, whose hardware characteristics (e.g.,
branch misprediction and cache miss) have not been well
analyzed due to their non-linear factors. Due to the fact that
CPU vendors like Intel do not unveil its hardware details,
we are not able to know how aggressive the hardware pre-
fetcher is and how smart the branch predictor is.

Our Approach. We propose a hybrid empirical/analytical
performance model to address the above challenges. The
key idea behind our hybrid model is to change the angle of
view: from a code-centric view in Fig. 3a to a memory-
region-centric view in Fig. 3b.4 Therefore, the compound
effect of two cut-off conditions (H1) on a memory region
can be explicitly expressed in terms of access probability on
the memory region. As such, the cost of conjunctive predi-
cates is modeled as the sum of the cost on each involved
memory region, where the cost on each memory region is
measured when running in a standalone way (Section 3.4).

TABLE 1
Access Probability after Scanning t Significant

Bits on Modern CPUs

Vector register (sv) Cache line (sc)

VBP 1� ð1� ð0:5ÞtÞW 1� ð1� ð0:5ÞtÞCL
BitWeaving/V 1� ð1� ð0:5ÞtÞWG 1� ð1� ð0:5ÞtÞCLG
ByteSlice 1� ð1� ð0:5ÞtÞW8 1� ð1� ð0:5ÞtÞCL8

2. Modern cache hierarchy is more aggressive due to the impact of
hardware prefetcher. Instead of fetching a 64 bytes cache line each
time, it loads data and instructions into the cache in blocks of 128 bytes,
indicating that the adjacent cache line is loaded automatically. Take the
execution pattern stpr on MR2 as an example. One accessed code can
cause more than two cache lines (1,024 bits) loaded into CPU cache.

3. We mainly focus on BitWeaving/V and ByteSlice. VBP is omitted
since VBP is a special case of BitWeaving/V (only one bit group).

4. It is analogous to the transformation from time domain to frequency
domain.

2806 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:18:27 UTC from IEEE Xplore.  Restrictions apply. 



The a-priori knowledge behind the sum comes from the
sequential execution between any two consecutive memory
regions due to their dependency within a segment, and the
standalone way comes from the independence between any
two segments.

The performance characteristics on each memory region
can be covered by two basic execution patterns (Section 3.2)
such that the performance of the interested conjunctive
predicates can be the sum of the cost of the instantiated
basic execution pattern on each interested memory region.
Since the basic execution pattern has only one variable, we
can employ the black-box approach (i.e., running microbe-
nchmark on the targeted CPU) to sufficiently learn the rela-
tionship between the performance and the input variable
(i.e., access probability s) for each basic execution pattern.
As such, we can accurately model the compound effect of
branch misprediction and cache miss, which are two non-
linear factors on the targeted CPU. Besides, our cost model
can easily apply to other CPUs (H2), as we only need to re-
run the microbenchmark on other CPUs. The related nota-
tions are summarized in Table 2.

3.2 Basic Execution Patterns

Inspired by the generic database cost model [5], [24], [27],
we highlight two basic execution patterns as building blocks
of our hybrid analytical/empirical costmodel, which is dedi-
cated for conjunctive predicates under memory-efficient
storage layouts.

Sequential Traversal with Probable Read (Stpr). It sweeps
over the memory region MR and each time reads u bits
with the access probability s, abbreviated to stprðMR;u; sÞ,
as shown in Fig. 4. The memory region is traversed in order

so that no item is referenced more than once, and its access
probability s is determined by inter-predicate and intra-
predicate cut-off conditions. ByteSlice (or BitWeaving/V) is
equivalent to the case with u = 8 (or G), where G is the num-
ber of bits of each code in one bit group.5

Sequential Traversal with Store (Sts). The basic execution
pattern sts is dedicated for the result bit vector stored in the
memory region MR0. After the outcome of each code is
determined, its result bit is sequentially written to MR0,
where each code has one bit to indicate whether the code
satisfies the predicate (1) or not (0). Thus, u is 1 bit and s is
1. It is abbreviated to stsðMR0; 1b; 1Þ.

3.3 Empirical Model

The empirical model estimates the cost of each basic execu-
tion pattern on various CPUs. Such an empirical approach
can easily capture all the non-linear dynamics and relations
from two cut-off conditions on various CPUs, while keeping
the effort reasonably small. In particular, we focus on esti-
mating the unit cost of each basic execution pattern, where
the unit cost represents the average cost, in terms of compu-
tation and memory traffic, required by each code. In the fol-
lowing, we estimate the unit cost for sts and stpr.

3.3.1 Estimating Unit Cost for Sts

Since the execution pattern of stsðMR0; 1b; 1Þ is fixed and
has no variable, its unit cost of computation Ucomp

wr (or mem-
ory Umem

wr ) is constant. They can be easily determined from
calibrations.

Estimating Ucomp
wr . We benchmark the sequential memory

writing operations, using 64-bit store instruction which is
used in real implementation. Ucomp

wr is 0.006 ns/code on the
Haswell CPU, while 0.0063 ns/code on the Broadwell CPU.

TABLE 2
Summary of Parameters

Model Parameter Definition Source

stpr One basic execution pattern: sequential traversal with probable read Basic execution pattern

sts One basic execution pattern: sequential traversal with store Basic execution pattern

MR Memory region. (sts operates only onMR0, while stpr operates on memory regionMRi, where i � 1) Basic execution pattern

u Memory access granularity (bits). For ByteSlice, u = 8; For BitWeaving, u = G (number of bits in one bit group). Basic execution pattern

s Access probability. In each memory region, both cut-off conditions are explicitly expressed in terms of s. Basic execution pattern

Ucomp
wr Unit cost of computation of stsðMR0; 1b; 1Þ onMR0, e.g., 0.006 ns/code on the Haswell CPU Empirical Model

Umem
wr Unit cost of memory of stsðMR0; 1b; 1Þ onMR0, e.g., 0.0083 ns/code on the Haswell CPU Empirical Model

TPCrd Peak read bandwidth from external memory, e.g., 30GB/s on the Haswell CPU Empirical Model

TPCwr Peak writing bandwidth from external memory, e.g., 15GB/s on the Haswell CPU Empirical Model

UCðsÞ Unit cost of computation of stprwith varying access probability s Empirical Model

UMðsÞ Unit cost of memory of stprwith varying access probability s Empirical Model

CrdðsÞ Number of memory bits required by each code for stpr Empirical Model

T , Tcomp, Tmem The estimated value of total time, computation time, memory access time Analytical Model

Nc Number of CPU cores used Analytical Model

Ux The total unit cost of computation or memory, x 2 fcomp;memg Analytical Model

Ux
rdðjÞ The unit cost of computation or memory for the jth memory region, j � 1, x 2 fcomp;memg Analytical Model

sf Selectivity of input filter, used to explore inter-predicate cut-off condition Analytical Model

Px½j� Unit cost of computation or memory of the jth predicate of conjunctive predicates, x 2 fcomp;memg Analytical Model

Fig. 4. Basic execution pattern: stprðMR;u; sÞ.

5. Though the bits of each code are stored separated under the Bit-
Weaving/V layout, we use the sequential case to approximate for con-
venience. For example, the example predicate in Fig. 3a can be used to
approximate the BitWeaving/V layout withG ¼ 2.
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Estimating Umem
wr . Umem

wr is calculated to be u divided by

TPCwr, where TPCwr is the peak writing external memory
traffic handled by the memory subsystem per ns. TPCwr is
determined by the calibrations. In our experiments, we mea-
sure the elapsed time of the sequential memory writing
operations (using 256-bit AVX2 instruction), and then calcu-
late the peak memory bandwidth accordingly: 15 GB/s on
the Haswell CPU and 30 GB/s on Broadwell CPU. There-
fore, Umem

wr is estimated to be 0.0083 ns/code (or 0.0041 ns/
code) on the Haswell (or Broadwell) CPU.

3.3.2 Estimating Unit Cost for Stpr

Though stpr has only one variable (i.e., access probability s), it
is difficult to develop an analytical model to accurately pre-
dict its accurate performance with varying probability s on
various CPUs, due to the non-linear interference between
branch mis-predication penalty and cache miss latency. To
make thingsworse, the CPUvendors, e.g., Intel, do not unveil
their implementation details. Therefore, we resort to develop
a microbenchmark to quantitatively examine the relationship
between unit cost and s, which varies from 0 to 1 with the
step 0.001. Such a microbenchmarking method takes into
account all the hardware characteristics (e.g., branch mispre-
diction and cache miss) of the targeted CPU via running the
real microbenchmark on it. Therefore, it is simple yet accu-
rate, whilemaintaining effort reasonably small.

Listing 1.Microbenchmark stprwith Vector Instruction

vector v_sum = {0, 0,..., 0};//Initialize to 0

vector v_con = {7, 7,..., 7};//For comparison

for (i = 0; i < MR.n/32; i++) {

if (sel[i%16K] <= C){ //Control selectivity

vector v_data = ((vector*)R)[i];

vector v_cmp = vec_cmpgt(v_data, v_con);

v_sum = vec_or(v_sum, v_cmp);

}

}

Microbenchmarking. Suppose a data region MR contains
MR.n items, each of which contains u bits. Its cardinality R.
n is 232, so the MR is out of last level cache and the initial-
ization overhead becomes trivial. Suppose the microbe-
nchmark is implemented with W -bit vector instructions
with u-bit bank, as shown in List 1. In order to accommo-
date varying selectivity s, we introduce an inner array sel
and one parameter C. The array sel contains 16*1024 chars,
each of which is uniformly distributed random value from 0
to 255. The array can stay in L1 cache after the first-round
reference, so its overhead is trivial, in term of computation
time and external memory access. The parameter C is used
to control the input selectivity s. Note C controls whether a
memory chunk (containing 32 items) is accessed or not. Due
to the fact that all the banks of a vector register are proc-
essed simultaneously when only one bank (code) needs to
be processed, the relationship between C and s is illustrated
in Equation (1)

C ¼ d255� ð1� ð1� sÞ32Þe: (1)

Estimating Unit Cost of Computation UCðsÞ. We run the
microbenchmark and then measure the relation between s

and UCðsÞ on both CPUs, as shown in Figs. 5a and 5c. When
s is larger than 0.12, UCðsÞ is stable since it almost evaluates
all the elements in this memory region due to the impact of
SIMD instructions. Therefore, we omit this range in Figs. 5a
and 5c. Now we employ the curve fitting to capture the rela-
tion between s and UCðsÞ on the Haswell CPU.6 We choose
to approximate the UCðsÞ by a cheaper piecewise approxi-
mation, as shown in Equation (2). The fitting result shows
that the approximation works well with the metric (good-
ness of fit R2) larger than 0.97 for each curve

UCðsÞ ¼
388114s3 � 7041:8s2 þ 40:68sþ 0:027; 0 � s � 0:01
2390:5s3 � 277:2s2 þ 8:85sþ 0:038; 0:01 < s � 0:08
�12:37s3 þ 5:9175s2 � 0:94sþ 0:116; 0:08 < s � 0:12

0:0619; s > 0:12

8>><
>>: :

(2)

Estimating Unit Cost of Memory UMðsÞ.UMðsÞ is estimated to
be CrdðsÞ divided by the peak memory read bandwidth
TPCrd, where CrdðsÞ denotes the number of memory bits
required by each code for stpr in Equation (3)

UMðsÞ ¼ CrdðsÞTPCrd: (3)

We estimate TPCrd from calibrations. In particular, we
measure the elapsed time of the sequential memory reading
operations (using 256-bit AVX2 instruction), and then calcu-
late the peak memory bandwidth accordingly: 30 GB/s on
the Haswell CPU and 59 GB/s on the Broadwell CPU.

We estimate CrdðsÞ from running the microbenchmark on
real CPUs. In particular, obtain the training pairs (s, CrdðsÞ),
as shown in Figs. 5b and 5d. We employ the Intel Perfor-
mance Counter Monitor [36] to obtain the exact amount of
data read from main memory into cache hierarchy, since

Fig. 5. Unit cost of stpr with varying s on the two targeted CPUs. Broad-
well is a bit slower than Haswell under stpr. Two CPUs have different
prefetching policies. Haswell is more aggressive when s is less than
0.002. Broadwell is more aggressive when s is larger than 0.003. Note,
different CPUs with the same generation can have slightly different unit
cost due to frequency difference, while CPUs across generations have
obviously different curve trends.

6. We can easily apply the same curve fitting to the pair obtained on
the Broadwell CPU. In the following, we omit the numbers obtained on
the Broadwell CPU due to page limit.

2808 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:18:27 UTC from IEEE Xplore.  Restrictions apply. 



not only targeted data are read into memory hierarchy, but
also the extra traffic from hardware prefetcher, page table
loads et al. All the memory traffic competes for the precious
memory bandwidth. We also use the curve fitting method
to determine this relationship (s, CrdðsÞ). Then, we develop
a quadratic regression model to predict the value of CrdðsÞ
with varying s (from 0 to 0.012), as shown in Equation (4).
The fitting result shows that the regression model works
well with the metric (goodness of fit R2) equal to 0.9991

CrdðsÞ ¼
0; s ¼ 0

�70302:4s2 þ 1477:84s� 0:0096; 0 < s < 0:012
8; s � 0:012

8<
: :

(4)

3.4 Analytical Model

The analytical model predicts the performance of various
conjunctive predicates under memory-efficient storage lay-
outs in both single- and multi-threaded scenarios and is
applicable to various CPU platforms. It is calculated to be
the maximal value of computation time Tcomp and memory
access time Tmem, as shown in Equation (5). The computa-
tion time is Tcomp=Nc when Nc CPU cores are used to evalu-
ate predicates simultaneously. Tmem is measured when all
the memory transactions are served with the peak achiev-
able memory bandwidth. It is useful for the multi-threaded
implementation, where the memory bandwidth can be the
main bottleneck, as all the threads can compete for precious
memory bandwidth. The computation (or memory) time is
calculated to be the total unit cost (Ux) multiplied by the
number (R:n) of codes, depicted in Equation (6), where
x 2 fcomp;memg

T ¼ maxðTcompNc; T
memÞ (5)

Tx ¼ Ux �R:n: (6)

In the following, we predict Ux for a single predicate
(Section 3.4.1) and conjunctive predicates (Section 3.4.2).

3.4.1 Evaluating Ux of One Single Predicate

For a single predicate, we only consider the intra-predicate
cut-off condition introduced by the early stopping technol-
ogy. Therefore, Ux is estimated to be the sum of the unit
cost of computation or memory on each involved memory
region under the effect of intra-predicate cut-off condition,
as shown in Equation (7). In the following, we illustrate
how to compute the unit cost on each memory region

Ux ¼ Ux
wr þ

Xdk=ue
j¼1

Ux
rdðjÞ: (7)

On MR0, each code writes one bit back to the result bit
vector. Therefore, its unit cost Ux

wr is fixed and directly
obtained from the empiricalmodel, as shown in Section 3.3.1.

On MR1, its execution pattern sequentially sweeps over
MR1 since the first u bits of each code have to be scanned
before its outcome is determined. Thus, its execution pat-
tern is abbreviated to stprðMR1; u; 1Þ and Ucomp

rd ð1Þ is UCð1Þ
while Umem

rd ð1Þ is UMð1Þ, as shown in Section 3.3.2.

On MRj (j > 1), its execution pattern can utilize the
early stopping technique to explore the intra-predicate cut-
off condition and thus it conditionally loads u bits of each
code on MRj with the access probability s = 0:5u	ðj�1Þ.7 The
intuition is that only when the evaluation of the first
ðj� 1Þ 	 u bits does not have the definite comparison result,
it proceeds to the jth memory region. Therefore, its execu-
tion pattern is abbreviated to stprðMRj; u; 0:5

u	ðj�1ÞÞ and
Ucomp
rd ðjÞ is UCð0:5u	ðj�1ÞÞwhile Umem

rd ðjÞ is UMð0:5u	ðj�1ÞÞ.
To sum up, Ucomp and Umem are evaluated as shown in

Equations (8) and (9)

Ucomp ¼ Ucomp
wr þ

Xdk=ue
j¼1

UCð0:5u	ðj�1ÞÞ (8)

Umem ¼ Umem
wr þ

Xdk=ue
j¼1

UMð0:5u	ðj�1ÞÞ: (9)

3.4.2 Evaluating Ux of Conjunctive Predicates

We evaluate conjunctive predicates using a column-first
execution model, which evaluates predicates sequentially.
Therefore, Ux of N conjunctive predicates is calculated to be
the sum of the unit cost Px½j� of the jth predicate, where j is
from 1 toN , as shown in Equation (10)

Ux ¼
XN
j¼1

Px½j�: (10)

Evaluating Px½1�. The first predicate does not have any
input filter to explore inter-predicate cut-off condition, so
Px½1� is exactly the same as in Section 3.4.1.

Evaluating Px½j�ðj � 2Þ. The jth predicate not only
exploits its intra-predicate cut-off condition, as well as
inter-predicate cut-off condition from its input filter. The fil-
ter comes from the fact that codes which do not satisfy the
previous predicates do not need to be evaluated by the cur-
rent predicate. Suppose the selectivity of the input filter is
sf ½j�.8 Now we compute Zx½j� of the jth predicate under
compound effect of two cut-off conditions. As expected,
Zx½j� is estimated to be the sum of the unit cost on each
related memory region.

ForMR0, it does not change the access probability s since
it will write one bit per code back to main memory regard-
less of the content of the input filter bit vector.

For MRj (j � 1), s becomes sf ½j� 	 0:5u	ðj�1Þ, where sf ½j�
comes from the inter-predicate cut-off condition and 0:5u	ðj�1Þ

comes from the intra-predicate cut-off condition.9

For sumup, the unit cost of computation (Pcomp½j�) ormem-
ory (Pmem½j�) is evaluated as shown in Equations (11) and (12).

7. This is based on one assumption that the input table is uniform.
When the input table is skewed, s can be different in Equa-
tions (8), (9), (11), (12). We leave the calculation of s for the skewed
dataset to our future work.

8. sf ½j� is equal to the combined selectivity of of j-1 predicates (from
1 to j-1). Based on the independence assumption among predicates,
sf ½j� ¼

Qj�1
i¼1 psðiÞ, where psðiÞ represents the selectivity of the ith predi-

cate. For example, sf [2] is the selectivity psð1Þ of the first predicate.
9. Similarly, the probability becomes ð1� sfÞ 	 0:5u	ðj�1Þ for disjunc-

tive predicates.
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Pcomp½j� ¼ Ucomp
wr þ

Xdk=ue
i¼1

UCðsf ½j� 	 0:5u	ði�1ÞÞ (11)

Pmem½j� ¼ Umem
wr þ

Xdk=ue
i¼1

UMðsf ½j� 	 0:5u	ði�1ÞÞ: (12)

4 UNDERSTAND CONJUNCTIVE PREDICATES VIA

HYBRID COST MODEL

In this section, we aim to understand the characteristics of
conjunctive predicates under memory-efficient storage lay-
outs on modern CPUs via our hybrid cost model. First, we
use our cost model to predict the performance of conjunc-
tive predicates (Section 4.1). Second, we do the performance
profiling to unveil the underlying characteristics so as to
motivate the further optimization of conjunctive predicates
on these storage layouts (Section 4.2).

4.1 Evaluation of Hybrid Cost Model

We evaluate our hybrid model under ByteSlice with two
cases: one predicate and two conjunctive predicates. Assume
both codes and constant c are 17-bit, indicating d17=8e ¼ 3
memory regions are required to store codes.10 The cardi-
nality is 232, so its size is larger than the capacity of last
level cache.

One Single Predicate. The hybrid empirical/analytical cost
model computes the overall unit cost of computation to be
the sum of the unit cost from each memory region, with the
unit cost breakdown shown in Figs. 6a and 6c. We observe
that the actual unit cost (“actual”) roughly matches the pre-
dicted unit cost (“predicted”) from our cost model, with rel-
ative error of 3 percent. Another interesting observation is
that a single CPU on the Broadwell CPU is a bit slower than
that on the Haswell CPU, as the frequency of the Haswell
CPU is higher. Additionally, we also compare the memory
traffic, whose breakdown is illustrated in Figs. 6b and 6d.
“ByteSlice” depicts the memory traffic estimation from the
existing work [11]. The experimental result shows that the

relative error of the hybrid model (3.6 percent) is signifi-
cantly less than that of “ByteSlice” (26.4 percent), since our
hybrid model considers the effect of modern memory hier-
archy, e.g., hardware prefetcher, while the work [11] only
does the theoretical computation.

Two Predicates. The selectivity of the first predicate dpð1Þ is
50 percent, while the selectivity of the second predicate dpð2Þ
varies, from 0.5 to 0.0005. Then, the optimal evaluation order

represents the case with dpð2Þ evaluated first, while the worst

evaluation order evaluates dpð1Þ first. Our hybrid model can

well captures the performance trend of both optimal and
worst evaluation orders on the Haswell CPU, as shown in
Fig. 7. Specifically, our hybrid model can predict that when

the selectivity of dpð2Þ decreases, the optimal evaluation order
increases the overall performancewhile the worst evaluation
order keeps stable. The performance difference can reach up
to 41.5 percent with only two predicates.

4.2 Insights From Performance Profiling

To have a better understanding on the performance charac-
teristics of conjunctive predicates on modern CPUs, we
obtain three insights from the compound effect of intra-
predicate and inter-predicate cut-off conditions based on
our hybrid cost model. Quantitatively, we make three obser-
vations that guide the further optimization of conjunctive
predicates.

4.2.1 Insight About Intra-Predicate Cut-Off Condition

Now we quantitatively analyze the performance character-
istics of the single predicate which only explores the intra-
predicate cut-off condition.

Observation 1. Selective Traversal Can Be Slower than
Sequential Traversal. As depicted in Figs. 5a and 5c, the unit
cost Ucomp

rd ð2Þ of computation on MR2 (s = 0.0039) is larger
than that Ucomp

rd ð1Þ on MR1 (s = 1). Ucomp
rd ð1Þ is 0.061 ns/code

onMR1, where s is 1 due to the fact that the first byte is always
evaluated. However, Ucomp

rd ð2Þ is surprisingly 0.096 ns/code on
MR2, where s is only 0.0039 (0:58) due to the effect of intra-
predicate cut-off condition. Its underlying reason is that each
real access onMR2 is very expensive due to high cache miss and
branch mispredication penalties, while each real access on MR1

is cheap due to its correct branch predication and cache hit.

4.2.2 Insight About Inter-Predicate Cut-Off Condition

Now we quantitatively analyze the performance characteris-
tics of the inter-predicate cut-off condition on the predicate,
which also explores the intra-predicate cut-off condition. The
inter-predicate cut-off condition is introduced by the input

Fig. 6. Cost model evaluation for one predicate on both CPUs.

Fig. 7. Cost model evaluation of two predicates.

10. It can be easily applied to different code bitwidth that corre-
sponds to different number of memory regions.
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filter whose selectivity is sf . More specifically, we quantita-
tively examine its effect on the execution pattern on each
memory region11 andmake the following two observations.

Observation 2. Reduction of Low-cost Instructions can
always Degrade Performance. In particular, the reduction of
the access probability on MR1 can always degrade the perfor-
mance. From Fig. 5a, we can observe that UCðsÞ is larger than
UCð1Þ, when 0:001 � s < 1. It means that the input filter can
degrade the performance of the execution pattern onMR1 when
its selectivity sf is larger than 0.001, since each code is evalu-
ated (s = 1) for the execution pattern onMR1, which are highly
optimized with the help from hardware prefetcher (hit in cache)
and branch predictor (correct predication). The input filter
potentially incurs high branch misprediction and cache miss
penalties, which can not be amortized by instruction reduction.

Observation 3. Reduction of High-cost Instructions Signifi-
cantly Increases Performance. In particular, the slight reduc-
tion of its access probability on MRj can result in the
significant reduction of its unit cost, where j > 1. We have
similar observations for all the memory regions MRj, where
j > 1. We use the performance characteristics on MR2 as an
example. In order to quantitatively show the effect of inter-
predicate cut-off condition, we introduce one metric average
computation cost for each accessed code (Ocomp), which is
defined to be UCðsÞ divided by s. We can observe that Ocomp on
MR2 is 417 times larger than that on MR1, as shown in
Fig. 8a, since MR2 suffers from high branch mispredication
and cache miss penalties for each access. Similarly, the average
memory cost Omem for each accessed code on MR2 is roughly
153 times larger than that on MR1, where Omem is defined to
be UMðsÞ divided by s, as shown in Fig. 8b. Each code access
on MR2 may load more than two cache lines (1,024 bits) due to
the effect of hardware prefetcher. In contrast, Omem onMR0 (or
MR1) only requires 1 bit (or 8 bits) per code. Suppose the predi-
cate has an input filter (sf = 0.5), s on MR2 shifts from the
original 0:58 ¼ 0:0039 to 0.00195. Consequentially, Ucomp

rd ð2Þ
can be reduced from 0.096 to 0.065 ns/code (benefiting single-
threaded implementation), while Umem

rd ð2Þ shifts from 4.88 to
2.56 bits/code (benefiting multi-threaded implementation).

Put it All Together. The intuition of our findings is that an
instruction has extremely different evaluation cost and then our
optimization direction should focus on reducing high-cost instruc-
tions while leaving low-cost instructions untouched. In particu-
lar, the reduction of low-cost instructions has the potential

to degrade performance due to introducing branch mispre-
diction and cache miss (Observations 1 and 2). However, the
reduction of evaluated instructions that have high branch
misprediction and cache miss penalties significantly
improves performance (Observation 3). The above three
observations serve as the design guidelines of the further
optimization process under memory-efficient storage lay-
outs on modern CPUs.

5 ORDER-OBLIVIOUS EXECUTION SCHEME HEBE

(OPTIMIZATION)

5.1 Design Methodology

Based on the above three observations, we present the moti-
vating example for the proposed execution scheme Hebe
which is order-oblivious and high-performance. Specifi-
cally, we demonstrate its advantage over the column-first
execution model, in terms of raw performance and order sensi-
tivity. In order to concretely demonstrate the difference, we
import 
 [24], [27] to indicate the sequential execution (not
commutative), like &&. � indicates the concurrent execu-
tion (commutative), like &. Suppose we have a conjunction

of two predicates: dpð1Þ ^ dpð2Þ
dpð1Þ : v < vc dpð2Þ : u < uc

v1 ¼ ð11111111 11111Þ2 u1 ¼ ð11110000 00000Þ2
v2 ¼ ð10101010 00000Þ2 u2 ¼ ð11111010 11111Þ2
v3 ¼ ð00000000 11001Þ2 u3 ¼ ð00110000 10011Þ2
v4 ¼ ð10101010 00010Þ2 u4 ¼ ð11111111 10101Þ2
vc ¼ ð10101010 00111Þ2 uc ¼ ð11110000 01101Þ2:

5.1.1 Column-First Execution Model

Without loss of generality, suppose dpð1Þ is evaluated first in
column-first execution model. After evaluating the first iter-
ation which compares the first bytes (underlined) of v and

vc, v1 and v3 have the definite result due to v
½1�
1 > v½1�c and

v
½1�
3 < v½1�c . Therefore, they can skip the next iteration under
early stopping technique. However, v2 and v4 need to pro-

ceed to the next iteration due to v
½1�
2 ¼ v

½1�
4 ¼ v½1�c . After evalu-

ating dpð1Þ, we can obtain its result bit vector (0, 1, 1, 1),
indicating that only v1 does not satisfy the predicate. When

evaluating dpð2Þwith the previous bit vector, the codes u2, u3

and u4 need to compare their first bytes u½1� with u½1�
c . To bet-

ter illustrate, the evaluated bytes are marked blue. In gen-

eral, dpð1Þ ^ dpð2Þ can be expressed in Fig. 9a, where u½1�
u½2�

depicts the sequential evaluation on u½1� and u½2� and cut-off

conditions for each byte are also illustrated.

Order Sensitivity. As indicated by our cost model, the per-
formance of conjunctive predicates is determined by the
access probability s on each involved memory region, and s

is determined by two cut-off conditions. If dpð2Þ is evaluated
first, the expression becomes u½1�
u½2�
v½1�
v½2�. As such, cut-

off conditions for each memory region can be significantly

changed. For example, the cut-off condition for u½1� changes
from v � vc to null. We conclude that the overall perfor-
mance is sensitive to the evaluation order of predicates.

Fig. 8. Average cost for each accessed code of stpr. The average cost
differs by three orders of magnitude among memory regions.

11. For the execution pattern on MR0, the result bit of each code is
stored back to the memory (s = 1) regardless of the input filter. In other
words, the inter-predicate cut-off condition has no effect onMR0.
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Raw Performance.We evaluate the total cost (marked blue).
In particular, seven low-cost comparisons are performed on

the first bytes: four in dpð1Þ and three in dpð2Þ, and two high-
cost comparisons on the second bytes are performed.

5.1.2 New Execution Scheme: Hebe

We observe that the predicate evaluation under memory-
efficient storage layout can be broken down into the evalua-
tions on its associated memory regions. This observation
motivates our new execution scheme Hebe. The key idea of
Hebe is to tune the evaluation order of predicates at mem-
ory region level such that we can reduce the high-cost
instructions while keeping the correctness of predicate eval-
uation. Fig. 9b depicts the abstraction of the new execution
scheme.

The first step is to perform the evaluation on v½1� and u½1�

concurrently, denoted by u½1��v½1�. The second step is to
aggressively explore the inter-predicate cut-off conditions
from the intermediate statuses of v½1� and u½1� (marked GF in
the figure).12 In particular, GF can add one inter-predicate
cut-off condition (u½1� > u½1�

c ) to the evaluation of v½2�,
together with (v½1� 6¼ v½1�c ) from its own intra-predicate cut-off
condition. Similarly, one inter-predicate cut-off condition
(v½1� > v½1�c ) is added to the evaluation of u½2�. The probability
of (v½1� > v½1�c ) is roughly the same as that of (v > vc).

13 The
third step is to evaluate v½2� and u½2� if necessary. We find
that no code (either v or u) needs to enter the second itera-
tion. For example, v

½2�
2 supposes to be evaluated in column-

first execution model. However, Hebe does not need to eval-
uate v

½2�
2 since the outcome of the second tuple has already

been determined (0) due to u
½1�
2 > u½1�

c .
Order Sensitivity. Hebe is oblivious to evaluation order

due to the following two factors. First, the memory region
with the same index is evaluated interchangeably for each
predicate at the same step. For example, the evaluation
order of v½1� and u½1� is not important. Second, after evaluat-
ing the first memory region of each predicate, it proceeds to
the second step (i.e., GF ) and then enters the evaluation of
the second memory region if necessary. So, Hebe is oblivi-
ous to predicate order.

Raw Performance. We evaluate its total cost (marked
underlined). In particular, eight comparisons are performed
on the first bytes, and no comparison is performed on the sec-
ond bytes. According toObservation 2, its performance on the
first bytes is better than that of column-first executionmodel.

According to Observation 3, its performance on the second
bytes is also better due to the reduction of two high-cost eval-
uations. Therefore, Hebe produces better performance.

5.2 Design and Implementation of Hebe

In this subsection, we present the implementation details of
Hebe, a simplified execution schemewhich is order-oblivious
and high-performance onmodernCPU architectures.

Algorithm 1. Proposed Execution Scheme: Hebe

Input:N : the number of predicates,
cðiÞ: the literal of pðiÞ,
vlðiÞ: the lth code of pðiÞ,
BðiÞ: the number of bytes of codewhich evaluates pðiÞ.

Output: bitvector: result bit vector of conjunctive predicates.
/* Initialization Step. */

1 for i ¼ 1 toN do
2 for j ¼ 1 to BðiÞ do
3 D½j�

c ðiÞ = v_broadcast(c½j�ðiÞ)
4 end
5 end
/* Iterate each segment. */

6 for (each segment with codes vlþ1. . .vlþW=8) do
/* 1, zero segment-level status masks. */

7 for i ¼ 1 toN do
8 MltðiÞ ¼ 0W

9 MgtðiÞ ¼ 0W

10 MeqðiÞ ¼ 1W

11 end
/* 2, evaluate the jth byte. */

12 for j ¼ 1 tomax1�i�NBðiÞ do
/* 2.1, evaluate the ith predicate. */

13 for i ¼ 1 toN do
/* Evaluate if cut-off condition is not met. */

14 if ðMeqðiÞ 6¼ 0W Þ&&ðj � BðiÞÞ then
15 D½j�ðiÞ ¼ v loadðv½j�lþ1ðiÞ. . .v½j�lþW=8ðiÞÞ

/* Compute byte-level state masks. */
16 MltðiÞ ¼ v cmp ltðD½j�ðiÞ; D½j�

c ðiÞÞ
17 MgtðiÞ ¼ v cmp gtðD½j�ðiÞ; D½j�

c ðiÞÞ
18 MeqðiÞ ¼ v cmp eqðD½j�ðiÞ; D½j�

c ðiÞÞ
/* Update segment-level state masks. */

19 MltðiÞ ¼ v orðMltðiÞ; v andðMeqðiÞ;MltðiÞÞÞ
20 MgtðiÞ ¼ v orðMgtðiÞ; v andðMeqðiÞ;MgtðiÞÞÞ
21 MeqðiÞ ¼ v andðMeqðiÞ;MeqðiÞÞ
22 end
23 end

/* 2.2, compute global pruning factorM. */
24 M = global_filter(Meqð1 : NÞ,Mgtð1 : NÞ,Mltð1 : NÞ)

/* 2.3, useM to prune N predicates. */
25 for i ¼ 1 toN do
26 MeqðiÞ ¼ v andðMeqðiÞ;MÞ
27 end
28 end

/* 3, compute bit vector for this segment. */
29 Mfinal = final_mask(Meqð1 : NÞ,Mgtð1 : NÞ,Mltð1 : NÞ)
30 r = v_movemask(Mfinal)
31 Append r to bitvector
32 end

The detailed execution flow of Hebe is shown in
Algorithm 1. We use ByteSlice as the default storage layout.

Fig. 9. Execution schemes: From column-first to Hebe.

12. The detailed description of GF is shown in Section 5.2.
13. We assume that the values of 13-bit codes are uniformed distrib-

uted in the range [0, 213), so the probability of (v > vc) is 1� vc=2
13 ¼

33:5%while the probability of (v½1� > v½1�c ) is 1� v½1�c =28 ¼ 33:6%.
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N conjunctive predicates are taken as input and a result bit
vector bitvector is generated to indicate whether each tuple
satisfies conjunctive predicates or not.

In the initialization step, the bytes of literal cðiÞ of pðiÞ are
broadcast to dBðiÞ=8e SIMD registers DcðiÞ (Line 3). BðiÞ is
the number of memory regions where pðiÞ is evaluated.
DcðiÞ is computed once as it is shared by each segment
(Lines 1-5).

For each segment, the detailed execution flow (Lines 6-
31) is illustrated in three steps.

First, we initialize three W -bit segment-level status
masks (Lines 7-11) for each predicate: less-than mask Mlt

(0W ), greater-than mask Mgt (0
W ) and equal-to mask Meq

(1W ), indicating uncertain status of a predicate.14 Each mask
consists of W=8 8-bit banks, where all the eight bits in a

bank are 18 or 08.
Second, codes are examined one byte (i.e., one memory

region) per iteration until the cut-off condition is reached or
max1�i�NBðiÞ iterations are finished (Lines 12-28). Before
each iteration, the cut-off condition is checked for each predi-
cate to explore the cut-off possibility. The jth byte needs to
evaluate pðiÞ (Lines 16-22) when its cut-off condition

(MeqðiÞ 6¼ 0W ) is not satisfied and when each code of pðiÞ
contains at least j bytes (Line 14). Note, the evaluation order
of predicates here does not matter. The jth byte in this seg-
ment is loaded into a SIMD register (Line 15) to compare
with the corresponding jth byte of literal cðiÞ (Lines 16-18),
with the comparison statuses stored into three local masks
(Mlt, Mgt and Meq). Then, these local masks are used to
update three segment-level status masks (Lines 19-21). After
all theN predicates are evaluated, their segment-level status
masks are sent to the global_filter module (Line 24) which
explores the inter-predicate cut-off conditions for N predi-
cates. In particular, the filter mask of each predicate is evalu-
ated to be :Mgt for the comparison type < or �, :Mlt for

> or �, :MltjMgt for¼, and 1W for 6¼. Then,M is calculated

to be ANDed each predicate’s filter mask together. Intui-
tively, M indicates whether the result of the evaluated tuple
has already reached the false state or not after evaluating j
bytes. If the false state is detected, no further evaluation on
this tuple is required. Therefore, M can be used to further
prune the uncertain conditions (Lines 25-27) such that high-
cost instructions, which suffer from branch misprediction
and cache miss, can be significantly eliminated at the
expense of a few low-cost arithmetic instructions (Line 24).
As such, Hebe harvests performance potential of memory-
efficient storage layouts and then achieves better perfor-
mance onmodern CPUs.

Third, after the above iterations, the final result of each
tuple in this segment is determined. ThenMlt,Mgt andMeq

of this segment are sent to the final_mask module that com-
putes the final result mask Mfinal (Line 29) for this seg-
ment.15 In particular,W -bitMfinal is computed to be ANDed
the output result mask of each predicate together, while the

output result mask of each predicate is evaluated to be Mlt

for < ,MltjMeq for�,Mgt for > ,MgtjMeq for�,Meq for¼,
and MgtjMle for 6¼. Then, Mfinal is condensed to a W=8-bit
mask r using the v_movemask instruction (Line 30). Lastly,
themask (r) is appended to the result bit vector bitvector.

6 EXPERIMENTAL EVALUATION OF HEBE

6.1 Experimental Setup

Hardware Configuration.We conduct our experiments on two
Intel CPUs of two generations: Haswell and Broadwell, as
shown in Table 3. All the related programs are compiled
using ICC 16.0.3 with the highest optimization effort -O3. In
order to accurately collect the performance profiles, we use
the Intel Performance Counter Monitor [36] to collect the
performance counters on the program of interest.

Workloads. In our experiment, there are two kinds of
workloads: synthesized workload and TPC-H workload.
For the synthesized workload, we create the table with dif-
ferent number of columns, where each column contains one
billion k-bit codes. By default, values of codes are uniformly
distributed in the range ½0; 2kÞ, where k is 17 by default. The
corresponding advantage is that the selectivity of each pred-
icate can be tuned so that we can analyze the performance
characteristics with varying selectivity. For the TPC-H data-
set, we evaluate twelve TPC-H queries (Q1, Q3, Q5, Q6, Q7,
Q8, Q10, Q12, Q14, Q15, Q17 and Q19) with the scale factor
(SF) of 10. The number of predicates varies from 2 to 36.

ComparisonMethodology. Five implementations are used for
performance comparison. The first one is Hebe (denoted as
“Hebe”). Two cases come from the state-of-the-art column-
first execution model [11] under ByteSlice memory layout.
“BS_best” (or “BS_worst”) is the implementationwith an opti-
mal (or worst) evaluation order. The other two approaches
come from the SIMD-scan method [39] with the naive column
store, where “Naive_best” (or “Naive_worst”) is the imple-
mentationwith the optimal (or worst) order.

6.2 Evaluation on Synthesized Workload

We evaluate Hebe using synthesized workload. Suppose

there are four predicates dpð1Þ : v1 < c1, dpð2Þ : v2 < c2,dpð3Þ : v3 < c3 and dpð4Þ : v4 < c4, whose selectivities are

sð1Þ, sð2Þ, sð3Þ and sð4Þ, respectively. We set the selectivity

(e.g., sð1Þ) of each predicate by controlling the value of lit-
eral (e.g., c1). Specifically, sð2Þ, sð3Þ and sð4Þ are set to be
50 percent, and sð1Þ varies from 50 to 0.1 percent. “BS_best”

is the case with the evaluation order where dpð1Þ is evaluated
first, while “BS_worst” is the case with the evaluation order

where dpð1Þ is evaluated lastly.

TABLE 3
Hardware Platforms

Intel Haswell-E Intel Broadwell

CPU Core i7-5960X Xeon E5-2680 v4
Cores/Threads 8 / 16 14 / 28
Frequency 3.0 GHz 2.4 GHz
SIMD 256-bit AVX2 256-bit AVX2
L3 Cache 20 MB 35MB
Memory DDR4, 68 GB/s DDR4, 76.8 GB/s

14. For ease of understanding, we use plain Mlt, Mgt Meq (without
i) whenever we refer to all the predicates (i is from 1 toN).

15. The fact that Meq is pruned by M (Lines 25-27) will not violate
the correctness, since Meq is pruned only when the result of the tuple
has already been determined. The determination comes from Mlt, Mgt

and is oblivious toM.
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Now, we study the performance of the conjunctive predi-

cates dpð1Þ&& dpð2Þ&& dpð3Þ&& dpð4Þ. Fig. 10a compares the
throughput of three cases in single-threaded approach, in
terms of tuples/ns. The x-axis (s) stands for the varying

selectivity sð1Þ of dpð1Þ. To unveil the underlying reason of
performance improvement, we also provide three perfor-
mance metrics (collected from Intel Performance Counter
Monitor [36]): memory read bytes, instructions, L3 cache

misses. We make two observations. First, when dpð1Þ
becomes more selective (i.e., 50 to 0.1 percent), the perfor-
mance of “BS_best” cannot be significantly better than that
of “BS_worst”, since the column-first execution model does
not aggressively reduce high-cost instructions on memory
region MR2. Therefore, “BS_best” still has high L3 cache
miss ratio (Fig. 10d), although the number of consumed
instructions has already been significantly reduced (Fig. 10c).
Second, Hebe can achieve 89-153 percent performance gain
over “BS_best”, since Hebe aggressively reduces high-cost

instructions. Take dpð2Þ for example, three inter-predicate

cut-off conditions (v1½1� > c1½1�, v3½1� > c3½1� and v4½1� > c4½1�)
are exploited, together with the intra-predicate condition

v1½2� 6¼ c1½2�. In contrast, “BS_best” only exploits two cut-off

conditions (v1 > c1, v2½1� > c2½1�). Note, Hebe is still faster
than “BS_best” that requires less memory traffic when sð1Þ
is 0.1 percent.

Effect of Inter-Predicate Cut-off Conditions. The global_filter
module is used to explore the cut-off conditions among
predicates. “No pruning” is the case without global_filter
module. From Fig. 11a, we make two observations. First,
“No pruning” achieves roughly the same performance
when varying the selectivity for conjunctive predicates since
the inter-predicate cut-off condition is not explored and
each predicate can only benefit from its own intra-predicate
cut-off condition. Second, Hebe significantly benefits from
the reduction of selectivity s (from 0.5 to 0.001). In particu-

lar, the low value of s of dpð1Þ can reduce the access probabil-
ity of the execution pattern on MR2 of the other three
predicates.

Effect of Predicate Number. Fig. 11b shows the throughput
of conjunctive predicates, whose number varies from 2 to 4.
The predicate with low index is picked first. For example,

“Two predicates” contains the predicates dpð1Þ and dpð2Þ. We

make two observations. First, as expected, two naive
approaches are the slowest, since each code takes one 32-bit
bank of SIMD register, indicating that naive approaches
only achieve 8-way parallelism while the others achieves
32-way parallelism. Second, Hebe achieves more perfor-
mance improvement over the others when the number of
predicates increases, since only Hebe focuses on reducing
high-cost instructions which suffer from high branch mis-
prediction and cache miss penalties.

Effect of Code’s Bitwdith. We examine the effect of the bit-
width k of each code when evaluating two conjunctive pred-

icates under Hebe, where sð1Þ of dpð1Þ is 0.01 and sð2Þ is 0.5.
Fig. 11e illustrates the throughput of Hebe with varying bit-
width. We have two observations. First, the throughput
stays roughly the same and high when k is less than 9, as
Hebe, whose storage layout is ByteSlice, always pads each
k-bit code to a 8-bit code before evaluation, where 8-bit
codes are stored in one memory region that is entirely
scanned. Second, the throughput also stays roughly the
same when k is larger than 8, as evaluating the first two
bytes is almost sufficient to determine the final predicate
result, and then the high-cost instructions on the third and
fourth bytes are rarely needed even when each code has
four bytes.

Fig. 10. Evaluation of four conjunctive predicates.

Fig. 11. Performance comparisons.

Fig. 12. Evaluation of two corner cases.
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Effect of Skewed Dataset. We examine the effect of the
skewed dataset when evaluating two conjunctive predicates

under Hebe, where dpð2Þ’s dataset is always uniform. Fig. 11f
illustrates the throughput of Hebe with varying sð1Þ.
“Skewed” represents the case that dpð1Þ’s dataset is highly
skewed, with Zipf factor z = 1.0, while “Uniform” repre-
sents the case that dpð1Þ’s dataset is uniform. We observe that
when sð1Þ decreases, the skewed dataset leads to a slight
performance fluctuation, while the uniform dataset leads to
roughly the same performance. The underlying reason is
that the skewed dataset provides more inter-predicate and
intra-predicate cut-off conditions that are exploited by
Hebe. Essentially, codes in the skewed dataset always have
less probability of being equal to the predicate literal.

Effect of Multiple Threads. We study the performance of
database scans using eight threads on all the eight hardware
cores on the tested CPU, and find that simultaneous multi-
thread (SMT) cannot improve the overall performance due
to the main bottleneck frommemory bandwidth. Paralleling
scans on modern CPU is easy: distributing the codes into
eight chunks, each chunk running on one thread. Fig. 11c
shows the throughput of conjunctive predicates imple-
mented with eight threads. The performance of conjunctive
predicates is bounded by the limited memory bandwidth,
so its performance is inversely proportional to the amount
of memory read bytes per code, as shown in Fig. 10b. We
observe that Hebe can achieve up to 57 percent performance
improvement over “BS_best”.

Time Breakdown.We present the time breakdowns for con-
junctive predicates with sð1Þ equal to 20 percent, as shown in
Fig. 11d. “MR_x” indicates the aggregative time per tuple
spent on the memory region MRx from all four predicates,
where x equals 0, 1 or 2. We omit the time spent on MR3,
since it is negligible compared with the overall execution
time. We can observe that Hebe can significantly improve
the performance of conjunctive predicates, since four inter
(or intra)-predicate cut-off conditions are explored to aggre-
gatively reduce the execution time onmemory regionMR2.

Corner Cases.We study two corner cases, the selectivity of
each predicate s = 0 or 1. Fig. 12 shows the throughput of
conjunctive predicates, whose number varies from 2 to 4.
When s = 0, the column-first execution model (“BS”) only
evaluates the first predicate. The remaining predicates can
benefit from inter-predicate cut-off condition from the first
predicate. The only overhead is to check the input filter.
However, Hebe evaluates the first byte of each predicate.
Therefore, Hebe can beworse than the column-first execution
model in Fig. 12a. When s = 1, neither execution model can
benefit from the inter-predicate cut-off condition. The global_-
filter module in Hebe cannot explore any inter-predicate

cut-off condition, but incurs the extra logical instructions.
We can observe that the overhead becomes smaller when the
number of predicates becomes larger, as shown in Fig. 12b.

6.3 Evaluation on TPC-H

We evaluate Hebe by using twelve queries from TPC-H
benchmark. To focus on the performance of predicates, we
use the technique from WideTable [23] to flatten a database
schema into several denormalized tables. Then, queries with
complex joins can become simple scans on the denormalized
tables. Fig. 13 shows the experimental results of twelve
queries that contain only conjunctive predicates, no disjunc-
tive predicates involved.16Wemake two observations.

First, there are plenty of feasible evaluation orders for
each query under column-first execution model. For exam-
ple, there are four predicates in Q8 and the number of eval-
uation orders for Q8 can reach up to 4!=24. Since the
evaluation order is sensitive to the overall performance [18],
[33], we observe that the performance difference can be
from 19 to 62 percent.

Second, even with the optimal evaluation order under col-
umn-first execution model “BS_best”, Hebe can still achieve
39-209 percent performance improvement (in terms of tuples
per ns), as shown in Fig. 13a. The underlying reason is that
Hebe can aggressively explore the inter-predicate cut-off con-
ditions so as to reduce high-cost instructions on the memory
regionMR2 of each predicate. Therefore, the access probabil-
ity on MR2 of each involved predicate can be significantly
reduced byHebe, and thenHebe requires significantly less L3
cachemisses per tuple for each query, as shown in Fig. 13b. In
particular, for the query Q19 that has 36 predicates, Hebe can
achieve significant performance improvement since inter-
predicate cut-off possibilities among 36 predicates can be
aggressively explored. Another thing to be mentioned is
that Hebe does not need to take into account the evaluation
order of predicates.

7 RELATED WORK

A preliminary version of this manuscript has been pub-
lished in [38]. Compared with the preliminary version, this
manuscript has made significant contributions in building a
hybrid empirical/analytical cost model in understanding
the efficiency of different memory layouts and their execu-
tion strategies, and performing more in-depth and extensive
studies on Hebe.

Fig. 13. Evaluation of 12 TPC-H queries

16. To focus on the performance of scans, we follow ByteSlice [11]
that the performance of the other operators, e.g., order by and group
by, are not taken into account in the overall performance.
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Memory-Efficient Storage Layouts. Prior works [11], [21],
[22], [23], [26], [28], [29], [30], [32], [37], [38], [40], [41] leverage
memory-efficient storage layout to partition values at the bit/
byte level such that predicate evaluation can fully utilize
intra-cycle parallelism inmodern CPUs and can exploit intra-
predicate cut-off condition to reduce requiredmemory traffic.
In contrast, this work proposes a hybrid cost model to unveil
performance characteristics of predicate evaluation for better
understanding and then proposes an order-oblivious execu-
tion schemeHebe for conjunctive predicates.

Attribute Groupings. Prior works [2], [12], [13], [15], [16]
leverage access patterns of queries over tables to do attribute
grouping so as to increase the overall query throughput. In
contrast, this work does not reply on attribute grouping but
explores on-the-fly cut-off possibilities to reduce required
memory traffic, as well as required instructions.

Cost Models for Databases. Previous works [5], [24], [27]
propose generic database cost model to predict operator
execution time. Such a prediction is vital to a query opti-
mizer that determines query execution plan for the input
query. About cost model, Our work is closest to the work by
Pirk et al. [27], which proposes a new access pattern sequen-
tial traversal with conditional reads to analytically model the
performance of selective projections. In contrast, we resort
to an empirical approach (i.e., directly running microbe-
nchmark on the targeted CPU) to easily capture hardware
characteristics on various CPUs. Besides, our hybrid cost
model is dedicated to predicting the performance of con-
junctive predicates under memory-efficient storage layouts.

Optimization of Predicate Order. Previous works [6], [17],
[18], [19], [25], [33], [35] propose various cost models, which
take into account branch misprediction and cache miss, to
determine the optimal predicate order for the input query.
Briefly, predicates can be ordered by increasing selectivity
or rank. Since the selectivity estimation itself can be inaccu-
rate for an ad-hoc query, it is hard for QO to produce an
optimal evaluation order. In contrast, Hebe is order-oblivi-
ous, while keeping high performance.

8 CONCLUSION

The optimization of conjunctive predicates is still critical to
database queries. Recently, several memory-efficient storage
layouts have been proposed to significantly accelerate data-
base scans. However, the performance potential of such stor-
age layouts on conjunctive predicates has not been fully
harvested. In this paper, we propose a hybrid empirical/ana-
lytical cost model to fully understand these storage layouts
onmodern CPUs. Such understanding enables us to propose
an order-oblivious execution scheme Hebe to evaluate con-
junctive predicates, while maintaining high performance.
With Hebe, the QO does not need to go through a sampling
process to guess the optimal evaluation order in advance.
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