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Persistent Regular Path Query (RPQ) on streaming graphs is widely applicable to many online analysis

applications. Existing research primarily focuses on the single-worker scenario, while scaling out to distributed

RPQ processing onmultiple workers is desirable when facing a highworkload. Existing distributed solutions are

designed for general streaming queries, and various bottlenecks exist that significantly limit the performance

when performing streaming RPQ evaluation. The challenge is how to execute queries with multiple workers

while introducing limited overhead and ensuring sufficient speedup as the number of workers increases.

This paper introduces a distributed processing strategy called DRPQ by carefully dividing a query into

multiple partially matched query tasks. The idea is to form query tasks based on initial matches of the graph

against the given regular expression, and to dynamically distribute these tasks to workers to balance their

workloads. To reduce redundant evaluation across different workers, a grouping method is proposed to find

query tasks that are likely to share evaluation processes, and send them to the same workers. Extensive exper-

iments on two real-world graph datasets demonstrate that DRPQ is significantly more efficient and scalable

than existing distributed solutions. Furthermore, the proposed grouping method proves to be particularly

effective, nearly doubling the throughput in most cases.
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Additional Key Words and Phrases: Distributed Evaluation, Regular Path Query, Streaming Graph
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1 Introduction
A persistent Regular Path Query (RPQ) on a streaming graph is to continuously find every pair

of vertices that are connected by a path, such that the edge label sequence of this path matches a

given regular expression. It is typically addressed in the sliding window model so that the edges in

the matched path are required to be in a single window, and consecutive windows often overlap a

lot.
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317:2 Siyuan Zhang et al.

RPQ on streaming graphs is widely applicable in various online analysis applications, including

social network analysis [16, 27, 40] and network security monitoring [35]. Figure 1(a) illustrates

an example of credit-card-fraud activities detection. Accounts are represented as vertices, while

transactions between accounts are edges. Each transaction is labeled with a type and a timestamp.

The dotted lines represent a kind of the credit-card-fraud model, which can be defined as query

𝑅 = (Credit pay · transfer+) with the restriction that all edges fall within the same sliding window

𝑊 (𝑚𝑎𝑥 (𝑡1, · · · , 𝑡𝑛) −𝑚𝑖𝑛(𝑡1, · · · , 𝑡𝑛) ≤ |𝑊 |). If both ends of a matched path are the same account,

then there is probably a fraud.
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Fig. 1. (a) a graph of a credit-card-fraud example where the nodes are accounts and the edges are transactions,
(b) a graph representation of a streaming graph.

RPQs on static graphs have been extensively studied [18, 32, 34, 41]. However, streaming graphs

bring significant new challenges. The difference is that in the streaming scenario, there is usually a

large overlap of edges between consecutive windows. To efficiently process RPQs on streaming

graphs, the algorithm in Pacaci et al. [45] continuously maintains a set of spanning trees to gradually

construct query results as the edges arrive. The idea is to keep in the spanning trees all the initial

partial and full matches of the given regular expression found so far in the streaming graph, each

starting with a root node that is the beginning of the matches. This strategy avoids the full graph

traversal with each graph update. Each time the window slides forward, an expiration process

occurs that removes all the edges that are out of the window, along with all the edges on the

affected paths. Zhang et al. [59] identified that the expiration process needs a forced blocking

phase which greatly degrades the query performance. They proposed a new data structure called

Timestamped Rooted Digraph (TRD for short) which adopts a multi-window parallel processing

strategy to remove the blocking phases and provides more opportunities for parallel processing,

achieving much better performance.

The aforementioned algorithms and their extensions [25] are all for the single-worker scenario.

When the workload exceeds the worker’s processing capability (probably caused by the arrival

of data that is large volumes with high velocity), an efficient and scalable distributed solution is

desirable but currently missing. Existing distributed solutions for streaming graph queries mostly

fall into three categories. (1) Split the full query into multiple subqueries and evaluate different

subqueries in different workers [46]. With this solution, join or merge operations are needed for

producing final results. (2) Divide the streaming graph into multiple distinct subgraphs based

on some streaming graph partitioning methods [24]. With this strategy, communication among

workers is needed when processing the cross-worker edges/vertices. (3) Divide the streaming graph

into multiple distinct time-based or count-based windows (e.g., Apache Flink, Spark Streaming, and

Timely Dataflow). With this solution, cross-node communication is avoided and data in overlapping

windows are processed independently in parallel.
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The above distributed solutions are general-purpose aiming at general streaming graph query ap-

plications (e.g., SubgraphMatching, Triangle Counting) and their generality comes at a performance

cost for evaluating streaming RPQs. Strategy (1) requires computing results for all sub-regular ex-

pressions even if most of them do not participate in any final results, and its scalability is inherently

limited by how many parts the regular expression can be split into. Strategy (2) has a significant

communication overhead among workers since the path traversal process may reach a large part

of the graph especially when dealing with transitivity-like queries (using “*” or “+”) or dense

graphs (e.g., the Stack Overflow dataset). Additionally, maintaining load balance through graph

repartitioning will introduce blocking phases that severely degrade system performance. Strategy

(3) leads to redundant query processing due to the large overlap of edges between consecutive

windows. Effectively distributing the RPQ workload with minimal overhead while achieving a

scalable speedup as the number of workers increases remains a challenge, and our solution directly

addresses this issue.

In this paper, we propose DRPQ, a distributed processing strategy for RPQs that deviates from

all three strategies mentioned above, which partitions query instantiations into multiple “partially

instantiated queries” that can be executed in parallel across workers. Each partially instantiated

query represents a RPQ evaluation task, beginning from a predetermined path (termed a “partial

match”) whose path label matches the beginning of the given regular expression. The goal of the

task to extend the partial match to discover all valid paths that satisfy the query condition. We only

need to send all the edges in the sliding windows that the partial match belongs to, along with the

initial partial matches. These form a “partially matched query task” (PMQT for short). Each PMQT

serves as a “unit of work” and can then be processed independently by any worker, following the

same RPQ evaluation approach as in [45] or [59]. The length of the selected partial match affects

the granularity of parallelism: longer partial matches result in a greater number of smaller PMQTs,

facilitating better scalability across workers but increasing the overhead of partial match selection.

An example is shown in Figure 1(b). Consider the regular expression 𝑅 = (𝑥 ◦ 𝑦 ◦ 𝑧∗) and a sliding

window size |𝑊 | = 3. The path 𝑒1 · 𝑒2, labeled 𝑥 ◦ 𝑦, serves as a partial match. Its associated PMQT

consists of edges 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6 and 𝑒7, with timestamps falling within range [2, 5] (computed as

(𝑡𝑠 (𝑒1) ± |𝑊 |) ∩ (𝑡𝑠 (𝑒2) ± |𝑊 |) where 𝑡𝑠 (𝑒) is the timestamp of 𝑒). Intuitively, if a matching path

includes 𝑒1 · 𝑒2, then all its edges must be among those within this PMQT. Hence, each PMQT can

be used as a unit of work to find all the results of the RPQ query.

DRPQ properly addresses the challenges of the existing distributed implementation strategies

and develop an efficient distributed extension of existing streaming RPQ evaluation methods. Firstly,

it eliminates communication overhead among workers (compared to strategy (1) & (2)). Secondly,

the same method in [45] or [59] can be adopted in DRPQ when evaluating PMQTs to reduce the

extraneous processing that is not involved in the final query results (compared to (1)) and avoid the

redundant computation caused by overlapping sliding windows (compared to (3)). Thirdly, DRPQ

scales efficiently by distributing PMQTs across multiple workers (compared to (1)), and achieve

load balancing through careful PMQT allocation without introducing blocking phases (compared

to (2)).

Although DRPQ provides an efficient solution for distributed evaluating streaming RPQ, this

strategy suffers from the fact that the edges may be duplicate for different PMQTs in different

workers, and PMQTs assigned to different workers may lose the opportunity to share some traversal

process of the same edges when common subgraphs exist. For example, as shown in Figure 1(b),

both PMQTs with partial match 𝑒1, 𝑒2 and 𝑒1, 𝑒3 contain the same sub-expression 𝑧∗ (𝑥 ◦𝑦 is already

matched by their own partial matches). The edges 𝑒5, 𝑒6, and 𝑒7 can form a path whose label

sequence matches 𝑧∗ (marked with the dotted line in the figure) and can be shared by these two
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PMQTs. When such PMQTs are assigned to different workers, the above traversal process will be

duplicated. Reducing this redundant computation can increase the overall efficiency.

In this paper, we propose a novel grouping strategy to recognize the features of the PMQTs that

may share traversal process and then use a quick heuristic method to put possibly “sharing” PMQTs

into groups. The grouping strategy needs to be tailored towards the particular RPQ evaluation

method. In this paper, we use the method in [59] for this purpose. The PMQTs in the same group are

then prioritized to send to the same workers to reduce the aforementioned redundant computation

and potentially reduce the overlap of streaming graph edges that are sent to different workers.

We carry out extensive experiments with two representative real-world datasets to evaluate the

efficiency and scalability of all the aforementioned distributed strategies. The result shows that

DRPQ has a much higher throughput compared to the other strategies, and that adopting grouping

strategy in DRPQ can greatly improve the corresponding throughput (almost doubled in many

cases). We also evaluate the impact of the selected features of the PMQTs.

To the best of our knowledge, DRPQ is the first efficient and scalable distributed processing

strategy for streaming RPQs in the literature. Here we highlight our contributions as follows:

• We propose a distributed processing strategy for scalable and efficient streaming RPQ eval-

uation by decomposing query instantiations into multiple PMQTs, each processed as an

independent unit of work.

• We introduce a grouping strategy to reduce redundant computations by increasing the

likelihood that PMQTs sharing common traversal process are assigned to the same worker.

• We conduct extensive experiments to evaluate our distributed strategy DRPQ for its efficiency

and scalability.

The remainder of the paper is structured as follows. Section 2 presents the problem definition

and a brief description of algorithms leveraging TRDs. Section 3 provides a description of the task

unit PMQT and the DRPQ strategy. Section 4 introduces our grouping strategy and gives a detailed

discussion about the features of the PMQTs that may share traversal process. Section 5 shows the

experimental results with a detailed analysis. Section 6 describes the related works. Finally, Section

7 summarizes the paper.

2 Preliminaries
In this section, we first provide a formal definition of the streaming graph and streaming RPQ

task. Then, we describe how to maintain TRDs for streaming RPQ evaluation in the single-worker

scenario. Most of the following definitions are adopted from [45] and [59].

2.1 Streaming RPQ Evaluation
Definition 1. Streaming Graph: A streaming graph refers to a sequence of time-ordered tuples

𝑆 = 𝜏1, 𝜏2, · · · , 𝜏𝑛 , where each tuple 𝜏𝑖 = (𝑒𝑖 , 𝑡𝑖 ) represents a directed edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦, 𝑙𝑖 ) from source
vertex 𝑣𝑥 to target vertex 𝑣𝑦 with edge label 𝜙 (𝑒𝑖 ) = 𝑙𝑖 and arrival timestamp 𝑡𝑠 (𝜏𝑖 ) = 𝑡𝑖 .

Figure 2(a) shows a streaming graph example consisting of 8 tuples with 3 kinds of edge labels

(𝑥,𝑦 and 𝑧) and 7 vertices (𝑎 to 𝑔). We follow the same assumption as in [45, 59] that all tuples arrive

in the order of their timestamps, i.e., the timestamps of tuples 𝜏𝑖 and 𝜏 𝑗 in 𝑆 satisfy 𝑡𝑠 (𝜏𝑖 ) ≤ 𝑡𝑠 (𝜏 𝑗 )
for all 𝑖 < 𝑗 . We also assume that the minimum timestamp of the tuples in the stream is 0.

Definition 2. Path and Path Label: A path that connects vertices 𝑣𝑥 and 𝑣𝑦 is a sequence of directed
edges 𝑝 = 𝑒1, 𝑒2, · · · , 𝑒𝑛 where 𝑣𝑥 is the source vertex of 𝑒1 and 𝑣𝑦 is the target vertex of 𝑒𝑛 , and the
target vertex of 𝑒𝑖 is the same as the source vertex of 𝑒𝑖+1 for each 𝑖 ∈ [1, 𝑛 − 1]. The corresponding
path label 𝜙 (𝑝) of path 𝑝 is the label sequence of the edges in 𝑝 𝜙 (𝑝) = 𝜙 (𝑒1), 𝜙 (𝑒2), · · · , 𝜙 (𝑒𝑛).
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Fig. 2. (a) a streaming graph 𝑆 (the left part) consisting of two sliding windows𝑊 2 and𝑊 3 (marked in the
graph) with window size |𝑊 | = 3. The right part in (a) is its graph representation where the timestamps 𝑡𝑠 (𝜏)
and labels are all marked next to the edges, (b) a DFA for query expression 𝑅 = (𝑥+ ◦𝑦+ ◦ 𝑧). (c) is the product
graph of 𝑆 at time 𝑡 = 3, where the mapped tuples of the edges are omitted. (d) & (e) are the generated TRDs
in 𝑆 at time 2 and 3 respectively.

Figure 2(a) shows the streaming graph in the tuple sequence form and in the graph form,

respectively. An example path 𝑝 in the streaming graph is boxed with dotted lines in Figure 2(a),

which consists of 3 edges 𝑒1, 𝑒2, 𝑒7 with path label 𝜙 (𝑝) = 𝑥,𝑦, 𝑧.
In applications, we usually adopt a time-based sliding window (sliding window for short) to

restrict the tuples in a streaming graph to be used in forming a particular query results.

Definition 3. Sliding Window over Streaming Graph: For a given streaming graph 𝑆 , a sliding
window𝑊 at time 𝑡 , denoted𝑊 𝑡 , with window size |𝑊 | and sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ), represents the
set of tuples𝜏𝑖 , where𝜏𝑖 ∈ 𝑆 and 𝑡𝑠 (𝜏𝑖 ) ∈ (𝑡−|𝑊 |, 𝑡]. In the above, 𝑡 must be equal to |𝑊 |+𝑘∗𝑆𝑡𝑒𝑝 (𝑊 )−1
for some integer 𝑘 ≥ 0.

The edges of the tuples in a sliding window form a “snapshot graph” and the snapshot graph at

time 2 with sliding window |𝑊 | = 3 and 𝑆𝑡𝑒𝑝 (𝑊 ) = 1 consists of edges 𝑒0 to 𝑒5 in graph 2(a). The

first sliding window is𝑊 |𝑊 |−1 (|𝑊 | ≥ 1). Note that we usually assume 𝑆𝑡𝑒𝑝 |𝑊 | ≤ |𝑊 |.
Based on the definition of the sliding window, we now describe the streaming RPQ evaluation

task.

Definition 4. Streaming RPQ: Let Σ be a finite alphabet set consisting of all the labels of edges in
a streaming graph 𝑆 , and 𝐿(𝑅) (𝐿(𝑅) ≠ ∅) be the set of label sequences that match a given regular
expression 𝑅 over Σ. A streaming RPQ task on a streaming graph 𝑆 with regular expression 𝑅 and
sliding window𝑊 (with |𝑊 | and 𝑆𝑡𝑒𝑝 (𝑊 ) understood) is to find all the vertex pairs (𝑢, 𝑣) such that
there exists a non-empty path 𝑝 from vertex 𝑢 to 𝑣 satisfying 𝜙 (𝑝) ∈ 𝐿(𝑅) in the snapshot graph for
the sliding window𝑊 𝑡 for an integer 𝑡 = |𝑊 | + 𝑘 ∗ 𝑆𝑡𝑒𝑝 (𝑊 ) − 1, where 𝑘 ≥ 0 is an integer.
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For a given sliding window𝑊 𝑡 , the above streaming RPQ can be formally defined as 𝑄𝑡
𝑅,𝑊

. Then,

𝑄𝑡
𝑅,𝑊 = {(𝑢, 𝑣) |there exists a path 𝑝 in 𝑆 from vertex 𝑢 to 𝑣 such that

𝜙 (𝑝) ∈ 𝐿(𝑅) and 𝑡 − |𝑊 | < 𝑡𝑠 (𝜏𝑖 ) ≤ 𝑡 for each tuple 𝜏𝑖 in p}

𝑄𝑡
𝑅,𝑊

may be simplified as 𝑄𝑡 if both the regular expression 𝑅 and sliding window𝑊 are understood.

Here we provide an example to illustrate the evaluation task.

Example 1. Consider the RPQ evaluation with regular expression 𝑅 = (𝑥+ ◦ 𝑦+ ◦ 𝑧) and sliding
window𝑊 with |𝑊 | = 3 and 𝑆𝑡𝑒𝑝 (𝑊 ) = 1 on the streaming graph 𝑆 in Figure 2(a). The corresponding
snapshot graph in𝑊 2 consists of edges 𝑒0 to 𝑒5 in graph 2(a). There is only one path 𝑝 = 𝑒5, 𝑒3, 𝑒4 whose
label sequence 𝜙 (𝑝) = 𝑥,𝑦, 𝑧 matches 𝑅. Thus the streaming RPQ evaluation result in 𝑄2 = {(𝑎,𝑔)}.
When the sliding window moves to 𝑊 3, the edge 𝑒1 is out of the current sliding window, and

𝑄3 = {(𝑎,𝑔), (𝑎, 𝑓 )} holds by the two paths 𝑒5, 𝑒3, 𝑒4 and 𝑒5, 𝑒3, 𝑒6, 𝑒7, respectively.

2.2 The Multi-Window Parallel Strategy
We now introduce multi-window parallel method that executes streaming RPQ leveraging TRDs

[59]. We begin by a formal definition of the Deterministic Finite Automaton for regular expressions.

Definition 5. Deterministic Finite Automaton (DFA): Given a regular expression 𝑅, a deterministic
finite automaton (DFA) for 𝑅 refers to a 5-tuple 𝐷𝐹𝐴(𝑅) = (𝐾, 𝐿, 𝛿, 𝑞0, 𝐹 ), where (i) 𝐾 is a finite set of
states, (ii) 𝐿 is a finite set of symbols, (iii) mapping function 𝛿 : 𝐾 × 𝐿 → 𝐾 , (iv) 𝑞0 is the initial state
of DFA, and 𝐹 is a set of final states such that 𝑞0 ∈ 𝐾 and 𝐹 ⊆ 𝐾 . It is required that 𝐷𝐹𝐴(𝑅) accepts
exactly all the sequences in 𝐿(𝑅).

For a given regular expression 𝑅, we first construct a nondeterministic finite automaton (NFA)

using Thompson’s construction algorithm [54], and then convert it into a deterministic finite

automaton (DFA) using Hopcroft’s algorithm [28]. This transformation is consistent with prior

works and makes the automaton more predictable in real-time performance under tight resource

constraints. An example DFA for 𝑅 = (𝑥+ ◦𝑦+ ◦ 𝑧) is shown in Figure 2(b). Although the size of the

DFA can be large in theory, it is has not been a practical bottleneck in our current experimental

settings.

Based on the deterministic finite automaton (DFA), we introduce the product graph [21, 38],

which transforms the regular expression matching process on a graph into a path traversal problem

over a constructed graph. The product graph construction has been widely adopted as a fundamental

mechanism for evaluating regular path queries (RPQs) in prior works.

Definition 6. Product Graph: Given a 𝐷𝐹𝐴(𝑅) = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) and a snapshot graph 𝐺 =

(𝑉 , 𝐸, 𝜙) in streaming graph 𝑆 with 𝑉 being the vertex set and each edge 𝑒 ∈ 𝐸 labeled by 𝜙 (𝑒) ∈ Σ.
The product graph is defined as 𝑃𝐺,𝐷𝐹𝐴(𝑅) = (𝑉×, 𝐸×) where 𝑉× = 𝑉 × 𝑄 , 𝐸× ⊆ 𝑉× × 𝑉× , and
((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) is in 𝐸× iff edge (𝑢, 𝑣, 𝑙) ∈ 𝐸 and 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 . Each edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) ∈ 𝐸× maps
to the set of tuples ((𝑢, 𝑣, 𝑙), 𝑡) ∈ 𝑆 where 𝜙 (𝑠𝑢, 𝑙) = 𝑠𝑣 .

Figure 2(c) illustrates the product graph constructed from the streaming graph 𝑆 in Figure 2(a),

guided by the 𝐷𝐹𝐴(𝑅) shown in Figure 2(b). Each edge in the product graph corresponds to a set

of tuples. For example, the product edge ((𝑎, 0), (𝑐, 1)) maps to the tuple set {(𝑒1, 0)}. We leverage

the product graph to streamline the technical exposition and to enable incremental construction of

the Timestamped Rooted Digraph (TRD) as new edges arrive in the stream. A TRD can be viewed

as a timestamp-annotated, rooted subgraph of the product graph, specifically tailored for streaming

RPQ evaluation under sliding window semantics.
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Definition 7. Timestamped Rooted Digraph (TRD): For a given regular expression 𝑅 and a stream-
ing graph 𝑆 , a timestamped rooted digraph for the constructed product graph 𝑃𝐺,𝐷𝐹𝐴(𝑅) is a connected
directed graph consisting of nodes in 𝑃𝐺,𝐷𝐹𝐴(𝑅) . Each TRD has a root node (𝑥, 𝑞0), and such TRD
is denoted as 𝑇𝑥,𝑞0 (𝑇𝑥 for short since 𝑞0 is determined). Each edge in 𝑇𝑥 is selected from 𝑃𝐺,𝐷𝐹𝐴(𝑅) .
No two nodes in a TRD have the same vertex and state. Each node (𝑢, 𝑠𝑢) in 𝑇𝑥 is associated with a
non-empty finite set of non-negative integers denoted (𝑢, 𝑠𝑢).𝑡𝑠 , which is called its timestamps. The
timestamp of the root contains all the non-negative integers by default. Each 𝑡𝑠 associated with a node
has the property that for each 𝑡 ∈ 𝑡𝑠 there exists a path from the root to itself such that 𝑡 is one of the
timestamps of each node on the path.

A TRD is required to be rooted, and the root must have at least one directed path to every

other node it contains. Intuitively, a TRD incrementally maintains all paths in the product graph

𝑃𝐺,𝐷𝐹𝐴(𝑅) that correspond to partial or complete matches of 𝑅 over the streaming graph 𝑆 within a

given sliding window. Specifically, if a timestamp 𝑡 appears in the timestamp set of a non-root node,

then for each edge along the path from the root to that node, there must exist at least one matching

stream tuple (𝑒𝑖 , 𝑡𝑖 ) corresponding to the product edge such that 𝑡 − |𝑊 | < 𝑡𝑖 ≤ 𝑡 . Therefore, a pair
(𝑢, 𝑣) appears in the query result𝑄𝑡

if and only if (𝑢, 𝑞0) is the root and (𝑣, 𝑠𝑣) is a node in the TRD

with 𝑠𝑣 ∈ 𝐹 and 𝑡 ∈ (𝑣, 𝑠𝑣).𝑡𝑠 .
An example of a TRD 𝑇𝑎 is shown in Figure 2(d), where the labeled integer set next to each node

indicates its associated timestamps. Here, we denote states 𝑞0 to 𝑞3 in 𝐷𝐹𝐴(𝑅) as 0 to 3, respectively.
Node (𝑏, 1) is labeled with timestamps {2, 3, 4} because it is reached via edge 𝑒5, which arrives at

𝑡 = 2 and remains valid in the sliding windows𝑊 2
,𝑊 3

, and𝑊 4
under a window size of |𝑊 | = 3. In

general, a tuple with timestamp 𝑡 is retained in all windows𝑊 𝑡 ′
where 𝑡 ′ ∈ [𝑡, 𝑡 + |𝑊 | − 1]. When

a node such as (𝑔, 3) in this figure has a state 3 ∈ 𝐹 , a result pair (𝑎,𝑔) is produced. That is, the
edge label sequence 𝑥,𝑦, 𝑧 from (𝑎, 0) to (𝑔, 3) belongs to 𝐿(𝑅), and the timestamps {2, 3} of node
(𝑔, 3) indicate the sliding windows𝑊 2

and𝑊 3
in which the result pair holds.

The product graph is incrementally updated as tuples arrive in the stream, and the method in

[59] continuously creates and updates the TRDs to reflect changes in the product graph and capture

all initial partial matches of 𝑅 under sliding window semantics. It employs the following three rules

to maintain TRDs when a tuple ((𝑢, 𝑣, 𝑙), 𝑡𝑠) arrives (assuming the product graph has already been

updated):

(1) Create a new TRD 𝑇𝑢 if it does not already exist and if (𝑢, 𝑞0) exists in 𝑃𝐺,𝐷𝐹𝐴(𝑅) .
(2) For each newly added edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) in 𝑃𝐺,𝐷𝐹𝐴(𝑅) , proceed as follows: if (𝑣, 𝑠𝑣) is not

already in any TRD, add it to a TRD𝑇𝑥 along with the edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) if (𝑢, 𝑠𝑢) ∈ 𝑇𝑥 and

(𝑢, 𝑠𝑢).𝑡𝑠 ∩ [𝑡𝑠, 𝑡𝑠 + |𝑊 |) ≠ ∅. Then, update the timestamps of the newly added or existing

node (𝑣, 𝑠𝑣) by setting (𝑣, 𝑠𝑣).𝑡𝑠 = (𝑣, 𝑠𝑣).𝑡𝑠 ∪ ((𝑢, 𝑠𝑢).𝑡𝑠 ∩ [𝑡𝑠, 𝑡𝑠 + |𝑊 |)), where (𝑣, 𝑠𝑣).𝑡𝑠 is
initialized as ∅ if (𝑣, 𝑠𝑣) is newly added. This rule enables the TRD to grow via newly matched

edges and propagates timestamps accordingly.

(3) If a new node is added or the timestamp set of any node is changed, reapply Rule (2) to all

edges in 𝑃𝐺,𝐷𝐹𝐴(𝑅) . This rule ensures further extension of the TRD following any structural

or timestamp changes.

Following the three rules, each node in a TRD records all root-to-it paths that partially or fully

match 𝑅 across multiple sliding windows. Note that multiple Step (2) can be performed in a TRD in

parallel by adopting a careful lock, which effectively amortizes the expensive overhead. A timestamp

𝑡 on a node indicates that at least one such path exists within window𝑊 𝑡
. While the above assumes

𝑆𝑡𝑒𝑝 (𝑊 ) = 1, it can be extended to 𝑆𝑡𝑒𝑝 (𝑊 ) > 1 by considering the sliding steps when updating

the timestamps in rule 2 accordingly.
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Zhang et al. [59] optimize TRD maintenance and use a “dirty garbage collection” strategy to

efficiently prune edges that won’t contribute to future results. We refer readers to [59] for details,

and discuss the garbage collection support of DRPQ in Section 3.4.2.

We provide an example to illustrate streaming RPQ using TRDs.

Example 2. Consider the streaming RPQ evaluation in Example 1. The 𝐷𝐹𝐴(𝑅) of the regular
expression 𝑅 = (𝑥+ ◦𝑦+ ◦ 𝑧) is shown in Figure 2(b). Here we have 𝐹 = {3}, and the states (𝑞0 to 𝑞3) in
𝐷𝐹𝐴(𝑅) are 0 to 3. The window size |𝑊 | is 3, and the sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ) is 1. For the earliest
sliding window𝑊 2, edge 𝑒0 and 𝑒1 incurs a creation of TRD 𝑇𝑏 and 𝑇𝑎 (following rule 1), and insertion
of the node (𝑐, 1) with timestamps (𝑐, 1).𝑡𝑠 = {0, 1, 2} (rule 2). Then, 𝑒2 is added into𝑇𝑎 and𝑇𝑏 (rule 2).
The arrival of edges 𝑒0, 𝑒3, and 𝑒4 does not cause any changes in TRD 𝑇𝑎 until edge 𝑒5 arrives and is
inserted into 𝑇𝑎 . In this case, following rule 3, edges 𝑒0, 𝑒3, and 𝑒4 are recursively inserted into 𝑇𝑎 , even
though they have arrived earlier than 𝑒5 did. The generated TRDs after 𝑒5 arrives is shown in Figure
2(d). Note that there is a node (𝑔, 3) with timestamp (𝑔, 3).𝑡𝑠 = {2, 3} in 𝑇𝑎 whose state is in the final
state set 𝐹 , which means the query result (𝑎,𝑔) exists in both 𝑄2 and 𝑄3.
Upon the arrival of edge 𝑒6 and 𝑒7, node (𝑑, 2) in 𝑇𝑎 is reachable from root with two paths (𝑒1, 𝑒2)

and (𝑒5, 𝑒3, 𝑒6), and the timestamps of (𝑑, 2) is (𝑑, 2).𝑡𝑠 = {1, 2, 3}, which is calculated with {1, 2} ∪
({2, 3} ∩ {3, 4, 5}) by rule 2. The final generated TRDs is shown in Figure 2(e). Note that node (𝑐, 1) in
𝑇𝑎 is still retained even though edges 𝑒0 and 𝑒1 are out of the sliding window𝑊 3 (garbage collection
can be performed but omitted here in this paper). At this time, we have node (𝑓 , 3) with timestamp
{3} and (𝑔, 3) with timestamps {2, 3}. We have (𝑎, 𝑓 ) is in 𝑄3 and (𝑎,𝑔) is in 𝑄2 and 𝑄3.

3 Distributed Regular PathQuery
In this section, we present the distributed implementation of streaming RPQs. We begin by defining

partial matches and partial matched query tasks, then describe how to evaluate them individually

and in groups. Finally, we introduce DRPQ, a system for distributed task evaluation designed to

balance workload across workers.

3.1 Partially MatchedQuery Task (PMQT)
We begin by providing a formal definition of the Partial Match.

Definition 8. Partial Match: For a given streaming graph 𝑆 , sliding window |𝑊 |, and regular
expression 𝑅. A partial match 𝑝 is a path which consists of tuples (𝑒1, 𝑡1), (𝑒2, 𝑡2), · · · , (𝑒𝑛, 𝑡𝑛) in 𝑆
where |𝑡𝑖 − 𝑡 𝑗 | ≤ |𝑊 | holds for any 𝑖, 𝑗 ∈ [1, 𝑛] and edges 𝑒1, 𝑒2, · · · , 𝑒𝑛 form a path whose path
label partially matches 𝑅 from the beginning. The sliding window set of 𝑝 , denoted as 𝑡𝑠 (𝑝), contains
timestamp 𝑡 such that {𝑡1, · · · , 𝑡𝑛} ⊆𝑊 𝑡 .

An example partial match in Example 2 is 𝑝 = {(𝑒1, 0), (𝑒2, 1)} where edges 𝑒1, 𝑒2 form a path

with label 𝑥,𝑦 that partially matches 𝑅 from the start (i.e., the transition 𝑞0
𝑥−→ 𝑞1

𝑦
−→ 𝑞2 in Figure

2(b)). The sliding window set is 𝑡𝑠 (𝑝) = {1, 2}. Based on it, we now define a Partially Matched Query
Task for each partial match.

Definition 9. Partially Matched Query Task (PMQT): For a given streaming graph 𝑆 and a partial
match 𝑝 = {𝜏1, 𝜏2, · · · , 𝜏𝑛}, let 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛 denote the maximum and minimum timestamps in 𝑡𝑠 (𝑝),
a partially matched query task 𝜒𝑝 denotes the subset of all tuples 𝜏 ′ (including the tuples in 𝑝) in 𝑆
whose timestamps satisfy:

𝑡𝑠 (𝜏 ′) ∈ [⌈𝑡𝑚𝑎𝑥 − |𝑊 |
𝑆𝑡𝑒𝑝 (𝑊 ) ⌉ ∗ 𝑆𝑡𝑒𝑝 (𝑊 ) + 1, ⌊

𝑡𝑚𝑖𝑛

𝑆𝑡𝑒𝑝 (𝑊 ) ⌋ ∗ 𝑆𝑡𝑒𝑝 (𝑊 ) + |𝑊 | − 1]

Note if (𝑡𝑚𝑎𝑥 − |𝑊 |) is negative, we take the left bound of 𝑡𝑠 (𝜏 ′) as 0.
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Here𝑊
⌈ 𝑡𝑚𝑎𝑥 −|𝑊 |

𝑆𝑡𝑒𝑝 (𝑊 ) ⌉∗𝑆𝑡𝑒𝑝 (𝑊 )+|𝑊 |
and𝑊

⌊ 𝑡𝑚𝑖𝑛
𝑆𝑡𝑒𝑝 (𝑊 ) ⌋∗𝑆𝑡𝑒𝑝 (𝑊 )+|𝑊 |−1

are the first and last sliding windows

that contain the partial match, respectively. An example of a PMQT with partial match 𝑝 = {(𝑒5, 2)}
in the streaming graph in Figure 2(a) with sliding window 𝑆𝑡𝑒𝑝 (𝑊 ) = 1 and |𝑊 | = 2 consists of the

tuples 𝑒2, 𝑒3, · · · , 𝑒7 whose timestamps range from 1 to 3, and𝑊 2
and𝑊 3

are the first and the last

sliding windows containing all tuples in the 𝑝 , respectively.

For the regular expression 𝑅 and a pre-given length threshold ℓ𝑒𝑛 of the selected partial match,

we continuously find partial matches consisting of ℓ𝑒𝑛 tuples in a streaming graph and build PMQTs.

That is, once partial matches are found, they are then assigned to workers along with the necessary

subgraph for further processing.

Note that the partial matches starting from a vertex 𝑟 can be identified by constructing TRD 𝑇𝑟 ,

recording the length ℓ𝑒𝑛′ of each node from the root, and stopping recursive application of rule

2 when a node (𝑢, 𝑠𝑢) reaches ℓ𝑒𝑛′ = ℓ𝑒𝑛. Thus, the path from the root (𝑟, 𝑞0) to each such node

(𝑢, 𝑠𝑢) defines a specific partial match 𝑝 . Here, we denote the TRD 𝑇𝑟 as the associated TRD of 𝜒𝑝 ,

which by default consists of two nodes: root node (𝑟, 𝑞0) and initial node (𝑢, 𝑠𝑢) (i.e., the start and
end vertices of the partial match with states 𝑞0 and 𝑠𝑢 respectively) where (𝑢, 𝑠𝑢).𝑡𝑠 = 𝑡𝑠 (𝑝). The
TRD 𝑇𝑟 is created in advance before processing the other tuples in 𝜒𝑝 .

3.2 Processing a Single PMQT
Each PMQT 𝜒𝑝 (with associated TRD 𝑇𝑟 and initial node (𝑢, 𝑠𝑢)) can be evaluated by starting

an invocation of Algorithm Insert with the node (𝑢, 𝑠𝑢) to extend the partial match and find all

satisfied paths in the streaming graph. Note that this algorithm is basically an instantiation of rule

2 and rule 3. Rule 1 is irrelevant since the root and the partial match are already determined.

Algorithm 1: 𝐼𝑛𝑠𝑒𝑟𝑡

Input: PMQT 𝜒𝑝 (with associated TRD 𝑇𝑟 ), node (𝑢, 𝑠𝑢)
1 begin

2 initialize set𝑀 ← ∅;
3 foreach tuple 𝜏 = ((𝑢, 𝑣, 𝑙), 𝑡) in 𝜒𝑝 do

4 foreach (𝑠𝑢, 𝑠𝑣) s.t. 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 do
5 if (𝑢, 𝑠𝑢) is in 𝑇𝑟 then
6 perform rule 2 to add node (𝑣, 𝑠𝑣) and/or update (𝑣, 𝑠𝑣).𝑡𝑠;
7 if newly add (𝑣, 𝑠𝑣) or change (𝑣, 𝑠𝑣).𝑡𝑠 then
8 add node (𝑣, 𝑠𝑣) to𝑀 ;

9 foreach node (𝑣, 𝑠𝑣) ∈ 𝑀 do

10 Call Insert(𝜒𝑝 , (𝑣, 𝑠𝑣)) (i.e., rule 3);

The evaluation for a PMQT entails possibly multiple traversals for each tuple in the snapshot

graphs in all the sliding windows that contain 𝜏 , to see if it can further extend an existing node of

the TRD. Here we use an example to illustrate the evaluation process of the PMQTs using Algorithm

Insert (Algorithm 1).

Example 3. Consider the streaming RPQ evaluation under the same query conditions as in Example
1. Suppose we constrain the length of the partial match to ℓ𝑒𝑛 = 1. Then, 𝜒𝑝1={ (𝑒1,0) } and 𝜒𝑝2={ (𝑒5,2) }

are two valid PMQTs from the streaming graph 𝑆 in Figure 2(a), which consist of edges 𝑒0 to 𝑒5 and
𝑒2 to 𝑒7, respectively. Next, we create the TRD 𝑇𝑎 and invoke Algorithm 1 with initial node (𝑐, 1) for
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Fig. 3. (a) & (b) are the maintained TRD𝑇𝑎,0 in PMQTs 𝜒𝑝1={ (𝑒1,0) } and 𝜒𝑝2={ (𝑒5,2) } , respectively. The double
circled nodes are the initial nodes. (c) is maintained TRD 𝑇𝑎 when both PMQTs 𝜒𝑝1 and 𝜒𝑝2 are processed as
a group.

𝜒𝑝1 and (𝑏, 1) for 𝜒𝑝2 . The maintained TRDs for these two PMQTs are shown in Figures 3(a) and 3(b),
respectively.

A longer length threshold ℓ𝑒𝑛 for the partial match length may lead to the generation of more

PMQTs from the streaming graph, which can be particularly beneficial when the number of PMQTs

is insufficient to fully utilize all the workers, or to process skewed data such as “hot” nodes in the

streaming graph (which can be processed in parallel). However, this comes at the cost of increased

processing time at the coordinator, as identifying and managing these partial matches requires

additional efforts, which may become a bottleneck and significantly degrade performance. A proper

ℓ𝑒𝑛 can balance the processing cost in coordinator and the number of generated PMQTs to fully

utilize the capabilities of all workers, which is verified in the experiments in Section 5.2.3.

Streaming Support. The above-described strategy assumes all tuples in a PMQT have arrived

before being processed. However, we can also support the evaluation of the PMQTs in a streaming

manner by invoking line 4 to 10 in Algorithm 1 for each newly arrived tuple 𝜏 ′, which is the same

way as in [59]. For the sake of simplicity, in the sequel of this paper, we assume that a PMQT is built

and processed when all its tuples have arrived, if not otherwise stated. We will explicitly discuss

the streaming support when needed.

3.3 Processing Multiple PMQTs as a Group
Although TRDs with different root nodes can be maintained separately in parallel, PMQTs with the

same root node may share some processing since different PMQTs may contain common tuples

and their TRDs may have common subgraphs. When processing multiple PMQTs that maintain

TRDs with the same root as a group, we first add all start nodes and end nodes to the TRD and

merge the timestamps of the same node. Then, we take each PMQT (i.e., Algorithm 1) as a parallel

process working on the same TRD.

Parallel execution of Algorithm 1 can be done with a Readers-Writer Lock on each TRD node to

guarantee the update of line 6 be done sequentially. When there are two (or more) PMQTs that

maintain the same TRD and update the timestamps of the same node (i.e., the same vertex and

state), the subsequent update is done over the proceeding update (i.e., rule 2 is sequentially applied).

If the subsequent update does not change the timestamp of a node in line 6, it means that the

further extension of the node is already taken care of by a proceeding (parallel) process, and a

recursive call in line 10 for the subsequent process is avoided. Such a shared TRD maintenance

process is the same as done in [59].
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Example 4. Consider the streaming RPQ evaluation with the same query conditions as in Example
3. Both PMQTs 𝜒𝑝1 and 𝜒𝑝2 share the TRD𝑇𝑎 with the same root and both update the same nodes (𝑐, 1)
and (𝑑, 2). Suppose the evaluation of 𝜒𝑝1 first creates the node (𝑐, 1) and sets its timestamps (𝑐, 1).𝑡𝑠
to set {0, 1, 2}. When the evaluation of 𝜒𝑝2 attempts to update the timestamps of (𝑐, 1) after inserting
node (𝑏, 1) (with edge 𝑒0 in 𝑆), the calculated timestamps are {2} (computed with {2, 3, 4} ∩ {0, 1, 2}),
which is a subset of the already updated timestamps (𝑐, 1).𝑡𝑠 = {0, 1, 2}. In this case, node (𝑐, 1) will
not be added to set𝑀 in line 8, and the recursive call to Algorithm 1 for extending the path starting
from (𝑐, 1) in the evaluation of 𝜒𝑝2 is eliminated. The shared paths of 𝜒𝑝1 and 𝜒𝑝2 in 𝑇𝑎 are marked in
red in Figure 3(c). Note that the path marked in red may contain a large subgraph in practice, and the
shared TRD maintenance process can save significant computation in such cases.

Theorem 1. The processing of multiple PMQTs generates all the correct query results.

Proof: We need to prove that the decision of a given PMQT 𝜒𝑝1 to not add a node to𝑀 (lines 7

to 8) due to an update by another PMQT 𝜒𝑝2 does not affect the query results. As mentioned above,

a PMQT 𝜒𝑝1 avoids recursively calling Algorithm 1 when it encounters a node whose timestamp

set 𝑡𝑠 is a subset of the timestamps 𝑡𝑠′ of the same node in the TRD already maintained by another

PMQT 𝜒𝑝2 . Note that both PMQTs use the same strategy to maintain TRDs, and the traversed tuples

that may extend this node with rules 2 and 3 when processing PMQT 𝜒𝑝1 are also a subset of these

tuples when processing PMQT 𝜒𝑝2 , since 𝑡𝑠 ⊆ 𝑡𝑠′. Therefore, all the query results of either task

will be included. This theorem can be extended to multiple PMQTs.

3.4 System Design
With the definition of Partially Matched Query Task, we now introduce DRPQ for the distributed

streaming RPQ evaluation. The overview of the system is shown in Figure 4.
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Fig. 4. The System Design of DRPQ

We adopt a Coordinator-Workers model to manage the servers in DRPQ. The coordinator contin-

uously receives tuples from the streaming graph 𝑆 , builds a PMQT for each founded partial match

(with length threshold ℓ𝑒𝑛 is given in advance) in 𝑆 , and forwards them to workers based on an

allocation strategy (one such strategy is introduced in Section 4). The PMQTs can be parallelly-

built in the coordinator and send to workers. The workers receive PMQTs and process them as

mentioned in Section 3.3. Note that we ignore the set semantics of the results in the distributed

setting since [59] incorporates a post-processing thread to deduplicate endpoint pairs, ensuring

set semantics in the single-worker case and a similar deduplication step can be integrated into
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DRPQ as a lightweight post-processing phase after collecting results from all workers, if strict set

semantics are required.

Theorem 2. The query results obtained from DRPQ are correct and complete.

Proof: As mentioned above, we build all PMQTs for the partial matches whose length ℓ𝑒𝑛′ = ℓ𝑒𝑛
and all query tasks are correctly evaluated in workers (by Theorem 1). Besides, the other query

instantiations with path whose length less than ℓ𝑒𝑛 are also correctly founded in coordinator. We

know that all query results in the streaming graph can be found in DRPQ.

3.4.1 Workload Balance. With the definition of PMQTs, it is easy for DRPQ to keep load balance

among workers by monitoring the workload of the workers and dynamically sending PMQTs

to workers. Note that the overlapping tuples in different PMQTs assigned to the same worker

only need to be sent once to save communication costs, and such process can be accelerated by

leveraging broadcasting. The workers and coordinator perform as follows:

▶ Each worker periodically checks its workload, which is represented by the number of PMQTs

that have not yet been processed, and notifies the coordinator when its workload falls below

a certain threshold.

▶ The coordinator monitors the notifications sent by workers, marks those workers as “free,”

and adds them to the “free worker set.” Simultaneously, the coordinator collects the already-

built PMQTs and places them in the “Cached Query Tasks List,” as shown by the dotted line in

Figure 4. Both the free worker set and the Cached Query Tasks List are structures maintained

by the coordinator. When the free worker set is not empty, the coordinator selects a certain

number of PMQTs from the Cached Query Tasks List and assigns them to a worker chosen

from the free worker set (the worker is removed from the set after selection), as indicated by

the green arrows in Figure 4.

The above process achieves balanced workload among the workers (shown as the good perfor-

mance in experiments), with the assumption that each PMQT takes about the same time to evaluate.

In reality, this assumption may not be true. In that case, a more sophisticated monitoring may be

done to determine if a worker is free, but is beyond the scope of this paper.

3.4.2 Discussion. DRPQ is able to handle the out-of-order arrivals of the tuples by constructing

and evaluating PMQTs in a streaming manner. The only requirement is to track PMQTs assigned

to each worker and route incoming tuples based on their timestamps to the appropriate workers

for streaming processing. In addition, the dirty garbage collection strategy for TRD (mentioned in

Section 2.2) can be performed on each worker by synchronizing the timestamps of the tuples the

coordinator last sends. Besides, DRPQ also supports explicit deletions of the tuples by sending the

deletion tuples to the associated PMQTs and processing them in the same way in [59].

3.4.3 Cost Comparison of Distributed Strategies. DRPQ offers significant advantages in distributed

streaming graph processing by achieving an optimal balance between computation, communication,

and load balancing. Unlike the Splitting Query and Window Partitioning strategies, which suffer

from excessive computational overhead due to costly joins or duplicate processing across multiple

sliding windows, DRPQ effectively minimizes unnecessary computations. Its duplicate computation

cost is substantially lower than the expensive multi-join (or merge) operations in Splitting Query

strategy and the repeated processing in Window Partitioning. Furthermore, DRPQ significantly

reduces inter-worker communication compared to Graph Partitioning strategy, which incurs high

messaging overhead due to frequent cross-worker path traversals. Beyond these efficiency gains,

DRPQ also excels in load balancing by ensuring an even workload distribution, thereby preventing

the bottlenecks and imbalances that hinder other strategies. These combined advantages make
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DRPQ a highly efficient and scalable solution for large-scale distributed streaming systems. A

detailed experimental comparison is presented in Sections 5.2.1 and 5.2.2.

4 Group-based Allocation Strategy
In this section, we focus on the coordinator’s allocation strategy, which customizes PMQTs to

improve shared TRD maintenance (see Section 3.3). We first analyze key features of PMQTs (Sec-

tion 4.1), then introduce a vectorization-based similarity measure and its approximation (Section 4.2),

and finally present a grouping method based on vector similarity (Section 4.3).

4.1 Feature Vectorization of PMQTs
Recall the discussion in Section 3.3, PMQTs can share maintenance processes in workers if their

associated TRDs meet three key conditions: (a) they have the same root node, (b) they contain

common nodes (i.e., nodes with the same vertex and state), and (c) the timestamps of these common

nodes exhibit a containment relationship (one set containing the other). For example, in Figure 3,

node (𝑐, 1) satisfies these conditions, while (𝑑, 2) does not. From this, we derive two key insights:

(1) PMQT sharing is only relevant when their TRDs have the same root node, and (2) the more

nodes that satisfy conditions (b) & (c), the greater the potential for shared processing.

To quickly judge how much PMQTs may have shared processes, we first represent each PMQT

as an 𝑛 × 𝑘 integer vector. Here, 𝑛 denotes the total number of possible nodes (𝑢, 𝑠𝑢) in any TRD

of PMQTs, with each node assigned a unique integer from 1 to 𝑛, and 𝑘 represents all possible

timestamps on nodes. Conceptually, this vector can be viewed as an 𝑛-row, 𝑘-column binary matrix,

where each entry is set to 1 if the corresponding node and timestamp exist in the TRD, and 0

otherwise. Then, based on these generated vectors, we estimate the possibility of shared TRD

maintenance by computing a similarity measure between PMQTs with the same root node, which

is represented as the overlap length of timestamps on common nodes between two PMQTs.

Definition 10. Similarity: For two PMQTs 𝜒𝑝1 and 𝜒𝑝2 with associated TRD𝑇𝑢 and𝑇𝑣 , respectively,
the similarity 𝑆𝑖𝑚(𝜒𝑝1 , 𝜒𝑝2 ) between them is calculated as follows:

𝑆𝑖𝑚(𝜒𝑝1 , 𝜒𝑝2 ) =
{
𝑣𝑐𝑡𝑖 ∗ 𝑣𝑐𝑡 𝑗 , if 𝑢 = 𝑣

0, otherwise
(1)

where 𝑣𝑐𝑡𝑖 and 𝑣𝑐𝑡 𝑗 are the vectors associated with 𝜒𝑝1 and 𝜒𝑝2 , respectively.

Given two PMQTs 𝜒𝑝1 and 𝜒𝑝2 , 𝑆𝑖𝑚(𝜒𝑝1 , 𝜒𝑝2 ) is basically the dot product of the associated vectors,
which represents the number of overlapping timestamps on the common nodes of their TRDs.

Note that 𝑆𝑖𝑚(𝜒𝑝1 , 𝜒𝑝2 ) ∈ [0, 𝑛 ∗𝑘]. Also note that the larger 𝑆𝑖𝑚(𝜒𝑝1 , 𝜒𝑝2 ) is, the more overlapped

timestamps on the common nodes of the TRDs, and we say the more similar they are.

4.2 Approximated Vectorization
The above theoretical vectorizationmethod is obviously impractical since both𝑛 and𝑘 are extremely

large. Moreover, it is impossible to have the complete TRD of a PMQT unless we have already

constructed the TRD for the PMQT (but this is exactly the process that the workers need to perform).

We thus propose an approximated vectorization of the PMQTs based on their own partial matches.

First, we merge the nodes into𝑚 different buckets and add the corresponding 𝑘 elements of the

merged nodes together, i.e., add the corresponding timestamps of all the nodes mapped to the same

bucket. Hence, the compressed vector may still be large in theory (i.e.,𝑚 ∗ 𝑘), but the computation

of vector similarity (see below) can take an efficient form. Indeed, the 𝑘 elements of each bucket

are very sparse. Hence, we only need to remember the non-zero elements of the vector. Second,

we adopt a heuristic method that only considers the part of a TRD for each PMQT, restricting
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nodes to those within at most ℎ hops from the initial node (𝑢, 𝑠𝑢). This partial TRD can be quickly

constructed by the coordinator.

The above approximation sacrifices some accuracy. The larger the hop ℎ, the more nodes are

sampled and the more time cost it takes to obtain such a (partial) TRD, but the higher possibility

the coordinator knows which query tasks can share processing. Besides, the nodes compressed

into the same bucket are taken as the same. We may control the size of𝑚 and hop ℎ to balance the

grouping quality and cost. We will discuss this trade-off in the experiments.

In summary, we efficiently vectorize a PMQT 𝜒𝑝 with an associated TRD 𝑇𝑥 and initial node

(𝑢, 𝑠𝑢) into a𝑚 × 𝑘-dimensional vector 𝑣𝑐𝑡 using the following steps: (1) Construct a TRD with

all simple paths in the product graph from the initial node (𝑢, 𝑠𝑢) at most length ℎ and collect all

the nodes along with their timestamps. (2) Adopt an assignment function (using hash function in

this paper) to quickly assign these nodes to𝑚 buckets. (3) Each bucket maintains a compressed

subvector 𝑣𝑐𝑡 ′ of length 𝑘 (but compressed using their sparsity), where the 𝑖-th dimension 𝑣𝑐𝑡 ′ [𝑖]
represents the number of nodes in that bucket with corresponding timestamps (set to 0 if none

exist). Here we use an example to illustrate the process of vectorizing a PMQT.

⋯ ⋯

1 2 3

a,1

b,2

d,3

𝑇!

e,4 f,2

c,2

g,2 h,3 i,3

4 5 6

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

x,0

The size of bucket m = 6

[3, 4, 5] [4, 5, 6]

1 2 2 10 0
Index: 2 3 4 5 6 7

0 0
0 1

index value
3 1
4 2
5 2
6 1

The length of each bucket 𝑘 = 8

Partial match Initial node

Fig. 5. Vectorize a PMQT

Example 5. Figure 5 shows an instance to vectorize a pre-given PMQT with associated TRD 𝑇𝑥 and
initial node (𝑎, 1). We set the hop to ℎ = 2, the number of buckets to𝑚 = 6, and the total possible
timestamps to 𝑘 = 8. First, we construct the hop-2 TRD 𝑇𝑥 for the PMQT, which is shown in this
figure with nodes and edges that are marked in black. Next, we assign these obtained nodes into 6
buckets based on the assignment function, as indicated by the red dotted arrows. Notably, both nodes
(𝑑, 3) and (𝑖, 3) are mapped to the same bucket with ID 3, and the subvector of this bucket is shown
underneath where each the number indicating the count of the particular timestamp appearing in
(𝑑, 3).𝑡𝑠 = {3, 4, 5} and (𝑖, 3).𝑡𝑠 = {4, 5, 6}. An efficient representation of this subvector is shown in the
table in the upper-right corner.

The Eq. 1 can be adopted when vectors are approximated with the method discussed earlier.

Since we consider all nodes that are compressed into the same bucket to be the “same”, for each

node in 𝑣𝑐𝑡1, we need to calculate the overlapped timestamps with all the “same” nodes in 𝑣𝑐𝑡2.

That is, assuming that 𝑥 nodes in 𝑣𝑐𝑡1 with corresponding subvectors 𝑛1, · · · , 𝑛𝑥 and 𝑦 nodes in 𝑣𝑐𝑡2
with corresponding subvectors𝑚1, · · · ,𝑚 𝑗 are the mapped to the same bucket, then the similarity
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of the two buckets is calculated by:

𝑥∑︁
𝑖=1

𝑦∑︁
𝑗=1

𝑛𝑖 ∗𝑚 𝑗 =

𝑥∑︁
𝑖=1

𝑛𝑖 ∗
𝑦∑︁
𝑗=1

𝑚 𝑗 (2)

Thus, we can add all the subvertors of the nodes in each bucket and each PMQT is then represented

by an approximated vector in which each bucket (i.e., merged node) has an associated subvector.

Then the similarity between two PMQTs when their feature vectors are approximated can thus be

calculated in the same way as Eq. 1.

1 2 2 10 00 0

1 1 0 11 10 0

1 2 1+ +

×

= = =

= 4

[3, 4, 5] [4, 5, 6]

[2, 3, 4] [6, 7]
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𝑣𝑐𝑡!
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𝑣𝑐𝑡"
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⋯ ⋯

⋯ ⋯

Bucket 1 Bucket 2

××
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= =

Fig. 6. Calculate similarity with two vectors 𝑣𝑐𝑡1 and 𝑣𝑐𝑡2

We now use an example to illustrate calculating similarity between different approximate vectors.

Example 6. The example of Figure 6 illustrates the process of calculating the approximated similarity
of two query tasks with the associated vectors 𝑣𝑐𝑡1 and 𝑣𝑐𝑡2 with bucket size𝑚 = 3 and 𝑘 = 8. For the
bucket 𝐼𝐷 = 3, assume this bucket in vector 𝑣𝑐𝑡1 consists of two nodes with timestamps {3, 4, 5} and
{4, 5, 6} and in vector 𝑣𝑐𝑡2 consists of two nodes with timestamps {2, 3, 4} and {6, 7}. Their corresponding
approximate subvectors are shown in the figure. The similarity in this bucket is calculated as the
dot product of their corresponding subvectors, which is 4. Roughly, this result 4 gives the number of
overlapping timestamps in this bucket between the two PMQTs. The other buckets 1 & 2 are calculated
in the same way. The similarity of these two PMQTs is 3 + 2 + 4 = 9.

4.3 PMQT Grouping
The coordinator groups PMQTs that are likely to share their TRD maintenance process before

assigning them to workers. For each root node, it maintains a set of groups, where each group

𝑔 contains query tasks with the same root, formed based on the similarity measure described in

Section 4.2. Each group 𝑔 is represented by an𝑚 × 𝑘-dimensional vector, obtained by summing all

member vectors in the group. The similarity is calculated between 𝜒𝑝1 and a group 𝑔 by replacing

𝜒𝑝2 with 𝑔 and 𝑢2 with the root of 𝑔.

For a new PMQT 𝜒𝑝 , the coordinator calls Algorithm Grouping (Algorithm 2) to add this PMQT

to the maintained group set (create a new group if needed). It calculates the similarity between the

given PMQT and each group 𝑔 (Line 4 in Algorithm 2). Then, if the maximum similarity calculated

above is above a certain pre-defined “similarly threshold”, add the given PMQT to the most similar

group 𝑔 in lines 6 and 7 in Algorithm 2. Otherwise, i.e., the PMQT is not similar enough to any of

the groups, a new group is created with the given PMQT in lines 9 to 10 in Algorithm 2.

4.3.1 Grouping-Based Coordinator Design. The coordinator efficiently manages PMQT assignment

using a vectorization and grouping strategy, as highlighted in red in Figure 4. Each pre-built PMQT

is first vectorized in parallel within the “Vectorize” module, after which Algorithm 2 is applied

sequentially to group PMQTs. These grouped query tasks are stored in the “Cached Query Tasks”
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Algorithm 2: 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔

Maintained: group set (of a given root node 𝑟 )

Input: PMQT 𝜒𝑝 with associated TRD 𝑇𝑟 and vector 𝑣𝑐𝑡

1 begin

2 initial similarity mapM;

3 foreach group 𝑔 in group set do
4 calculate similarity𝑀 (𝑔) ← 𝑆𝑖𝑚(𝑣𝑒𝑐, 𝑔);
5 if max value {M} > a pre-given similarity threshold then

6 find the group 𝑔 with the max valueM(𝑔);
7 add 𝑣𝑐𝑡 to group 𝑔;

8 else

9 create a new empty group 𝑔 and add it to the group set;

10 add 𝑣𝑐𝑡 to group 𝑔;

for dynamic assignment, and the coordinator prioritizes assigning PMQTs from the same group to

a single worker. Upon detecting an available worker, it selects and dispatches a batch of PMQTs

from the cache. The coordinator continuously updates these groups by adding new PMQTs through

Algorithm 2 and removing dispatched tasks. It also tracks the groups previously assigned to each

worker, ensuring that newly assigned tasks belong to groups the worker has already processed

when possible. If no PMQTs remain in those groups, the coordinator assigns tasks from a new

group. Additionally, to maintain load balance, the coordinator dynamically split existing groups

and distribute them among multiple free workers when necessary.

4.3.2 Discussion. We note that both PMQT generation and grouping at the coordinator are light-

weight operations in most scenarios, and can be parallelized using multi-threading. However,

these behaviors are highly context-sensitive, influenced by both static parameters (e.g., partial

match length and grouping granularity) and dynamic workload characteristics such as stream

skew, query selectivity, and temporal burstiness. In certain settings, especially when the correlation

among PMQTs is weak or when the data stream exhibits bursty behavior, the benefit of reduc-

ing redundant computation may be offset by the coordination overhead introduced by grouping.

While we currently adopt a static grouping policy and fixed parameter settings (e.g., bucket size,

hop, and similarity threshold), we acknowledge that adaptive strategies—capable of dynamically

tuning grouping decisions and parameters in response to observed workload patterns—can offer

better performance. We leave the design of such adaptive strategies and runtime plan switching

mechanisms as promising directions for future work.

5 Experimental Evaluation
In this section, we experimentally evaluate the performance of the proposed methods. We begin

by introducing the system implementation and experimental settings in Section 5.1. Then, in

Section 5.2, we compare DRPQ with other distributed strategies and provide a detailed evaluation

and analysis of the grouping strategy.

Here we give a brief highlight of our experimental results:

• DRPQ demonstrates excellent throughput and scalability compared to the other strategies

when evaluating streaming RPQs in a distributed manner. Specifically, the throughput in-

creases nearly linearly as the number of workers grows.
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• The grouping strategy in DRPQ significantly enhances performance, improving throughput

by almost twofold in most query scenarios and conditions.

5.1 Experimental Setup and Implementation
Experimental Setting: All experiments were conducted on a cluster of 9 machines (1 coor-

dinator and 8 workers), each equipped with an Intel Xeon (Cascade Lake, 2.30 GHz), 32 physical

cores, and 256 GB RAM, interconnected via a 10 Gbps network.

Implementation of Compared Approaches:We implemented all the aforementioned dis-

tributed strategies in Java 8. Streaming graph tuples are generated by continuously reading from a

file, and results produced by workers are collected by an external machine (not included in the

system). Communication between the coordinator and workers is implemented via asynchronous

MPI-based message passing (MPJ v0.43 [30]), with each worker maintaining a dedicated receiving

thread. All approaches being compared share the same core TRD-based evaluation engine [59]

with the TRD serving as the unified internal structure for incremental RPQ processing across all

workers, and differ only in how tuples are distributed to workers and how each worker organizes

its computation and synchronization logic accordingly. Following are the implementation details

of the tested approaches in experiments.

- DRPQ: The coordinator incrementally builds partially matched query tasks (PMQTs) based on

observed partial paths in the stream and sends them to workers. Each worker runs the TRD-based

evaluation algorithm starting from the pre-initialized partial match encoded in the PMQT. Each

worker independently maintains local TRDs and outputs matching results. We implement two

variants: DRPQ (random) randomly assigns PMQTs to workers, while DRPQ (grouping) applies the
grouping strategy described in Section 4. Internal modules like “Vectorize” and “GroupTasks” are

implemented as Java thread pools. The partial match length threshold is set to ℓ𝑒𝑛 = 1 by default,

and the grouping parameters are: bucket size𝑚 = 100, similarity threshold 𝑠𝑡 = 10, and hop ℎ = 2.

A worker reports itself as “free” when its PMQT queue length drops below 100, and the coordinator

assigns a batch of 1,000 PMQTs.

- Split Query: This approach follows the method in [46], where the regular expression is

decomposed into a binary join tree (query plan). Each subexpression is evaluated independently

by a worker on the entire stream. The coordinator receives intermediate results and performs

multi-way joins to produce final answers. We reuse the same TRD engine to evaluate each subquery.

Intermediate results are buffered and joined in memory using hash-join structures.

- Window Partition: In this strategy, the entire query is evaluated repeatedly over disjoint or

overlapping windows. The coordinator assigns each sliding window instance to a different worker.

The worker builds a local TRD for its assigned window and evaluates the full query independently.

The implementation shares the same evaluation engine but resets TRD states between windows.

Tuples are routed according to their timestamps.

- Graph Partition: We implemented four edge-partitioning schemes—Greedy, HDRF, DBH,

and Grid [1]—to divide the graph. Each tuple is routed to workers based on the partition of its

nodes. Since query paths can cross partitions, workers exchange intermediate TRD states for edges

that connect across workers. Each worker maintains TRDs locally but supports TRD propagation

via MPI. We select the best-performing partitioner per run.

Note that all three baseline strategies can be viewed as naive distributed extensions of the TRD-

based evaluation algorithm in [59], where distribution is achieved through static decomposition of

the query, the graph, or the time domain, respectively.

Workloads & Datasets: The queries (workloads) used in our experiments are regular expres-

sions listed in Table 1. Specifically, 𝑄1–8 represent common recursive query patterns observed

in real-world applications [11]. 𝑄9 is a manually constructed query designed to evaluate system
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Table 1. The regular expressions used in our workloads.

Case Query Case Query

𝑄1 𝑎∗ ◦ 𝑏? ◦ 𝑐 𝑄4 𝑎∗ | 𝑏∗
𝑄2 𝑎 ◦ (𝑏 ◦ 𝑐)∗ 𝑄5 𝑎 ◦ 𝑏∗ ◦ 𝑐∗
𝑄3 𝑎∗ ◦ 𝑏∗ 𝑄6 𝑎 ◦ (𝑏∗ | 𝑐)
𝑄7 (𝑎1 + 𝑎2 + 𝑎3 + · · · + 𝑎𝑘 )∗
𝑄8 (𝑎1 + 𝑎2 + 𝑎3 + · · · + 𝑎𝑘 ) ◦ 𝑏∗
𝑄9 𝑎+

1
◦ (𝑎2 | 𝑎∗3) ◦ 𝑎4 ◦ 𝑎5? ◦ 𝑎∗6

robustness under more complex query structures. Note that the query results for 𝑄3, 𝑄4, and

𝑄7 must include at least one label, as we require matching paths to be non-empty (specified in

Definition 4). We evaluate these queries on two real graphs:

- Stack Overflow (SO) is a network of Question & Answer which consists of approximately

2.6 million users (vertices) and 74 million interactions (edges) spanning six years [44] up to now.

Interactions are classified into three types based on the edge label 𝑙 in each tuple (𝑒, 𝑡), where
𝑒 = (𝑢, 𝑣, 𝑙): (𝑙 = 𝑎) denotes that user 𝑢 answered a question by user 𝑣 at time 𝑡 ; (𝑙 = 𝑏) means that 𝑢

commented on 𝑣 ’s answer; and (𝑙 = 𝑐) indicates that 𝑢 commented on 𝑣 ’s question. The timestamp

𝑡 records when the interaction occurred. Unless otherwise specified, we set the sliding window size

|𝑊 | to 1 week (|𝑊 | = 7) and the slide length 𝑆𝑡𝑒𝑝 (𝑊 ) to 1 day.

- Yago4 is the latest version of the YAGO knowledge base derived fromWikidata [48]. It contains

over 50 million entities (vertices) and 2 billion facts (edges), including a rich schema with 157

relation labels. To simulate sliding windows on the Yago4 RDF graph, we assign a monotonically

non-decreasing timestamp to each RDF triple at a fixed rate. Each window in Yago4 contains

approximately 10 million edges (|W| = 10M) and slides every 100K edges. For YAGO, the queries in

Table 1 are instantiated using real relation labels from the dataset. Labels are selected manually to

match the query pattern and ensure sufficient support. While our focus is on structural diversity

for system evaluation, benchmarks like [3] with real query logs are valuable for future extension.

It is worth noting that both SO and YAGO datasets naturally exhibit skewed characteristics,

including high-degree nodes, uneven edge distributions, and varied path lengths. These inherent

properties provide a realistic basis for assessing the system’s robustness to data and workload skew

in practical settings.

Performance Metric:We use throughput as the primary performance metric, defined as the

number of streaming tuples the system can process per second while maintaining correct and

up-to-date query results. We will briefly discuss the tail latency as well. Recall that all components

in the grouping operation can be executed as a pipeline, the grouping strategy and query processing

can proceed in parallel, and task distribution incurs negligible overhead. The observed throughput

gains are sufficient to contextualize the overhead introduced by DRPQ and the grouping strategy.

We report average throughput over a 6-minute warm-cache run to reflect steady-state system

performance.

It is worth noting that we also measured the necessary communication overhead between the

coordinator and workers, including PMQT dispatching and control messages in DRPQ. This cost

remains consistently low—under 3% of total processing time—thanks to asynchronous message

passing and dedicated receiving threads. Therefore, we consider the communication overhead of

DRPQ negligible and omit it from our experimental breakdowns.
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Fig. 7. Evaluate throughput with different distributed strategies and different query cases on two datasets.

5.2 Experimental Results
5.2.1 Performance on Different Queries and Datasets. We first evaluate the performance of dis-

tributed strategies using four workers across all queries in Table 1 on both datasets, with results

shown in Figure 7. It is evident that each strategy has its strengths across different queries and

datasets. However, the throughput of DRPQ (random) and DRPQ (grouping) consistently outper-

forms the other distributed strategies for all queries, with a performance more than twice that

of the other strategies in most cases. Specifically, DRPQ (random) and DRPQ (grouping) show

significantly higher improvements under conditions of lower throughput (i.e., heavier workloads)

on both datasets, with gains reaching up to 3×. Furthermore, compared to DRPQ (random), DRPQ

(grouping) achieves considerable throughput gains on most queries in SO, including structurally

more complex one 𝑄9. The grouping strategy delivers greater improvements in scenarios of lower

throughput (e.g., a 2.3-fold increase in throughput for𝑄7). This improvement can be attributed to the

substantially larger size of the TRDs under heavy workloads, which enables more shared processes

across different PMQTs. An exception is observed for𝑄6,8 in SO and𝑄2,6–8 in YAGO, where the time

costs associated with vectorizing and grouping significantly exceed those for processing, creating a

performance bottleneck.
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Fig. 8. (a), (b), and (c) show the throughput of different strategies with𝑄1,𝑄5, and𝑄9, respectively. (d) shows
the tail latency of DRPQ (both random and grouping strategies) using different numbers of workers.

5.2.2 Scalability Analysis. We use query𝑄1,𝑄5, and𝑄9 to evaluate the scalability of the distributed

strategies by monitoring throughput across different numbers of workers. All other settings remain

as described in 5.2.1, and the results are shown in Figure 8(a), 8(b), and 8(c). The results for one

worker correspond to the single-worker execution of DRPQ, serving as a baseline to measure

distributed speedup. All the results show a similar trend that, as the number of workers increases,

only the DRPQ strategy (both grouping and random) andWindow Partitioning strategy demonstrate

a steady, linear increase in throughput. In contrast, the Splitting Query strategy is constrained by
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the number of split parts of the query, and the Graph Partitioning strategy experiences decreasing

throughput due to a sharp rise in communication overhead. The throughput of DRPQ is consistently

higher than that of the Window Partitioning strategy, highlighting the superior scalability of

our proposed DRPQ system. Additionally, we assess the scalability of the grouping strategy by

monitoring the speed-up ratio (calculated as DRPQ (grouping) / DRPQ (random)) across different

worker counts, shown by the red dashed line in the figure. As the number of workers increases,

DRPQ (grouping) demonstrates a significant throughput improvement over DRPQ (random), nearly

doubling the throughput when 8 workers are used. Compared to all other distributed strategies,

DRPQ (grouping) exhibits exceptional scalability, doubling its throughput as the number of workers

increases from 2 to 4 to 8.

We also evaluate the scalability of DRPQ by monitoring the tail (99th percentile) latency under

various number of workers. The results in Figure 8(d) show that as the number of workers increases,

the tail latency for both DRPQ (random) and DRPQ (grouping) decreases consistently across all

query types (𝑄1,𝑄5,𝑄9). Notably, DRPQ (grouping) achieves lower tail latency than DRPQ (random)

in all configurations, with more significant reductions observed in higher workloads such as 𝑄9.

Table 2. Throughput under different partial match length ℓ𝑒𝑛

ℓ𝑒𝑛 1 2 3 4 10 100 1000

DRPQ (random) 182 245 368 221 111 105 107

DRPQ (grouping) 195 429 533 242 81 102 101

5.2.3 Threshold of Partial Match Length. To explore the effect of the partial match length threshold

ℓ𝑒𝑛 under a limited number of workers, we selected 1M tuples from the SO dataset and controlled

the number of generated PMQTs as follows: (1) We introduced two new labels, 𝑑 and 𝑒 , which

together form several paths (about 0.01% of tuples in SO) with the label sequence 𝑑 ◦ 𝑒; (2) We

identified several hot nodes (about 0.001% of nodes in SO) that connect to the source vertex of all

tuples labeled 𝑎 via 𝑒 . The sliding window size was set to 90 (three months), and the query was

𝑄 ′ = 𝑑 ◦ 𝑒 ◦𝑄1. Other experimental settings followed Section 5.2.1; results appear in Table 2. As

discussed in Section 3.4, the optimal threshold in this setting is ℓ𝑒𝑛 = 3, which balances generating

sufficient PMQTs and limiting coordinator overhead. For ℓ𝑒𝑛 < 3, the bottleneck is too few PMQTs;

for ℓ𝑒𝑛 > 3, the coordinator incurs excessive cost finding partial matches. Notably, throughput

remains unchanged when ℓ𝑒𝑛 exceeds 100, as most partial matches fail the length threshold and the

system effectively degenerates to single-coordinator processing, diminishing distributed benefits.

A suitable ℓ𝑒𝑛 can typically be found by conducting preliminary tests on sampled data.

5.2.4 Parameters in Grouping Strategy. We now evaluate the influence of the parameters (bucket

size 𝑚, hop ℎ, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in Algorithm 2) in the grouping strategy to the grouping quality.

Note that these three parameters interact and collectively influence the grouping quality, we thus

conduct several experiments on SO and query 𝑄1 to evaluate the covariance impact among them.

Figure 9(a) presents the throughput and number of generated groups under varying hop ℎ and

similarity threshold 𝑠𝑡 , with bucket size fixed at𝑚 = 100. We exclude ℎ = 4 because its grouping

cost far exceeds processing cost, introducing a new performance bottleneck.

Notably, for ℎ = 1 and ℎ = 2, throughput steadily decreases as 𝑠𝑡 increases. Specifically, at

ℎ = 1, throughput nearly halves at 𝑠𝑡 = 1 and then stabilizes for 𝑠𝑡 ≥ 10, closely resembling the

DRPQ (random) strategy (see black dashed lines in the figure). For ℎ = 2, throughput declines

more gradually with increasing 𝑠𝑡 . In contrast, for ℎ = 3, throughput initially rises as 𝑠𝑡 increases,

peaking at 𝑠𝑡 = 15 (the “turning point”), after which it declines.
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Fig. 9. The throughput with (a) different hops & similarity thresholds and (b) different hops & bucket size.

These trends can be explained as follows. When ℎ = 3, increasing 𝑠𝑡 allows more PMQTs within a

group to share TRD maintenance, boosting throughput. Beyond the turning point, stricter similarity

constraints split previously grouped PMQTs, resulting in throughput decline. For ℎ = 2, fewer

sampled nodes mean the system reaches or exceeds the turning point sooner, causing a slower but

steady decline as 𝑠𝑡 increases. The same logic applies to ℎ = 1, which behaves like DRPQ (random)

due to the less sampled nodes.

The number of groups generated is shown by the dashed lines in Figure 9(a), and is almost exactly

inversely proportional to throughput: more groups correspond to more random-like allocation and

lower TRD sharing. At 𝑠𝑡 = 0, group counts are similar across all hops since a loose threshold easily

satisfies the overlap condition, grouping more PMQTs together. As 𝑠𝑡 increases, grouping becomes

stricter and the number of groups rises across all hops. Higher ℎ values (i.e., more sampled nodes)

result in fewer groups for the same 𝑠𝑡 , as more PMQTs can satisfy the grouping requirements.

Next, we evaluate the impact of bucket size𝑚 and hopℎ on performance with similarity threshold

𝑠𝑡 = 5, as shown in Figure 9(b). For ℎ = 1, throughput steadily decreases as𝑚 increases, with a

sharp drop when𝑚 rises from 4 to 7, after which it stabilizes. For ℎ = 2, throughput increases with

𝑚 up to a peak at𝑚 = 7, and for ℎ = 3, the peak occurs at𝑚 = 100. Notably, the turning point for

ℎ = 3 yields higher throughput than that for ℎ = 2.

These results are consistent with previous findings. Increasing 𝑚 makes it easier to satisfy

condition (b) in Section 4, allowing more PMQTs in a group to share TRD maintenance and

increasing throughput—up to the turning point. Beyond this, the fixed number of sampled nodes

per hop leads to fewer nodes in each bucket, making it harder to meet the similarity threshold, and

thus previously grouped PMQTs are split into separate groups, reducing throughput. The turning

point appears earlier for ℎ = 2 (𝑚 = 7) than for ℎ = 3 (𝑚 = 100), as the latter samples more nodes

and thus better supports feature-based grouping.

The number of groups under different settings is indicated by the dashed lines in Figure 9(b).

Unlike Figure 9(a), bucket size has a stronger effect on group count, as it directly determines how

sampled nodes are distributed. This results in more significant variation in group formation and

consequently influences throughput.

We now fix the hop ℎ = 2 and evaluate the impact of bucket size𝑚 and similarity threshold

𝑠𝑡 on performance, as shown in Figure 10. The turning point appears when𝑚 ≤ 20, with higher

𝑚 values corresponding to lower 𝑠𝑡 thresholds needed to reach the turning point (e.g., 𝑠𝑡 = 80 at

𝑚 = 1, 𝑠𝑡 = 60 at𝑚 = 2, 𝑠𝑡 = 35 at𝑚 = 4). This is because larger𝑚 means fewer nodes per bucket,
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Fig. 10. The throughput and number of groups with different similarity thresholds and bucket size.

so a lower 𝑠𝑡 is sufficient to distinguish which PMQTs can share TRD processes. When𝑚 ≥ 50,

the turning point disappears and throughput declines more rapidly, as each bucket contains too

few nodes to satisfy the similarity requirement; equivalently, 𝑠𝑡 in this range already exceeds the

turning point. Notably, higher 𝑚 values achieve higher throughput at their turning point (e.g.,

throughput for𝑚 = 10, 𝑠𝑡 = 20 is greater than for𝑚 = 4, 𝑠𝑡 = 35 or𝑚 = 2, 𝑠𝑡 = 60), since larger

buckets facilitate finer differentiation and better process sharing among PMQTs.

In summary, for a given query, a higher hop ℎ is generally preferable because it samples more

nodes for vector generation, as long as grouping overhead does not become a bottleneck. The

optimal choice of𝑚 and 𝑠𝑡 depends on the number of sampled nodes: with fewer nodes, smaller

𝑚 and higher 𝑠𝑡 are preferable, while with more nodes, larger𝑚 and lower 𝑠𝑡 are more effective

for grouping and throughput. Since optimal parameter settings depend on both dataset and query

complexity, we recommend preliminary experiments on sample data to tune parameters prior to

deployment.
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Fig. 11. The throughput of adopting grouping strategy with (a) different sliding windows and (b) sliding step
length.

5.2.5 Sensitivity Analysis. We evaluated the sensitivity of our grouping strategy by measuring

the throughput of DRPQ (random) and DRPQ (grouping) under different sliding window sizes
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(|𝑊 |) and sliding step lengths (𝑆𝑡𝑒𝑝 (𝑊 )) for query 𝑄1. The results are presented in Figures 11(a)

and 11(b). As |𝑊 | increases, the throughput of both methods declines due to the heavier query

workload within each window. However, the speed-up achieved by the grouping strategy over

DRPQ (random) (depicted by the red line) increases, since larger windows result in larger TRDs

and each PMQT contains more tuples. This leads to more opportunities for TRD maintenance

to be shared across different PMQTs, allowing the grouping strategy to achieve higher relative

throughput as |𝑊 | increases.
In contrast, as 𝑆𝑡𝑒𝑝 (𝑊 ) increases, the throughput of both methods improves because a larger

𝑆𝑡𝑒𝑝 (𝑊 ) reduces the number of tuples within certain PMQTs (see Definition 9). However, our

experiments show that when 𝑆𝑡𝑒𝑝 (𝑊 ) = 4 (with |𝑊 | = 7), the throughput of the grouping strategy

stops increasing, as the overhead of grouping surpasses the processing time on workers, creating a

new bottleneck. Additionally, as 𝑆𝑡𝑒𝑝 (𝑊 ) increases, the speed-up ratio of the grouping strategy

gradually decreases, since there are fewer opportunities for sharing computation across PMQTs.

6 Related Work
Regular Path Queries (RPQs): RPQs are widely used in graph querying [4, 5, 20]. Early RPQ

evaluation methods can be categorized as navigational or relational. Navigational methods include

rare label splitting [34, 42], Brzozowski derivatives [43], bidirectional random walks [55], and

partial answers [56]. [8] combines the Glushkov automaton [23] with a ring index [7]. Relational

methods focus on recursive queries, such as recursive SQL [19, 58] and relational algebra [22, 29].

Recent advances employ hardware/software acceleration, like FPGA-based parallel RPQ evaluation

[39] or JIT compilation for direct graph evaluation [52]. Pang et al. [47] optimize query processing

under memory constraints by exploring shared subqueries and materialized views.

Most prior works focuses on static graphs. [57] study reachability queries that aim to identify

time-respecting paths in temporal graphs. However, their approach targets static settings with

offline indexing, and does not support regular path queries or streaming evaluation. [45] introduces

persistent RPQ evaluation over streaming graphs, later extended in [46] by integrating RPQs with

graph pattern matching and proposing a streaming graph algebra. Gou et al. [25] reduce memory

and update costs using shared spanning trees to materialize intermediate results. [59] is the first

to support parallel processing over multiple sliding windows, avoiding expiration (see Section 2).

However, no distributed solution is offered.

Streaming Graph Processing Systems: Streaming RDF processing has been explored in various

contexts, including Linked Data Notification [12], RDF stream publishing [6], SPARQL extensions

for reasoning and event matching [33], and persistent query systems like C-SPARQL [9], CQELS [36],

and SPARQL𝑠𝑡𝑟𝑒𝑎𝑚 [13]. However, these systems do not address RPQs specifically [60]. Streaming

graph algorithms are divided into two categories: (1) processing large static graphs in a streaming

manner, focusing on graph compression [2, 37] and partitioning [14, 49]; and (2) maintaining

streaming graphs and dynamically updating outputs, including persistent queries for subgraph

matching [17, 31], triangle counting [26, 51], cycle detection [50], and dynamic indexing for

connectivity queries [15, 61]. Our work falls into the second category, focusing on regular expression

queries. It extends prior efforts [25, 45, 46, 59] by enabling parallel RPQ evaluation in distributed

systems, overcoming limitations like shared spanning tree structures and optimizing TRDs for high-

performance processing. The shared TRD maintenance is conceptually related to the multi-source

BFS optimization in [53], which merges traversals from multiple roots in static graphs. However,

DRPQ differs fundamentally in that it targets streaming, labeled graphs, supports RPQs guided by

automata, and merges across PMQTs from the same root under sliding window constraints. DRPQ

also resembles that of [10] and [21], but with temporal constraints: while both works operate on

static graphs and [21] retains all paths, TRDs in DRPQ is designed for streaming scenario and expire
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as window sliding. Though we currently focus on node pairs, TRDs preserve sufficient information

to reconstruct paths if needed.

A more detailed discussion of distributed strategies for streaming evaluation is provided in

Section 1.

7 Conclusion and Future Work
In this paper, we proposed DRPQ, a novel approach for efficient distributed evaluation of streaming

RPQs. We introduced the PMQT as a flexible unit of work and developed a grouping strategy to

merge PMQTs that can share computation, thereby reducing redundancy. Experimental results show

that DRPQ consistently outperforms existing distributed strategies across diverse queries, achieving

near-linear throughput scaling with the number of workers. The grouping strategy further boosts

throughput by nearly twofold in most cases. Future work mainly focuses on extending the concept

of DRPQ to other streaming graph query applications and exploring adaptive runtime partition

and grouping strategies at the coordinator, including dynamic adjustment of grouping parameters

and condition-based switching between grouping and random modes.
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