& DIGITAL PDF Download
ACM huodalionter acmopen )/3 3769782.pdf
LIBRARY compig i pen) G 2 )onuary 2026
Total Citations: 0
Total Downloads: 152

£ Latest updates: https://dl.acm.org/doi/10.1145/3769782
Published: 05 December 2025

RESEARCH-ARTICLE
DRPQ: Distributed Evaluation of Regular Path Queries
On Streaming Graphs

Citation in BibTeX format

SIYUAN ZHANG, Fudan University, Shanghai, China

KAI ZHANG, Fudan University, Shanghai, China
ZHENGYING HE, Fudan University, Shanghai, China
YINAN JING, Fudan University, Shanghai, China

ZHIGANG ZHAO, Fudan University, Shanghai, China
XIAOYANGSEAN WANG, Fudan University, Shanghai, China

Open Access Support provided by:

Fudan University

Proceedings of the ACM on Management of Data, Volume 3, Issue 6 (December 2025)
https://doi.org/10.1145/3769782
EISSN: 2836-6573


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3769782
https://dl.acm.org/doi/10.1145/3769782
https://dl.acm.org/doi/10.1145/contrib-99661149659
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-99661160680
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-81384604372
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-81312485147
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-99661052288
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-81551265556
https://dl.acm.org/doi/10.1145/institution-60009860
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3769782&targetFile=custom-bibtex&format=bibtex

DRPQ: Distributed Evaluation of Regular Path Queries On
Streaming Graphs

SIYUAN ZHANG, Fudan University, China
KAl ZHANG, Fudan University, China
ZHENYING HE, Fudan University, China
YINAN JING, Fudan University, China
ZHIGANG ZHAO, Fudan University, China
X. SEAN WANG, Fudan University, China

Persistent Regular Path Query (RPQ) on streaming graphs is widely applicable to many online analysis
applications. Existing research primarily focuses on the single-worker scenario, while scaling out to distributed
RPQ processing on multiple workers is desirable when facing a high workload. Existing distributed solutions are
designed for general streaming queries, and various bottlenecks exist that significantly limit the performance
when performing streaming RPQ evaluation. The challenge is how to execute queries with multiple workers
while introducing limited overhead and ensuring sufficient speedup as the number of workers increases.

This paper introduces a distributed processing strategy called DRPQ by carefully dividing a query into
multiple partially matched query tasks. The idea is to form query tasks based on initial matches of the graph
against the given regular expression, and to dynamically distribute these tasks to workers to balance their
workloads. To reduce redundant evaluation across different workers, a grouping method is proposed to find
query tasks that are likely to share evaluation processes, and send them to the same workers. Extensive exper-
iments on two real-world graph datasets demonstrate that DRPQ is significantly more efficient and scalable
than existing distributed solutions. Furthermore, the proposed grouping method proves to be particularly
effective, nearly doubling the throughput in most cases.

CCS Concepts: » Information systems — Data management systems.
Additional Key Words and Phrases: Distributed Evaluation, Regular Path Query, Streaming Graph

ACM Reference Format:

Siyuan Zhang, Kai Zhang, Zhenying He, Yinan Jing, Zhigang Zhao, and X. Sean Wang. 2025. DRPQ: Distributed
Evaluation of Regular Path Queries On Streaming Graphs. Proc. ACM Manag. Data 3, 6 (SIGMOD), Article 317
(December 2025), 27 pages. https://doi.org/10.1145/3769782

1 Introduction

A persistent Regular Path Query (RPQ) on a streaming graph is to continuously find every pair
of vertices that are connected by a path, such that the edge label sequence of this path matches a
given regular expression. It is typically addressed in the sliding window model so that the edges in
the matched path are required to be in a single window, and consecutive windows often overlap a
lot.

Authors’ Contact Information: Siyuan Zhang, siyuanzhang17@fudan.edu.cn, Fudan University, Shanghai, China; Kai Zhang,
zhangk@fudan.edu.cn, Fudan University, Shanghai, China; Zhenying He, zhenying@fudan.edu.cn, Fudan University,
Shanghai, China; Yinan Jing, jingyn@fudan.edu.cn, Fudan University, Shanghai, China; Zhigang Zhao, zgzhao21@m.fudan.
edu.cn, Fudan University, Shanghai, China; X. Sean Wang, xywangCS@fudan.edu.cn, Fudan University, Shanghai, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/12-ART317

https://doi.org/10.1145/3769782

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.


HTTPS://ORCID.ORG/0009-0004-1770-9013
HTTPS://ORCID.ORG/0000-0001-7518-5466
HTTPS://ORCID.ORG/0000-0002-2926-4814
HTTPS://ORCID.ORG/0000-0002-1169-8032
HTTPS://ORCID.ORG/0000-0002-4144-8587
HTTPS://ORCID.ORG/0000-0002-9059-3713
https://doi.org/10.1145/3769782
https://orcid.org/0009-0004-1770-9013
https://orcid.org/0000-0001-7518-5466
https://orcid.org/0000-0002-2926-4814
https://orcid.org/0000-0002-1169-8032
https://orcid.org/0000-0002-4144-8587
https://orcid.org/0000-0002-9059-3713
https://doi.org/10.1145/3769782

317:2 Siyuan Zhang et al.

RPQ on streaming graphs is widely applicable in various online analysis applications, including
social network analysis [16, 27, 40] and network security monitoring [35]. Figure 1(a) illustrates
an example of credit-card-fraud activities detection. Accounts are represented as vertices, while
transactions between accounts are edges. Each transaction is labeled with a type and a timestamp.
The dotted lines represent a kind of the credit-card-fraud model, which can be defined as query
R = (Credit pay - transfer') with the restriction that all edges fall within the same sliding window
W (max(ty,- - ,t,) — min(ty, - -+, ty) < |W|). If both ends of a matched path are the same account,
then there is probably a fraud.

Customer Merchant

Credit pay

@Fepetele

o~
=
ransfer
djsuel],
-—=-
S

T

o+
3
AN
o~
o~
o+
)
@

Fig. 1. (a) a graph of a credit-card-fraud example where the nodes are accounts and the edges are transactions,
(b) a graph representation of a streaming graph.

RPQs on static graphs have been extensively studied [18, 32, 34, 41]. However, streaming graphs
bring significant new challenges. The difference is that in the streaming scenario, there is usually a
large overlap of edges between consecutive windows. To efficiently process RPQs on streaming
graphs, the algorithm in Pacaci et al. [45] continuously maintains a set of spanning trees to gradually
construct query results as the edges arrive. The idea is to keep in the spanning trees all the initial
partial and full matches of the given regular expression found so far in the streaming graph, each
starting with a root node that is the beginning of the matches. This strategy avoids the full graph
traversal with each graph update. Each time the window slides forward, an expiration process
occurs that removes all the edges that are out of the window, along with all the edges on the
affected paths. Zhang et al. [59] identified that the expiration process needs a forced blocking
phase which greatly degrades the query performance. They proposed a new data structure called
Timestamped Rooted Digraph (TRD for short) which adopts a multi-window parallel processing
strategy to remove the blocking phases and provides more opportunities for parallel processing,
achieving much better performance.

The aforementioned algorithms and their extensions [25] are all for the single-worker scenario.
When the workload exceeds the worker’s processing capability (probably caused by the arrival
of data that is large volumes with high velocity), an efficient and scalable distributed solution is
desirable but currently missing. Existing distributed solutions for streaming graph queries mostly
fall into three categories. (1) Split the full query into multiple subqueries and evaluate different
subqueries in different workers [46]. With this solution, join or merge operations are needed for
producing final results. (2) Divide the streaming graph into multiple distinct subgraphs based
on some streaming graph partitioning methods [24]. With this strategy, communication among
workers is needed when processing the cross-worker edges/vertices. (3) Divide the streaming graph
into multiple distinct time-based or count-based windows (e.g., Apache Flink, Spark Streaming, and
Timely Dataflow). With this solution, cross-node communication is avoided and data in overlapping
windows are processed independently in parallel.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:3

The above distributed solutions are general-purpose aiming at general streaming graph query ap-
plications (e.g., Subgraph Matching, Triangle Counting) and their generality comes at a performance
cost for evaluating streaming RPQs. Strategy (1) requires computing results for all sub-regular ex-
pressions even if most of them do not participate in any final results, and its scalability is inherently
limited by how many parts the regular expression can be split into. Strategy (2) has a significant
communication overhead among workers since the path traversal process may reach a large part
of the graph especially when dealing with transitivity-like queries (using “*” or “+”) or dense
graphs (e.g., the Stack Overflow dataset). Additionally, maintaining load balance through graph
repartitioning will introduce blocking phases that severely degrade system performance. Strategy
(3) leads to redundant query processing due to the large overlap of edges between consecutive
windows. Effectively distributing the RPQ workload with minimal overhead while achieving a
scalable speedup as the number of workers increases remains a challenge, and our solution directly
addresses this issue.

In this paper, we propose DRPQ, a distributed processing strategy for RPQs that deviates from
all three strategies mentioned above, which partitions query instantiations into multiple “partially
instantiated queries” that can be executed in parallel across workers. Each partially instantiated
query represents a RPQ evaluation task, beginning from a predetermined path (termed a “partial
match”) whose path label matches the beginning of the given regular expression. The goal of the
task to extend the partial match to discover all valid paths that satisfy the query condition. We only
need to send all the edges in the sliding windows that the partial match belongs to, along with the
initial partial matches. These form a “partially matched query task” (PMQT for short). Each PMQT
serves as a “unit of work” and can then be processed independently by any worker, following the
same RPQ evaluation approach as in [45] or [59]. The length of the selected partial match affects
the granularity of parallelism: longer partial matches result in a greater number of smaller PMQTs,
facilitating better scalability across workers but increasing the overhead of partial match selection.
An example is shown in Figure 1(b). Consider the regular expression R = (x o y o z*) and a sliding
window size |W| = 3. The path e; - ey, labeled x o y, serves as a partial match. Its associated PMQT
consists of edges ey, e, €3, es, e and e7, with timestamps falling within range [2, 5] (computed as
(ts(er) = |W|) N (ts(ez) = |W]) where ts(e) is the timestamp of e). Intuitively, if a matching path
includes e; - e;, then all its edges must be among those within this PMQT. Hence, each PMQT can
be used as a unit of work to find all the results of the RPQ query.

DRPQ properly addresses the challenges of the existing distributed implementation strategies
and develop an efficient distributed extension of existing streaming RPQ evaluation methods. Firstly,
it eliminates communication overhead among workers (compared to strategy (1) & (2)). Secondly,
the same method in [45] or [59] can be adopted in DRPQ when evaluating PMQTs to reduce the
extraneous processing that is not involved in the final query results (compared to (1)) and avoid the
redundant computation caused by overlapping sliding windows (compared to (3)). Thirdly, DRPQ
scales efficiently by distributing PMQTs across multiple workers (compared to (1)), and achieve
load balancing through careful PMQT allocation without introducing blocking phases (compared
to (2)).

Although DRPQ provides an efficient solution for distributed evaluating streaming RPQ, this
strategy suffers from the fact that the edges may be duplicate for different PMQTs in different
workers, and PMQTs assigned to different workers may lose the opportunity to share some traversal
process of the same edges when common subgraphs exist. For example, as shown in Figure 1(b),
both PMQTs with partial match ey, e; and eq, e5 contain the same sub-expression z* (x o y is already
matched by their own partial matches). The edges es, es, and e; can form a path whose label
sequence matches z* (marked with the dotted line in the figure) and can be shared by these two

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:4 Siyuan Zhang et al.

PMQTs. When such PMQTs are assigned to different workers, the above traversal process will be
duplicated. Reducing this redundant computation can increase the overall efficiency.

In this paper, we propose a novel grouping strategy to recognize the features of the PMQTs that
may share traversal process and then use a quick heuristic method to put possibly “sharing” PMQTs
into groups. The grouping strategy needs to be tailored towards the particular RPQ evaluation
method. In this paper, we use the method in [59] for this purpose. The PMQTs in the same group are
then prioritized to send to the same workers to reduce the aforementioned redundant computation
and potentially reduce the overlap of streaming graph edges that are sent to different workers.

We carry out extensive experiments with two representative real-world datasets to evaluate the
efficiency and scalability of all the aforementioned distributed strategies. The result shows that
DRPQ has a much higher throughput compared to the other strategies, and that adopting grouping
strategy in DRPQ can greatly improve the corresponding throughput (almost doubled in many
cases). We also evaluate the impact of the selected features of the PMQTs.

To the best of our knowledge, DRPQ is the first efficient and scalable distributed processing
strategy for streaming RPQs in the literature. Here we highlight our contributions as follows:

e We propose a distributed processing strategy for scalable and efficient streaming RPQ eval-
uation by decomposing query instantiations into multiple PMQTs, each processed as an
independent unit of work.

e We introduce a grouping strategy to reduce redundant computations by increasing the
likelihood that PMQTs sharing common traversal process are assigned to the same worker.

e We conduct extensive experiments to evaluate our distributed strategy DRPQ for its efficiency
and scalability.

The remainder of the paper is structured as follows. Section 2 presents the problem definition
and a brief description of algorithms leveraging TRDs. Section 3 provides a description of the task
unit PMQT and the DRPQ strategy. Section 4 introduces our grouping strategy and gives a detailed
discussion about the features of the PMQTs that may share traversal process. Section 5 shows the
experimental results with a detailed analysis. Section 6 describes the related works. Finally, Section
7 summarizes the paper.

2 Preliminaries

In this section, we first provide a formal definition of the streaming graph and streaming RPQ
task. Then, we describe how to maintain TRDs for streaming RPQ evaluation in the single-worker
scenario. Most of the following definitions are adopted from [45] and [59].

2.1 Streaming RPQ Evaluation

DEFINITION 1. Streaming Graph: A streaming graph refers to a sequence of time-ordered tuples
S=1,12- -+, Ty, where each tuple t; = (e;, t;) represents a directed edge e; = (vy, vy, l;) from source
vertex vy to target vertex v, with edge label ¢(e;) = I; and arrival timestamp ts(1;) = t;.

Figure 2(a) shows a streaming graph example consisting of 8 tuples with 3 kinds of edge labels
(x,y and z) and 7 vertices (a to g). We follow the same assumption as in [45, 59] that all tuples arrive
in the order of their timestamps, i.e., the timestamps of tuples 7; and 7; in S satisfy ts(z;) < ts(z;)
for all i < j. We also assume that the minimum timestamp of the tuples in the stream is 0.

DEFINITION 2. Path and Path Label: A path that connects vertices v, and v, is a sequence of directed
edgesp = ey, ez, -+ , e, Where vy is the source vertex of e; and v is the target vertex of e,, and the
target vertex of e; is the same as the source vertex of e;1 for each i € [1,n — 1]. The corresponding

path label ¢(p) of path p is the label sequence of the edges in p $(p) = Pp(e1), p(e2),- -, P(en)-

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:5

Sliding Window W3
|

Sliding Window W2

[
\En \ € \ € €4 \ €s Graph

‘ (a)
[e ] RECEECE
fo-r:
X X y y z X y z o

ts(1):

@

Fig. 2. (a) a streaming graph S (the left part) consisting of two sliding windows W2 and W* (marked in the
graph) with window size |W| = 3. The right part in (a) is its graph representation where the timestamps ts(7)
and labels are all marked next to the edges, (b) a DFA for query expression R = (x* o y* 0 2). (c) is the product
graph of S at time t = 3, where the mapped tuples of the edges are omitted. (d) & (e) are the generated TRDs
in S at time 2 and 3 respectively.

Figure 2(a) shows the streaming graph in the tuple sequence form and in the graph form,
respectively. An example path p in the streaming graph is boxed with dotted lines in Figure 2(a),
which consists of 3 edges e;, ez, e; with path label ¢(p) = x, y, z.

In applications, we usually adopt a time-based sliding window (sliding window for short) to
restrict the tuples in a streaming graph to be used in forming a particular query results.

DEFINITION 3. Sliding Window over Streaming Graph: For a given streaming graph S, a sliding
window W at timet, denoted W*, with window size |W | and sliding step length Step(W), represents the
set of tuples t;, wheret; € S andts(z;) € (t—|W|, t]. In the above, t must be equal to |W |+k=+Step(W)—1
for some integer k > 0.

The edges of the tuples in a sliding window form a “snapshot graph” and the snapshot graph at
time 2 with sliding window |W| = 3 and Step(W) = 1 consists of edges e to e; in graph 2(a). The
first sliding window is WIWI=T (jW| > 1). Note that we usually assume Step|W| < |W].

Based on the definition of the sliding window, we now describe the streaming RPQ evaluation
task.

DEFINITION 4. Streaming RPQ: Let 3 be a finite alphabet set consisting of all the labels of edges in
a streaming graph S, and L(R) (L(R) # 0) be the set of label sequences that match a given regular
expression R over X. A streaming RPQ task on a streaming graph S with regular expression R and
sliding window W (with |W| and Step(W') understood) is to find all the vertex pairs (u,v) such that
there exists a non-empty path p from vertex u to v satisfying ¢(p) € L(R) in the snapshot graph for
the sliding window W' for an integer t = |W| + k = Step(W) — 1, where k > 0 is an integer.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:6 Siyuan Zhang et al.

For a given sliding window W, the above streaming RPQ can be formally defined as Q.. Then,

Qlt{W = {(u, v)|there exists a path p in S from vertex u tov such that
¢(p) € L(R) andt — |W| < ts(z;) < t for each tuple 7; in p}

Qb may be simplified as Q" if both the regular expression R and sliding window W are understood.
Here we provide an example to illustrate the evaluation task.

ExampiE 1. Consider the RPQ evaluation with regular expression R = (x* o y* o z) and sliding
window W with |W| = 3 and Step(W) = 1 on the streaming graph S in Figure 2(a). The corresponding
snapshot graph in W2 consists of edges e to es in graph 2(a). There is only one path p = es, es, e whose
label sequence ¢(p) = x,y, z matches R. Thus the streaming RPQ evaluation result in Q* = {(a,g)}.

When the sliding window moves to W3, the edge e, is out of the current sliding window, and
Q3 ={(a,9), (a, f)} holds by the two paths es, es, e4 and es, e3, e, €7, respectively.

2.2 The Multi-Window Parallel Strategy

We now introduce multi-window parallel method that executes streaming RPQ leveraging TRDs
[59]. We begin by a formal definition of the Deterministic Finite Automaton for regular expressions.

DEFINITION 5. Deterministic Finite Automaton (DFA): Given a regular expression R, a deterministic
finite automaton (DFA) for R refers to a 5-tuple DFA(R) = (K, L, 8, qo, F), where (i) K is a finite set of
states, (ii) L is a finite set of symbols, (iii) mapping function §: K x L — K, (iv) qo is the initial state
of DFA, and F is a set of final states such that qy € K and F C K. It is required that DFA(R) accepts
exactly all the sequences in L(R).

For a given regular expression R, we first construct a nondeterministic finite automaton (NFA)
using Thompson’s construction algorithm [54], and then convert it into a deterministic finite
automaton (DFA) using Hopcroft’s algorithm [28]. This transformation is consistent with prior
works and makes the automaton more predictable in real-time performance under tight resource
constraints. An example DFA for R = (x* o y* o z) is shown in Figure 2(b). Although the size of the
DFA can be large in theory, it is has not been a practical bottleneck in our current experimental
settings.

Based on the deterministic finite automaton (DFA), we introduce the product graph [21, 38],
which transforms the regular expression matching process on a graph into a path traversal problem
over a constructed graph. The product graph construction has been widely adopted as a fundamental
mechanism for evaluating regular path queries (RPQs) in prior works.

DEFINITION 6. Product Graph: Given a DFA(R) = (Q, 2,6, qo, F) and a snapshot graph G =
(V,E, ¢) in streaming graph S with V being the vertex set and each edge e € E labeled by ¢(e) € X.
The product graph is defined as P prar) = (Vx,Ex) where Vi = VX Q, Ex C Vi X Vi, and
((u, sy), (v, sp)) is in Ex iff edge (u,v,1) € E and 5(sy, 1) = s,. Each edge ((u, s,), (v, $»)) € Ex maps
to the set of tuples ((u,v,1),t) € S where ¢(sy, 1) = sp.

Figure 2(c) illustrates the product graph constructed from the streaming graph S in Figure 2(a),
guided by the DFA(R) shown in Figure 2(b). Each edge in the product graph corresponds to a set
of tuples. For example, the product edge ((a, 0), (c, 1)) maps to the tuple set {(ey, 0)}. We leverage
the product graph to streamline the technical exposition and to enable incremental construction of
the Timestamped Rooted Digraph (TRD) as new edges arrive in the stream. A TRD can be viewed
as a timestamp-annotated, rooted subgraph of the product graph, specifically tailored for streaming
RPQ evaluation under sliding window semantics.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:7

DEFINITION 7. Timestamped Rooted Digraph (TRD): For a given regular expression R and a stream-
ing graph S, a timestamped rooted digraph for the constructed product graph P pra(r) is a connected
directed graph consisting of nodes in Pg prar). Each TRD has a root node (x, qo), and such TRD
is denoted as Tyq, (I for short since qq is determined). Each edge in T is selected from Pg pra(r)-
No two nodes in a TRD have the same vertex and state. Each node (u, s,) in Ty is associated with a
non-empty finite set of non-negative integers denoted (u, s,).ts, which is called its timestamps. The
timestamp of the root contains all the non-negative integers by default. Each ts associated with a node
has the property that for each t € ts there exists a path from the root to itself such that t is one of the
timestamps of each node on the path.

A TRD is required to be rooted, and the root must have at least one directed path to every
other node it contains. Intuitively, a TRD incrementally maintains all paths in the product graph
PG pra(r) that correspond to partial or complete matches of R over the streaming graph S within a
given sliding window. Specifically, if a timestamp ¢ appears in the timestamp set of a non-root node,
then for each edge along the path from the root to that node, there must exist at least one matching
stream tuple (e;, t;) corresponding to the product edge such that t — |W| < t; < t. Therefore, a pair
(u, v) appears in the query result Q" if and only if (u, q¢) is the root and (v, s,) is a node in the TRD
with s, € Fand t € (v, s,).ts.

An example of a TRD T, is shown in Figure 2(d), where the labeled integer set next to each node
indicates its associated timestamps. Here, we denote states qo to g3 in DFA(R) as 0 to 3, respectively.
Node (b, 1) is labeled with timestamps {2, 3, 4} because it is reached via edge es, which arrives at
t = 2 and remains valid in the sliding windows W2, W3, and W* under a window size of |[W| = 3.In
general, a tuple with timestamp ¢ is retained in all windows W’ where t’ € [t,t + |W| — 1]. When
a node such as (g, 3) in this figure has a state 3 € F, a result pair (a, g) is produced. That is, the
edge label sequence x, y, z from (a, 0) to (g, 3) belongs to L(R), and the timestamps {2, 3} of node
(g,3) indicate the sliding windows W? and W? in which the result pair holds.

The product graph is incrementally updated as tuples arrive in the stream, and the method in
[59] continuously creates and updates the TRDs to reflect changes in the product graph and capture
all initial partial matches of R under sliding window semantics. It employs the following three rules
to maintain TRDs when a tuple ((u, v, 1), ts) arrives (assuming the product graph has already been
updated):

(1) Create a new TRD T, if it does not already exist and if (u, qo) exists in Pg pra(r)-

(2) For each newly added edge ((u, su), (v, So)) in Pg pra(r), proceed as follows: if (v, s,) is not
already in any TRD, add it to a TRD T, along with the edge ((u, sy), (v,s,)) if (4, s,) € Ty and
(u, s,).ts N [ts, ts + |W]) # 0. Then, update the timestamps of the newly added or existing
node (v, s,) by setting (v, sp).ts = (v, 5).ts U ((u, s,).ts N [ts, ts + |W])), where (v,s,).ts is
initialized as 0 if (v, s,) is newly added. This rule enables the TRD to grow via newly matched
edges and propagates timestamps accordingly.

(3) If a new node is added or the timestamp set of any node is changed, reapply Rule (2) to all
edges in Pg pra(r)- This rule ensures further extension of the TRD following any structural
or timestamp changes.

Following the three rules, each node in a TRD records all root-to-it paths that partially or fully
match R across multiple sliding windows. Note that multiple Step (2) can be performed in a TRD in
parallel by adopting a careful lock, which effectively amortizes the expensive overhead. A timestamp
t on a node indicates that at least one such path exists within window W*. While the above assumes
Step(W) = 1, it can be extended to Step(W) > 1 by considering the sliding steps when updating
the timestamps in rule 2 accordingly.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:8 Siyuan Zhang et al.

Zhang et al. [59] optimize TRD maintenance and use a “dirty garbage collection” strategy to
efficiently prune edges that won'’t contribute to future results. We refer readers to [59] for details,
and discuss the garbage collection support of DRPQ in Section 3.4.2.

We provide an example to illustrate streaming RPQ using TRDs.

ExampLE 2. Consider the streaming RPQ evaluation in Example 1. The DFA(R) of the regular
expression R = (x* o y* o z) is shown in Figure 2(b). Here we have F = {3}, and the states (qo to q3) in
DFAC(R) are 0 to 3. The window size |W| is 3, and the sliding step length Step(W) is 1. For the earliest
sliding window W2, edge ey and e, incurs a creation of TRD T, and T, (following rule 1), and insertion
of the node (c, 1) with timestamps (c, 1).ts = {0, 1,2} (rule 2). Then, e, is added into T, and Ty, (rule 2).
The arrival of edges ey, e, and e4 does not cause any changes in TRD T, until edge es arrives and is
inserted into T,. In this case, following rule 3, edges e, e3, and e4 are recursively inserted into T,, even
though they have arrived earlier than es did. The generated TRDs after es arrives is shown in Figure
2(d). Note that there is a node (g, 3) with timestamp (g, 3).ts = {2, 3} in T, whose state is in the final
state set F, which means the query result (a, g) exists in both Q? and Q®.

Upon the arrival of edge e and e;, node (d, 2) in T, is reachable from root with two paths (e, e)
and (es, e3, €5), and the timestamps of (d, 2) is (d, 2).ts = {1, 2,3}, which is calculated with {1,2} U
({2,3} N {3,4,5}) by rule 2. The final generated TRDs is shown in Figure 2(e). Note that node (c, 1) in
T, is still retained even though edges ey and e; are out of the sliding window W* (garbage collection
can be performed but omitted here in this paper). At this time, we have node (f,3) with timestamp
{3} and (g,3) with timestamps {2,3}. We have (a, f) is in Q* and (a, g) is in Q% and Q.

3 Distributed Regular Path Query

In this section, we present the distributed implementation of streaming RPQs. We begin by defining
partial matches and partial matched query tasks, then describe how to evaluate them individually
and in groups. Finally, we introduce DRPQ, a system for distributed task evaluation designed to
balance workload across workers.

3.1 Partially Matched Query Task (PMQT)
We begin by providing a formal definition of the Partial Match.

DEFINITION 8. Partial Match: For a given streaming graph S, sliding window |W|, and regular
expression R. A partial match p is a path which consists of tuples (e, t1), (€2, t2), -+, (en, tn) in S
where |t; — t;| < |W| holds for any i, j € [1,n] and edges e1,e;,- - - , e, form a path whose path
label partially matches R from the beginning. The sliding window set of p, denoted as ts(p), contains
timestamp t such that {t;,--- ,t,} € W',

An example partial match in Example 2 is p = {(e,0), (ez, 1)} where edges ey, e; form a path

with label x, y that partially matches R from the start (i.e., the transition g, 5 ¢ EN q2 in Figure
2(b)). The sliding window set is ts(p) = {1, 2}. Based on it, we now define a Partially Matched Query
Task for each partial match.

DEFINITION 9. Partially Matched Query Task (PMQT): For a given streaming graph S and a partial
match p = {11, 72, -+ , Tn}, let tax and ty;, denote the maximum and minimum timestamps in ts(p),
a partially matched query task x? denotes the subset of all tuples v’ (including the tuples in p) in S
whose timestamps satisfy:

’ tmax — |W| tmin
ts(r') e [ Step(W) 1+ Step(W) + 1, LStep(W)J * Step(W) + [W| — 1]
Note if (tmax — |W|) is negative, we take the left bound of ts(t’) as 0.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:9

tmax—|W| tmin _
Here W Sieprwy 1"Step(WIHWI 5 g yyrlsecptivy 1=51epWIHWITL e the first and last sliding windows

that contain the partial match, respectively. An example of a PMQT with partial match p = {(es, 2)}
in the streaming graph in Figure 2(a) with sliding window Step(W) = 1 and |W| = 2 consists of the
tuples ey, e3, - - - , e; whose timestamps range from 1 to 3, and W2 and W* are the first and the last
sliding windows containing all tuples in the p, respectively.

For the regular expression R and a pre-given length threshold fen of the selected partial match,
we continuously find partial matches consisting of fen tuples in a streaming graph and build PMQTs.
That is, once partial matches are found, they are then assigned to workers along with the necessary
subgraph for further processing.

Note that the partial matches starting from a vertex r can be identified by constructing TRD T,,
recording the length fen’ of each node from the root, and stopping recursive application of rule
2 when a node (u, s,,) reaches fen’ = fen. Thus, the path from the root (r, qo) to each such node
(u, s,) defines a specific partial match p. Here, we denote the TRD T, as the associated TRD of y?,
which by default consists of two nodes: root node (r, o) and initial node (u, s,,) (i.e., the start and
end vertices of the partial match with states qo and s, respectively) where (u, s,,).ts = ts(p). The
TRD T, is created in advance before processing the other tuples in y?.

3.2 Processing a Single PMQT

Each PMQT y? (with associated TRD T, and initial node (u,s,)) can be evaluated by starting
an invocation of Algorithm Insert with the node (u,s,) to extend the partial match and find all
satisfied paths in the streaming graph. Note that this algorithm is basically an instantiation of rule
2 and rule 3. Rule 1 is irrelevant since the root and the partial match are already determined.

Algorithm 1: Insert

Input: PMQT y? (with associated TRD T;), node (u, sy,)
1 begin
2 initialize set M « 0;
3 foreach tuple t = ((u,0,1),t) in y? do
4 foreach (s, s,) s.t. 6(sy,[) = s, do
5 if (u,s,) is in T, then
6
7
8

perform rule 2 to add node (v, s,) and/or update (v, s,).ts;
if newly add (v, s,) or change (v, s,).ts then
L add node (v, s,) to M;

9 foreach node (v,s,) € M do
10 L Call Insert(y?, (v,s,)) (ie., rule 3);

The evaluation for a PMQT entails possibly multiple traversals for each tuple in the snapshot
graphs in all the sliding windows that contain 7, to see if it can further extend an existing node of
the TRD. Here we use an example to illustrate the evaluation process of the PMQTs using Algorithm
Insert (Algorithm 1).

ExaMmpLE 3. Consider the streaming RPQ evaluation under the same query conditions as in Example
1. Suppose we constrain the length of the partial match to fen = 1. Then, yP*=1(e10)} gng ypr2={(es2)}
are two valid PMQTs from the streaming graph S in Figure 2(a), which consist of edges e, to es and
e, to ey, respectively. Next, we create the TRD T, and invoke Algorithm 1 with initial node (c, 1) for

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:10 Siyuan Zhang et al.

Fig. 3. (a) & (b) are the maintained TRD T, in PMQTs )(Pl:{(el’o)} and )(1’2:{(‘35’2)}, respectively. The double
circled nodes are the initial nodes. (c) is maintained TRD T, when both PMQTs y?! and y? are processed as
a group.

xP' and (b, 1) for yP>. The maintained TRDs for these two PMQTs are shown in Figures 3(a) and 3(b),
respectively.

A longer length threshold fen for the partial match length may lead to the generation of more
PMQTs from the streaming graph, which can be particularly beneficial when the number of PMQTs
is insufficient to fully utilize all the workers, or to process skewed data such as “hot” nodes in the
streaming graph (which can be processed in parallel). However, this comes at the cost of increased
processing time at the coordinator, as identifying and managing these partial matches requires
additional efforts, which may become a bottleneck and significantly degrade performance. A proper
fen can balance the processing cost in coordinator and the number of generated PMQTs to fully
utilize the capabilities of all workers, which is verified in the experiments in Section 5.2.3.
STREAMING SUPPORT. The above-described strategy assumes all tuples in a PMQT have arrived
before being processed. However, we can also support the evaluation of the PMQTs in a streaming
manner by invoking line 4 to 10 in Algorithm 1 for each newly arrived tuple 7/, which is the same
way as in [59]. For the sake of simplicity, in the sequel of this paper, we assume that a PMQT is built
and processed when all its tuples have arrived, if not otherwise stated. We will explicitly discuss
the streaming support when needed.

3.3 Processing Multiple PMQTs as a Group

Although TRDs with different root nodes can be maintained separately in parallel, PMQTs with the
same root node may share some processing since different PMQTs may contain common tuples
and their TRDs may have common subgraphs. When processing multiple PMQTs that maintain
TRDs with the same root as a group, we first add all start nodes and end nodes to the TRD and
merge the timestamps of the same node. Then, we take each PMQT (i.e., Algorithm 1) as a parallel
process working on the same TRD.

Parallel execution of Algorithm 1 can be done with a Readers-Writer Lock on each TRD node to
guarantee the update of line 6 be done sequentially. When there are two (or more) PMQTs that
maintain the same TRD and update the timestamps of the same node (i.e., the same vertex and
state), the subsequent update is done over the proceeding update (i.e., rule 2 is sequentially applied).
If the subsequent update does not change the timestamp of a node in line 6, it means that the
further extension of the node is already taken care of by a proceeding (parallel) process, and a
recursive call in line 10 for the subsequent process is avoided. Such a shared TRD maintenance
process is the same as done in [59].

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:11

ExampLE 4. Consider the streaming RPQ evaluation with the same query conditions as in Example
3. Both PMQTs y** and y?* share the TRD T, with the same root and both update the same nodes (c, 1)
and (d, 2). Suppose the evaluation of yP' first creates the node (c, 1) and sets its timestamps (¢, 1).ts
to set {0, 1,2}. When the evaluation of y?* attempts to update the timestamps of (c, 1) after inserting
node (b, 1) (with edge e, in S), the calculated timestamps are {2} (computed with {2,3,4} N {0, 1, 2}),
which is a subset of the already updated timestamps (c, 1).ts = {0, 1, 2}. In this case, node (c, 1) will
not be added to set M in line 8, and the recursive call to Algorithm 1 for extending the path starting
from (c, 1) in the evaluation of yP? is eliminated. The shared paths of y?* and y?* in T, are marked in
red in Figure 3(c). Note that the path marked in red may contain a large subgraph in practice, and the
shared TRD maintenance process can save significant computation in such cases.

THEOREM 1. The processing of multiple PMQTs generates all the correct query results.

PrOOF: We need to prove that the decision of a given PMQT ' to not add a node to M (lines 7
to 8) due to an update by another PMQT y#2 does not affect the query results. As mentioned above,
a PMQT y?* avoids recursively calling Algorithm 1 when it encounters a node whose timestamp
set ts is a subset of the timestamps ts” of the same node in the TRD already maintained by another
PMQT y?2. Note that both PMQTs use the same strategy to maintain TRDs, and the traversed tuples
that may extend this node with rules 2 and 3 when processing PMQT y?* are also a subset of these
tuples when processing PMQT x?2, since ts C ts’. Therefore, all the query results of either task
will be included. This theorem can be extended to multiple PMQTs.

3.4 System Design

With the definition of Partially Matched Query Task, we now introduce DRPQ for the distributed
streaming RPQ evaluation. The overview of the system is shown in Figure 4.

Coordinator Worker Cluster

r""""""""""""""""I | 1

| . ! | I

H hRbl H N

' {1 | Allocate |1 o '

H [Tasks | o Task i R !

E Tasks :%: asks| Strategy E E § E

| e @ e

i s ' ! . !

! =5 Task ! : !
: ! d} Free w?kerlD E \&‘>: :

g |

s E i E i Monitor |1 i o N

: Update 3 % i “Free” E i E 1

1 Group Groups i o : Workers H : 36 i

1| Tasks [ ' '

e e 1

Fig. 4. The System Design of DRPQ

We adopt a Coordinator-Workers model to manage the servers in DRPQ. The coordinator contin-
uously receives tuples from the streaming graph S, builds a PMQT for each founded partial match
(with length threshold fen is given in advance) in S, and forwards them to workers based on an
allocation strategy (one such strategy is introduced in Section 4). The PMQTs can be parallelly-
built in the coordinator and send to workers. The workers receive PMQTs and process them as
mentioned in Section 3.3. Note that we ignore the set semantics of the results in the distributed
setting since [59] incorporates a post-processing thread to deduplicate endpoint pairs, ensuring
set semantics in the single-worker case and a similar deduplication step can be integrated into

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:12 Siyuan Zhang et al.

DRPQ as a lightweight post-processing phase after collecting results from all workers, if strict set
semantics are required.

THEOREM 2. The query results obtained from DRPQ are correct and complete.

ProorF: As mentioned above, we build all PMQTs for the partial matches whose length fen’ = fen
and all query tasks are correctly evaluated in workers (by Theorem 1). Besides, the other query
instantiations with path whose length less than fen are also correctly founded in coordinator. We
know that all query results in the streaming graph can be found in DRPQ.

3.4.1 Workload Balance. With the definition of PMQTs, it is easy for DRPQ to keep load balance
among workers by monitoring the workload of the workers and dynamically sending PMQTs
to workers. Note that the overlapping tuples in different PMQTs assigned to the same worker
only need to be sent once to save communication costs, and such process can be accelerated by
leveraging broadcasting. The workers and coordinator perform as follows:

» Each worker periodically checks its workload, which is represented by the number of PMQTs
that have not yet been processed, and notifies the coordinator when its workload falls below
a certain threshold.

» The coordinator monitors the notifications sent by workers, marks those workers as “free,”
and adds them to the “free worker set” Simultaneously, the coordinator collects the already-
built PMQTs and places them in the “Cached Query Tasks List,” as shown by the dotted line in
Figure 4. Both the free worker set and the Cached Query Tasks List are structures maintained
by the coordinator. When the free worker set is not empty, the coordinator selects a certain
number of PMQTs from the Cached Query Tasks List and assigns them to a worker chosen
from the free worker set (the worker is removed from the set after selection), as indicated by
the green arrows in Figure 4.

The above process achieves balanced workload among the workers (shown as the good perfor-
mance in experiments), with the assumption that each PMQT takes about the same time to evaluate.
In reality, this assumption may not be true. In that case, a more sophisticated monitoring may be
done to determine if a worker is free, but is beyond the scope of this paper.

3.4.2 Discussion. DRPQ is able to handle the out-of-order arrivals of the tuples by constructing
and evaluating PMQTs in a streaming manner. The only requirement is to track PMQTs assigned
to each worker and route incoming tuples based on their timestamps to the appropriate workers
for streaming processing. In addition, the dirty garbage collection strategy for TRD (mentioned in
Section 2.2) can be performed on each worker by synchronizing the timestamps of the tuples the
coordinator last sends. Besides, DRPQ also supports explicit deletions of the tuples by sending the
deletion tuples to the associated PMQTs and processing them in the same way in [59].

3.4.3 Cost Comparison of Distributed Strategies. DRPQ offers significant advantages in distributed
streaming graph processing by achieving an optimal balance between computation, communication,
and load balancing. Unlike the Splitting Query and Window Partitioning strategies, which suffer
from excessive computational overhead due to costly joins or duplicate processing across multiple
sliding windows, DRPQ effectively minimizes unnecessary computations. Its duplicate computation
cost is substantially lower than the expensive multi-join (or merge) operations in Splitting Query
strategy and the repeated processing in Window Partitioning. Furthermore, DRPQ significantly
reduces inter-worker communication compared to Graph Partitioning strategy, which incurs high
messaging overhead due to frequent cross-worker path traversals. Beyond these efficiency gains,
DRPQ also excels in load balancing by ensuring an even workload distribution, thereby preventing
the bottlenecks and imbalances that hinder other strategies. These combined advantages make

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:13

DRPQ a highly efficient and scalable solution for large-scale distributed streaming systems. A
detailed experimental comparison is presented in Sections 5.2.1 and 5.2.2.

4 Group-based Allocation Strategy

In this section, we focus on the coordinator’s allocation strategy, which customizes PMQTs to
improve shared TRD maintenance (see Section 3.3). We first analyze key features of PMQTs (Sec-
tion 4.1), then introduce a vectorization-based similarity measure and its approximation (Section 4.2),
and finally present a grouping method based on vector similarity (Section 4.3).

4.1 Feature Vectorization of PMQTs

Recall the discussion in Section 3.3, PMQTs can share maintenance processes in workers if their
associated TRDs meet three key conditions: (a) they have the same root node, (b) they contain
common nodes (i.e., nodes with the same vertex and state), and (c) the timestamps of these common
nodes exhibit a containment relationship (one set containing the other). For example, in Figure 3,
node (c, 1) satisfies these conditions, while (d, 2) does not. From this, we derive two key insights:
(1) PMQT sharing is only relevant when their TRDs have the same root node, and (2) the more
nodes that satisfy conditions (b) & (c), the greater the potential for shared processing.

To quickly judge how much PMQTs may have shared processes, we first represent each PMQT
as an n X k integer vector. Here, n denotes the total number of possible nodes (u, s,) in any TRD
of PMQTs, with each node assigned a unique integer from 1 to n, and k represents all possible
timestamps on nodes. Conceptually, this vector can be viewed as an n-row, k-column binary matrix,
where each entry is set to 1 if the corresponding node and timestamp exist in the TRD, and 0
otherwise. Then, based on these generated vectors, we estimate the possibility of shared TRD
maintenance by computing a similarity measure between PMQTs with the same root node, which
is represented as the overlap length of timestamps on common nodes between two PMQTs.

DEFINITION 10. Similarity: For two PMQTs yP* and yP* with associated TRD T, and T,, respectively,
the similarity Sim(yP', yP2) between them is calculated as follows:

oct; xvctj, ifu=v

Sim(y, ¥*) = { (1)

0, otherwise
where vct; and vct; are the vectors associated with yP' and y??, respectively.

Given two PMQTs y?! and y?z, Sim( y?', yP?) is basically the dot product of the associated vectors,
which represents the number of overlapping timestamps on the common nodes of their TRDs.
Note that Sim(y1, y2) € [0, n* k]. Also note that the larger Sim(y*, y?) is, the more overlapped
timestamps on the common nodes of the TRDs, and we say the more similar they are.

4.2 Approximated Vectorization

The above theoretical vectorization method is obviously impractical since both n and k are extremely
large. Moreover, it is impossible to have the complete TRD of a PMQT unless we have already
constructed the TRD for the PMQT (but this is exactly the process that the workers need to perform).
We thus propose an approximated vectorization of the PMQTs based on their own partial matches.

First, we merge the nodes into m different buckets and add the corresponding k elements of the
merged nodes together, i.e., add the corresponding timestamps of all the nodes mapped to the same
bucket. Hence, the compressed vector may still be large in theory (i.e., m = k), but the computation
of vector similarity (see below) can take an efficient form. Indeed, the k elements of each bucket
are very sparse. Hence, we only need to remember the non-zero elements of the vector. Second,
we adopt a heuristic method that only considers the part of a TRD for each PMQT, restricting

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:14 Siyuan Zhang et al.

nodes to those within at most & hops from the initial node (u, s,). This partial TRD can be quickly
constructed by the coordinator.

The above approximation sacrifices some accuracy. The larger the hop h, the more nodes are
sampled and the more time cost it takes to obtain such a (partial) TRD, but the higher possibility
the coordinator knows which query tasks can share processing. Besides, the nodes compressed
into the same bucket are taken as the same. We may control the size of m and hop h to balance the
grouping quality and cost. We will discuss this trade-off in the experiments.

In summary, we efficiently vectorize a PMQT y” with an associated TRD T, and initial node
(u,sy) into a m X k-dimensional vector vct using the following steps: (1) Construct a TRD with
all simple paths in the product graph from the initial node (u, s,,) at most length h and collect all
the nodes along with their timestamps. (2) Adopt an assignment function (using hash function in
this paper) to quickly assign these nodes to m buckets. (3) Each bucket maintains a compressed
subvector uct’ of length k (but compressed using their sparsity), where the i-th dimension vct’[i]
represents the number of nodes in that bucket with corresponding timestamps (set to 0 if none
exist). Here we use an example to illustrate the process of vectorizing a PMQT.

Ty

Partial match # index value
3 1
4 2
5 2
6 1

The sizejof bu\c(ket m=6

dec 0 1 2 344 5 6 7
[oTJToJoJtJaJ2T1]0o]
< J

The length ofTeach bucket k = 8

Fig. 5. Vectorize a PMQT

ExaMpLE 5. Figure 5 shows an instance to vectorize a pre-given PMQT with associated TRD T, and
initial node (a, 1). We set the hop to h = 2, the number of buckets to m = 6, and the total possible
timestamps to k = 8. First, we construct the hop-2 TRD T, for the PMQT, which is shown in this
figure with nodes and edges that are marked in black. Next, we assign these obtained nodes into 6
buckets based on the assignment function, as indicated by the red dotted arrows. Notably, both nodes
(d,3) and (i,3) are mapped to the same bucket with ID 3, and the subvector of this bucket is shown
underneath where each the number indicating the count of the particular timestamp appearing in
(d,3).ts = {3,4,5} and (i,3).ts = {4,5, 6}. An efficient representation of this subvector is shown in the
table in the upper-right corner.

The Eq. 1 can be adopted when vectors are approximated with the method discussed earlier.
Since we consider all nodes that are compressed into the same bucket to be the “same”, for each
node in vct;, we need to calculate the overlapped timestamps with all the “same” nodes in vct,.
That is, assuming that x nodes in vct; with corresponding subvectors ny, - - -, n, and y nodes in vct;,
with corresponding subvectors my, - - -, m; are the mapped to the same bucket, then the similarity

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:15

of the two buckets is calculated by:

x Yy x y

ZZni*mj=Zni*ij (2)
i=1 j=1 i=1 j=1

Thus, we can add all the subvertors of the nodes in each bucket and each PMQT is then represented

by an approximated vector in which each bucket (i.e., merged node) has an associated subvector.

Then the similarity between two PMQTs when their feature vectors are approximated can thus be

calculated in the same way as Eq. 1.

Bucket 1 Bucket 2 Bucket 3
A
Dimension| .{ 0 1 2 3 4 5 6 7 \ Timestamps of nodes
vety, [ JoJoJoltT2]2[1]o]<i3450 1456
X : X : X X X :
veta [ |~ [ 0] 011 ]1]o0]1]1]<i234776,7
1 1 1

1l
3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

)
=
+
)
+
—_
"
IS

Fig. 6. Calculate similarity with two vectors vct; and vct

We now use an example to illustrate calculating similarity between different approximate vectors.

ExaMPLE 6. The example of Figure 6 illustrates the process of calculating the approximated similarity
of two query tasks with the associated vectors vct, and vct, with bucket size m =3 and k = 8. For the
bucket ID = 3, assume this bucket in vector vct; consists of two nodes with timestamps {3, 4,5} and
{4,5, 6} and in vectorvct, consists of two nodes with timestamps {2, 3, 4} and {6, 7}. Their corresponding
approximate subvectors are shown in the figure. The similarity in this bucket is calculated as the
dot product of their corresponding subvectors, which is 4. Roughly, this result 4 gives the number of
overlapping timestamps in this bucket between the two PMQTSs. The other buckets 1 & 2 are calculated
in the same way. The similarity of these two PMQTs is3+2+4 =9.

4.3 PMAQT Grouping

The coordinator groups PMQTs that are likely to share their TRD maintenance process before
assigning them to workers. For each root node, it maintains a set of groups, where each group
g contains query tasks with the same root, formed based on the similarity measure described in
Section 4.2. Each group g is represented by an m X k-dimensional vector, obtained by summing all
member vectors in the group. The similarity is calculated between y** and a group g by replacing
xP2 with g and u, with the root of g.

For a new PMQT y?, the coordinator calls Algorithm Grouping (Algorithm 2) to add this PMQT
to the maintained group set (create a new group if needed). It calculates the similarity between the
given PMQT and each group g (Line 4 in Algorithm 2). Then, if the maximum similarity calculated
above is above a certain pre-defined “similarly threshold”, add the given PMQT to the most similar
group g in lines 6 and 7 in Algorithm 2. Otherwise, i.e., the PMQT is not similar enough to any of
the groups, a new group is created with the given PMQT in lines 9 to 10 in Algorithm 2.

4.3.1 Grouping-Based Coordinator Design. The coordinator efficiently manages PMQT assignment
using a vectorization and grouping strategy, as highlighted in red in Figure 4. Each pre-built PMQT
is first vectorized in parallel within the “Vectorize” module, after which Algorithm 2 is applied
sequentially to group PMQTs. These grouped query tasks are stored in the “Cached Query Tasks”

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:16 Siyuan Zhang et al.

Algorithm 2: Grouping

Maintained: group set (of a given root node r)

Input: PMQT y? with associated TRD T, and vector vct
1 begin
initial similarity map M;
foreach group g in group set do

L calculate similarity M(g) < Sim(vec, g);

oW N

if max value {M} > a pre-given similarity threshold then
find the group g with the max value M(g);
add vct to group g;
else
create a new empty group g and add it to the group set;
L add oct to group g;

o ® 9 & w

10

for dynamic assignment, and the coordinator prioritizes assigning PMQTs from the same group to
a single worker. Upon detecting an available worker, it selects and dispatches a batch of PMQTs
from the cache. The coordinator continuously updates these groups by adding new PMQTs through
Algorithm 2 and removing dispatched tasks. It also tracks the groups previously assigned to each
worker, ensuring that newly assigned tasks belong to groups the worker has already processed
when possible. If no PMQTs remain in those groups, the coordinator assigns tasks from a new
group. Additionally, to maintain load balance, the coordinator dynamically split existing groups
and distribute them among multiple free workers when necessary.

4.3.2  Discussion. We note that both PMQT generation and grouping at the coordinator are light-
weight operations in most scenarios, and can be parallelized using multi-threading. However,
these behaviors are highly context-sensitive, influenced by both static parameters (e.g., partial
match length and grouping granularity) and dynamic workload characteristics such as stream
skew, query selectivity, and temporal burstiness. In certain settings, especially when the correlation
among PMQTs is weak or when the data stream exhibits bursty behavior, the benefit of reduc-
ing redundant computation may be offset by the coordination overhead introduced by grouping.
While we currently adopt a static grouping policy and fixed parameter settings (e.g., bucket size,
hop, and similarity threshold), we acknowledge that adaptive strategies—capable of dynamically
tuning grouping decisions and parameters in response to observed workload patterns—can offer
better performance. We leave the design of such adaptive strategies and runtime plan switching
mechanisms as promising directions for future work.

5 Experimental Evaluation

In this section, we experimentally evaluate the performance of the proposed methods. We begin
by introducing the system implementation and experimental settings in Section 5.1. Then, in
Section 5.2, we compare DRPQ with other distributed strategies and provide a detailed evaluation
and analysis of the grouping strategy.

Here we give a brief highlight of our experimental results:

e DRPQ demonstrates excellent throughput and scalability compared to the other strategies
when evaluating streaming RPQs in a distributed manner. Specifically, the throughput in-
creases nearly linearly as the number of workers grows.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:17

o The grouping strategy in DRPQ significantly enhances performance, improving throughput
by almost twofold in most query scenarios and conditions.

5.1 Experimental Setup and Implementation

EXPERIMENTAL SETTING: All experiments were conducted on a cluster of 9 machines (1 coor-
dinator and 8 workers), each equipped with an Intel Xeon (Cascade Lake, 2.30 GHz), 32 physical
cores, and 256 GB RAM, interconnected via a 10 Gbps network.

IMPLEMENTATION OF COMPARED APPROACHES: We implemented all the aforementioned dis-
tributed strategies in Java 8. Streaming graph tuples are generated by continuously reading from a
file, and results produced by workers are collected by an external machine (not included in the
system). Communication between the coordinator and workers is implemented via asynchronous
MPI-based message passing (MP] v0.43 [30]), with each worker maintaining a dedicated receiving
thread. All approaches being compared share the same core TRD-based evaluation engine [59]
with the TRD serving as the unified internal structure for incremental RPQ processing across all
workers, and differ only in how tuples are distributed to workers and how each worker organizes
its computation and synchronization logic accordingly. Following are the implementation details
of the tested approaches in experiments.

- DRPQ: The coordinator incrementally builds partially matched query tasks (PMQTs) based on
observed partial paths in the stream and sends them to workers. Each worker runs the TRD-based
evaluation algorithm starting from the pre-initialized partial match encoded in the PMQT. Each
worker independently maintains local TRDs and outputs matching results. We implement two
variants: DRPQ (random) randomly assigns PMQTs to workers, while DRPQ (grouping) applies the
grouping strategy described in Section 4. Internal modules like “Vectorize” and “GroupTasks” are
implemented as Java thread pools. The partial match length threshold is set to fen = 1 by default,
and the grouping parameters are: bucket size m = 100, similarity threshold st = 10, and hop h = 2.
A worker reports itself as “free” when its PMQT queue length drops below 100, and the coordinator
assigns a batch of 1,000 PMQTs.

- SpLIT QUERY: This approach follows the method in [46], where the regular expression is
decomposed into a binary join tree (query plan). Each subexpression is evaluated independently
by a worker on the entire stream. The coordinator receives intermediate results and performs
multi-way joins to produce final answers. We reuse the same TRD engine to evaluate each subquery.
Intermediate results are buffered and joined in memory using hash-join structures.

- WiNDow PARTITION: In this strategy, the entire query is evaluated repeatedly over disjoint or
overlapping windows. The coordinator assigns each sliding window instance to a different worker.
The worker builds a local TRD for its assigned window and evaluates the full query independently.
The implementation shares the same evaluation engine but resets TRD states between windows.
Tuples are routed according to their timestamps.

- GRAPH PARTITION: We implemented four edge-partitioning schemes—Greedy, HDRF, DBH,
and Grid [1]—to divide the graph. Each tuple is routed to workers based on the partition of its
nodes. Since query paths can cross partitions, workers exchange intermediate TRD states for edges
that connect across workers. Each worker maintains TRDs locally but supports TRD propagation
via MPI. We select the best-performing partitioner per run.

Note that all three baseline strategies can be viewed as naive distributed extensions of the TRD-
based evaluation algorithm in [59], where distribution is achieved through static decomposition of
the query, the graph, or the time domain, respectively.

WOoRKL0OADS & DATASETS: The queries (workloads) used in our experiments are regular expres-
sions listed in Table 1. Specifically, Q;-s represent common recursive query patterns observed
in real-world applications [11]. Qg is a manually constructed query designed to evaluate system

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:18 Siyuan Zhang et al.

Table 1. The regular expressions used in our workloads.

Case | Query Case | Query
0 a*o b?oc | Qy a* | b*
Q, ao(boc)" | Qs aob*oct

Q3 |aob Qs |ao(b'|o)
Q7 (a1 +az+as+--+ag)"

Qs (ay+ay+az+---+ag)ob*
Qy | ajo(az|a;)oaqoas?oap

robustness under more complex query structures. Note that the query results for Qs, Q4, and
Q7 must include at least one label, as we require matching paths to be non-empty (specified in
Definition 4). We evaluate these queries on two real graphs:

- Stack Overflow (SO) is a network of Question & Answer which consists of approximately
2.6 million users (vertices) and 74 million interactions (edges) spanning six years [44] up to now.
Interactions are classified into three types based on the edge label [ in each tuple (e, t), where
e = (u,v,1): (I = a) denotes that user u answered a question by user v at time ¢; (I = b) means that u
commented on v’s answer; and (I = ¢) indicates that u commented on v’s question. The timestamp
t records when the interaction occurred. Unless otherwise specified, we set the sliding window size
|W| to 1 week (|W| = 7) and the slide length Step(W) to 1 day.

- Yago4 is the latest version of the YAGO knowledge base derived from Wikidata [48]. It contains
over 50 million entities (vertices) and 2 billion facts (edges), including a rich schema with 157
relation labels. To simulate sliding windows on the Yago4 RDF graph, we assign a monotonically
non-decreasing timestamp to each RDF triple at a fixed rate. Each window in Yago4 contains
approximately 10 million edges ((W| = 10M) and slides every 100K edges. For YAGO, the queries in
Table 1 are instantiated using real relation labels from the dataset. Labels are selected manually to
match the query pattern and ensure sufficient support. While our focus is on structural diversity
for system evaluation, benchmarks like [3] with real query logs are valuable for future extension.

It is worth noting that both SO and YAGO datasets naturally exhibit skewed characteristics,

including high-degree nodes, uneven edge distributions, and varied path lengths. These inherent
properties provide a realistic basis for assessing the system’s robustness to data and workload skew
in practical settings.
PERFORMANCE METRIC: We use throughput as the primary performance metric, defined as the
number of streaming tuples the system can process per second while maintaining correct and
up-to-date query results. We will briefly discuss the tail latency as well. Recall that all components
in the grouping operation can be executed as a pipeline, the grouping strategy and query processing
can proceed in parallel, and task distribution incurs negligible overhead. The observed throughput
gains are sufficient to contextualize the overhead introduced by DRPQ and the grouping strategy.
We report average throughput over a 6-minute warm-cache run to reflect steady-state system
performance.

It is worth noting that we also measured the necessary communication overhead between the
coordinator and workers, including PMQT dispatching and control messages in DRPQ. This cost
remains consistently low—under 3% of total processing time—thanks to asynchronous message
passing and dedicated receiving threads. Therefore, we consider the communication overhead of
DRPQ negligible and omit it from our experimental breakdowns.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:19

Emm DRPQ (random) BN DRPQ (grouping) W Spliting Query Strategy ~ @ Window Partitioning Strategy =~ B Graph Partitioning Strategy

EN 5900
o8 o
- -
x X .
=6 = 600 R
S S5 § N
g . g i N AR
3 § g R 2300 \ N s
27 3 s B . 2 N B AR A
Fo N F oo B N B AR NS A
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Queries Queries
(a) Stack Overflow (b) Yago4

Fig. 7. Evaluate throughput with different distributed strategies and different query cases on two datasets.

5.2 Experimental Results

5.2.1 Performance on Different Queries and Datasets. We first evaluate the performance of dis-
tributed strategies using four workers across all queries in Table 1 on both datasets, with results
shown in Figure 7. It is evident that each strategy has its strengths across different queries and
datasets. However, the throughput of DRPQ (random) and DRPQ (grouping) consistently outper-
forms the other distributed strategies for all queries, with a performance more than twice that
of the other strategies in most cases. Specifically, DRPQ (random) and DRPQ (grouping) show
significantly higher improvements under conditions of lower throughput (i.e., heavier workloads)
on both datasets, with gains reaching up to 3x. Furthermore, compared to DRPQ (random), DRPQ
(grouping) achieves considerable throughput gains on most queries in SO, including structurally
more complex one Qg. The grouping strategy delivers greater improvements in scenarios of lower
throughput (e.g., a 2.3-fold increase in throughput for Q7). This improvement can be attributed to the
substantially larger size of the TRDs under heavy workloads, which enables more shared processes
across different PMQTs. An exception is observed for Qg s in SO and Q2 -3 in YAGO, where the time
costs associated with vectorizing and grouping significantly exceed those for processing, creating a
performance bottleneck.

. . . o o DRPQ (random) —6— Q1 —8— Q5 —@— Q9

—@— DRPQ (random) DRPQ (grouping) —— Split Query —#— Window Partition —<— Graph Partition DRPQ (grouping) —— Q1 —B— Q5 Q9

2.0

N = a5 N 590
o3 e x =} =} g
— L o, = £
% Sk a x X 60
= S 3 =3 = 2

2 S
2 5% 3 g1 g
£ & 52 £ S30
gt N g z
£ o F £ "

12 3 2 5 6 7 12 3 2 5 6 7 12 3 2 5 6 7 12 N3 b4 f\?\l k6 8
Number of Workers Number of Workers Number of Workers umber of Workers
@ (b) © @

Fig. 8. (a), (b), and (c) show the throughput of different strategies with Q1, Qs, and Qo, respectively. (d) shows
the tail latency of DRPQ (both random and grouping strategies) using different numbers of workers.

5.2.2  Scalability Analysis. We use query Q1, Qs, and Qq to evaluate the scalability of the distributed
strategies by monitoring throughput across different numbers of workers. All other settings remain
as described in 5.2.1, and the results are shown in Figure 8(a), 8(b), and 8(c). The results for one
worker correspond to the single-worker execution of DRPQ, serving as a baseline to measure
distributed speedup. All the results show a similar trend that, as the number of workers increases,
only the DRPQ strategy (both grouping and random) and Window Partitioning strategy demonstrate
a steady, linear increase in throughput. In contrast, the Splitting Query strategy is constrained by

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:20 Siyuan Zhang et al.

the number of split parts of the query, and the Graph Partitioning strategy experiences decreasing
throughput due to a sharp rise in communication overhead. The throughput of DRPQ is consistently
higher than that of the Window Partitioning strategy, highlighting the superior scalability of
our proposed DRPQ system. Additionally, we assess the scalability of the grouping strategy by
monitoring the speed-up ratio (calculated as DRPQ (grouping) / DRPQ (random)) across different
worker counts, shown by the red dashed line in the figure. As the number of workers increases,
DRPQ (grouping) demonstrates a significant throughput improvement over DRPQ (random), nearly
doubling the throughput when 8 workers are used. Compared to all other distributed strategies,
DRPQ (grouping) exhibits exceptional scalability, doubling its throughput as the number of workers
increases from 2 to 4 to 8.

We also evaluate the scalability of DRPQ by monitoring the tail (99th percentile) latency under
various number of workers. The results in Figure 8(d) show that as the number of workers increases,
the tail latency for both DRPQ (random) and DRPQ (grouping) decreases consistently across all
query types (Q1, Qs, Qo). Notably, DRPQ (grouping) achieves lower tail latency than DRPQ (random)
in all configurations, with more significant reductions observed in higher workloads such as Qs.

Table 2. Throughput under different partial match length fen

ten 1 [ 2] 3] 4] 10]100] 1000
DRPQ (random) | 182 | 245 | 368 | 221 | 111 | 105 | 107
DRPQ (grouping) | 195 | 429 | 533 | 242 | 81 | 102 | 101

5.2.3 Threshold of Partial Match Length. To explore the effect of the partial match length threshold
ten under a limited number of workers, we selected 1M tuples from the SO dataset and controlled
the number of generated PMQTs as follows: (1) We introduced two new labels, d and e, which
together form several paths (about 0.01% of tuples in SO) with the label sequence d o e; (2) We
identified several hot nodes (about 0.001% of nodes in SO) that connect to the source vertex of all
tuples labeled a via e. The sliding window size was set to 90 (three months), and the query was
Q" =d o e o Q. Other experimental settings followed Section 5.2.1; results appear in Table 2. As
discussed in Section 3.4, the optimal threshold in this setting is fen = 3, which balances generating
sufficient PMQTs and limiting coordinator overhead. For fen < 3, the bottleneck is too few PMQTs;
for fen > 3, the coordinator incurs excessive cost finding partial matches. Notably, throughput
remains unchanged when fen exceeds 100, as most partial matches fail the length threshold and the
system effectively degenerates to single-coordinator processing, diminishing distributed benefits.
A suitable fen can typically be found by conducting preliminary tests on sampled data.

5.24  Parameters in Grouping Strategy. We now evaluate the influence of the parameters (bucket
size m, hop h, and threshold in Algorithm 2) in the grouping strategy to the grouping quality.
Note that these three parameters interact and collectively influence the grouping quality, we thus
conduct several experiments on SO and query Q; to evaluate the covariance impact among them.

Figure 9(a) presents the throughput and number of generated groups under varying hop h and
similarity threshold st, with bucket size fixed at m = 100. We exclude h = 4 because its grouping
cost far exceeds processing cost, introducing a new performance bottleneck.

Notably, for h = 1 and h = 2, throughput steadily decreases as st increases. Specifically, at
h = 1, throughput nearly halves at st = 1 and then stabilizes for st > 10, closely resembling the
DRPQ (random) strategy (see black dashed lines in the figure). For h = 2, throughput declines
more gradually with increasing st. In contrast, for A = 3, throughput initially rises as st increases,
peaking at st = 15 (the “turning point”), after which it declines.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:21

1 hop (throughput)  =fll= 2 hop (throughput) == 3 hop (throughput)

1 hop (groups) == 2 hop (groups) == 3 hop (groups)
T 2.2 2.0 4”g
= : Ty =

—

5?2 218 XLz
‘31'6 1.6 €
c /~ ST o
914 114 AY: 2o
N 1.2 1.2 __/:_____/\\/’ - 1 8
£ 1ol 5

1.0 0 N NOO00000000000

HNINNOOO0OO0000

Similarity Threshold Bucket Size —N

(@) (b)
Fig. 9. The throughput with (a) different hops & similarity thresholds and (b) different hops & bucket size.

These trends can be explained as follows. When h = 3, increasing st allows more PMQTs within a
group to share TRD maintenance, boosting throughput. Beyond the turning point, stricter similarity
constraints split previously grouped PMQTs, resulting in throughput decline. For h = 2, fewer
sampled nodes mean the system reaches or exceeds the turning point sooner, causing a slower but
steady decline as st increases. The same logic applies to h = 1, which behaves like DRPQ (random)
due to the less sampled nodes.

The number of groups generated is shown by the dashed lines in Figure 9(a), and is almost exactly
inversely proportional to throughput: more groups correspond to more random-like allocation and
lower TRD sharing. At st = 0, group counts are similar across all hops since a loose threshold easily
satisfies the overlap condition, grouping more PMQTs together. As st increases, grouping becomes
stricter and the number of groups rises across all hops. Higher h values (i.e., more sampled nodes)
result in fewer groups for the same st, as more PMQTs can satisfy the grouping requirements.

Next, we evaluate the impact of bucket size m and hop h on performance with similarity threshold
st = 5, as shown in Figure 9(b). For h = 1, throughput steadily decreases as m increases, with a
sharp drop when m rises from 4 to 7, after which it stabilizes. For h = 2, throughput increases with
m up to a peak at m = 7, and for h = 3, the peak occurs at m = 100. Notably, the turning point for
h = 3 yields higher throughput than that for A = 2.

These results are consistent with previous findings. Increasing m makes it easier to satisfy
condition (b) in Section 4, allowing more PMQTs in a group to share TRD maintenance and
increasing throughput—up to the turning point. Beyond this, the fixed number of sampled nodes
per hop leads to fewer nodes in each bucket, making it harder to meet the similarity threshold, and
thus previously grouped PMQTs are split into separate groups, reducing throughput. The turning
point appears earlier for h = 2 (m = 7) than for h = 3 (m = 100), as the latter samples more nodes
and thus better supports feature-based grouping.

The number of groups under different settings is indicated by the dashed lines in Figure 9(b).
Unlike Figure 9(a), bucket size has a stronger effect on group count, as it directly determines how
sampled nodes are distributed. This results in more significant variation in group formation and
consequently influences throughput.

We now fix the hop h = 2 and evaluate the impact of bucket size m and similarity threshold
st on performance, as shown in Figure 10. The turning point appears when m < 20, with higher
m values corresponding to lower st thresholds needed to reach the turning point (e.g., st = 80 at
m =1, st =60 at m = 2, st = 35 at m = 4). This is because larger m means fewer nodes per bucket,

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:22 Siyuan Zhang et al.

Bucket Size
-1 -5 —o— 20 100 —e— 500 —e— 1000
2 —e— 10 50 200 —e— 700 —e— 2000

N

=}
N
wn

I

©
N
=}

=
>

Throughput (x 103)
5
-
o

=
N

Number of groups (x 10)
w

o
5

0 10 20 30 40 60 80 100 0 10 20 30 40 60 80 100
Threshold Threshold

Fig. 10. The throughput and number of groups with different similarity thresholds and bucket size.

so a lower st is sufficient to distinguish which PMQTs can share TRD processes. When m > 50,
the turning point disappears and throughput declines more rapidly, as each bucket contains too
few nodes to satisfy the similarity requirement; equivalently, st in this range already exceeds the
turning point. Notably, higher m values achieve higher throughput at their turning point (e.g.,
throughput for m = 10, st = 20 is greater than for m = 4, st = 35 or m = 2, st = 60), since larger
buckets facilitate finer differentiation and better process sharing among PMQTs.

In summary, for a given query, a higher hop h is generally preferable because it samples more
nodes for vector generation, as long as grouping overhead does not become a bottleneck. The
optimal choice of m and st depends on the number of sampled nodes: with fewer nodes, smaller
m and higher st are preferable, while with more nodes, larger m and lower st are more effective
for grouping and throughput. Since optimal parameter settings depend on both dataset and query
complexity, we recommend preliminary experiments on sample data to tune parameters prior to
deployment.

DRPQ (random) —— DRPQ (grouping) -@®- Speedup (grouping / random)
".é_.’ s /,0 2.0 MS
X e o X3
=}
- he} Ll
310 158 3
S a 52
g s n 5
o o
—_ —_
E o 1.0 =5 1.0
2 3456 7 8 910 1 2 3 4 5 6
Window Size Slide Step Length

(@) (b)

Fig. 11. The throughput of adopting grouping strategy with (a) different sliding windows and (b) sliding step
length.

5.2.5 Sensitivity Analysis. We evaluated the sensitivity of our grouping strategy by measuring
the throughput of DRPQ (random) and DRPQ (grouping) under different sliding window sizes

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:23

(IW|) and sliding step lengths (Step(W)) for query Q;. The results are presented in Figures 11(a)
and 11(b). As |W| increases, the throughput of both methods declines due to the heavier query
workload within each window. However, the speed-up achieved by the grouping strategy over
DRPQ (random) (depicted by the red line) increases, since larger windows result in larger TRDs
and each PMQT contains more tuples. This leads to more opportunities for TRD maintenance
to be shared across different PMQTs, allowing the grouping strategy to achieve higher relative
throughput as |W| increases.

In contrast, as Step(W) increases, the throughput of both methods improves because a larger
Step(W) reduces the number of tuples within certain PMQTs (see Definition 9). However, our
experiments show that when Step(W) = 4 (with |W| = 7), the throughput of the grouping strategy
stops increasing, as the overhead of grouping surpasses the processing time on workers, creating a
new bottleneck. Additionally, as Step(W) increases, the speed-up ratio of the grouping strategy
gradually decreases, since there are fewer opportunities for sharing computation across PMQTs.

6 Related Work

Regular Path Queries (RPQs): RPQs are widely used in graph querying [4, 5, 20]. Early RPQ
evaluation methods can be categorized as navigational or relational. Navigational methods include
rare label splitting [34, 42], Brzozowski derivatives [43], bidirectional random walks [55], and
partial answers [56]. [8] combines the Glushkov automaton [23] with a ring index [7]. Relational
methods focus on recursive queries, such as recursive SQL [19, 58] and relational algebra [22, 29].
Recent advances employ hardware/software acceleration, like FPGA-based parallel RPQ evaluation
[39] or JIT compilation for direct graph evaluation [52]. Pang et al. [47] optimize query processing
under memory constraints by exploring shared subqueries and materialized views.

Most prior works focuses on static graphs. [57] study reachability queries that aim to identify
time-respecting paths in temporal graphs. However, their approach targets static settings with
offline indexing, and does not support regular path queries or streaming evaluation. [45] introduces
persistent RPQ evaluation over streaming graphs, later extended in [46] by integrating RPQs with
graph pattern matching and proposing a streaming graph algebra. Gou et al. [25] reduce memory
and update costs using shared spanning trees to materialize intermediate results. [59] is the first
to support parallel processing over multiple sliding windows, avoiding expiration (see Section 2).
However, no distributed solution is offered.

Streaming Graph Processing Systems: Streaming RDF processing has been explored in various
contexts, including Linked Data Notification [12], RDF stream publishing [6], SPARQL extensions
for reasoning and event matching [33], and persistent query systems like C-SPARQL [9], CQELS [36],
and SPARQL;;reqam [13]. However, these systems do not address RPQs specifically [60]. Streaming
graph algorithms are divided into two categories: (1) processing large static graphs in a streaming
manner, focusing on graph compression [2, 37] and partitioning [14, 49]; and (2) maintaining
streaming graphs and dynamically updating outputs, including persistent queries for subgraph
matching [17, 31], triangle counting [26, 51], cycle detection [50], and dynamic indexing for
connectivity queries [15, 61]. Our work falls into the second category, focusing on regular expression
queries. It extends prior efforts [25, 45, 46, 59] by enabling parallel RPQ evaluation in distributed
systems, overcoming limitations like shared spanning tree structures and optimizing TRDs for high-
performance processing. The shared TRD maintenance is conceptually related to the multi-source
BFS optimization in [53], which merges traversals from multiple roots in static graphs. However,
DRPQ differs fundamentally in that it targets streaming, labeled graphs, supports RPQs guided by
automata, and merges across PMQTs from the same root under sliding window constraints. DRPQ
also resembles that of [10] and [21], but with temporal constraints: while both works operate on
static graphs and [21] retains all paths, TRDs in DRPQ is designed for streaming scenario and expire

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



317:24 Siyuan Zhang et al.

as window sliding. Though we currently focus on node pairs, TRDs preserve sufficient information
to reconstruct paths if needed.

A more detailed discussion of distributed strategies for streaming evaluation is provided in
Section 1.

7 Conclusion and Future Work

In this paper, we proposed DRPQ, a novel approach for efficient distributed evaluation of streaming
RPQs. We introduced the PMQT as a flexible unit of work and developed a grouping strategy to
merge PMQTs that can share computation, thereby reducing redundancy. Experimental results show
that DRPQ consistently outperforms existing distributed strategies across diverse queries, achieving
near-linear throughput scaling with the number of workers. The grouping strategy further boosts
throughput by nearly twofold in most cases. Future work mainly focuses on extending the concept
of DRPQ to other streaming graph query applications and exploring adaptive runtime partition
and grouping strategies at the coordinator, including dynamic adjustment of grouping parameters
and condition-based switching between grouping and random modes.

Acknowledgments

This work was supported by NSFC under grants U24A20232 and 62272106. The corresponding
author of this paper is X. Sean Wang.

References

[1] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Streaming graph partitioning: an experi-
mental study. Proceedings of the VLDB Endowment 11, 11 (2018), 1590-1603.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of Database Systems. doi:10.1145/2213556.2213560

[3] Renzo Angles, Carlos Buil Aranda, Aidan Hogan, Carlos Rojas, and Domagoj Vrgo¢. 2022. Wdbench: A wikidata graph
query benchmark. In International Semantic Web Conference. Springer, 714-731.

[4] Renzo Angles, Marcelo Arenas, Pablo Barceld, Peter Boncz, George Fletcher, Claudio Gutierrez, Tobias Lindaaker,
Marcus Paradies, Stefan Plantikow, Juan Sequeda, et al. 2018. G-CORE: A core for future graph query languages. In
Proceedings of the 2018 International Conference on Management of Data. 1421-1432.

[5] Renzo Angles, Marcelo Arenas, Pablo Barceld, Aidan Hogan, Juan Reutter, and Domagoj Vrgo¢. 2017. Foundations of
modern query languages for graph databases. ACM Computing Surveys (CSUR) 50, 5 (2017), 1-40.

[6] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. 2011. EP-SPARQL: a unified language for event
processing and stream reasoning. In Proceedings of the 20th international conference on World wide web. 635-644.

[7] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L Reutter, Javiel Rojas-Ledesma, and Adrian Soto. 2021. Worst-
case optimal graph joins in almost no space. In Proceedings of the 2021 International Conference on Management of Data.
102-114.

[8] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma. 2022. Time-and space-efficient regular
path queries. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 3091-3105.

[9] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus. 2009. C-
SPARQL: SPARQL for continuous querying. In Proceedings of the 18th international conference on World wide web.
1061-1062.

[10] Pablo Barcel6 Baeza. 2013. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of database systems. 175-188.

[11] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. Navigating the Maze of Wikidata Query Logs. the web
conference (2019).

[12] Jean-Paul Calbimonte. 2017. Linked data notifications for rdf streams. In Proceedings of the Web Stream Processing work-
shop (WSP 2017) and the 2nd International Workshop on Ontology Modularity, Contextuality, and Evolution (WOMoCoE
2017) co-located with 16th International Semantic Web Conference (ISWC 2017). 22 October 2017.

[13] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. 2010. Enabling ontology-based access to streaming data
sources. In The Semantic Web-ISWC 2010: 9th International Semantic Web Conference, ISWC 2010, Shanghai, China,
November 7-11, 2010, Revised Selected Papers, Part I 9. Springer, 96—111.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.


https://doi.org/10.1145/2213556.2213560

DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:25

[14]
[15]
[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen. 2018. PowerLyra. ACM Transactions
on Parallel Computing (Sep 2018), 1-39. doi:10.1145/3298989

Xin Chen, You Peng, Sibo Wang, and Jeffrey Xu. [n. d.]. DLCR: Efficient Indexing for Label-Constrained Reachability
Queries on Large Dynamic Graphs. ([n.d.]).

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao,
and Enhong Chen. 2012. Kineograph: taking the pulse of a fast-changing and connected world. In Proceedings of the
7th ACM european conference on Computer Systems. 85-98.

Sutanay Choudhury, LawrenceB. Holder, George Chin, Khushbu Agarwal, and John Feo. 2015. A Selectivity based
approach to Continuous Pattern Detection in Streaming Graphs. Extending Database Technology,Extending Database
Technology (Feb 2015).

Isabel F Cruz, Alberto O Mendelzon, and Peter T Wood. 1987. A graphical query language supporting recursion. ACM
SIGMOD Record 16, 3 (1987), 323-330.

Saumen Dey, Victor Cuevas-Vicenttin, Sven Kohler, Eric Gribkoff, Michael Wang, and Bertram Ludascher. 2013.
On implementing provenance-aware regular path queries with relational query engines. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops. 214-223.

Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. In Networked Knowledge-Networked Media:
Integrating Knowledge Management, New Media Technologies and Semantic Systems. Springer, 7-24.

Benjamin Farias, Wim Martens, Carlos Rojas, and Domagoj Vrgo¢. 2024. PathFinder: Returning Paths in Graph Queries.
In International Semantic Web Conference. Springer, 135-154.

Valeria Fionda, Giuseppe Pirro, and Mariano P Consens. 2019. Querying knowledge graphs with extended property
paths. Semantic Web 10, 6 (2019), 1127-1168.

Victor Mikhaylovich Glushkov. 1961. The abstract theory of automata. Russian Mathematical Surveys 16, 5 (1961), 1.
Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. {PowerGraph}: Distributed
{Graph-Parallel} Computation on Natural Graphs. In 10th USENIX symposium on operating systems design and
implementation (OSDI 12). 17-30.

Xiangyang Gou, Xinyi Ye, Lei Zou, and Jeffrey Xu Yu. 2024. LM-SRPQ: Efficiently Answering Regular Path Query in
Streaming Graphs. Proceedings of the VLDB Endowment 17, 5 (2024), 1047-1059.

Xiangyang Gou and Lei Zou. 2021. Sliding Window-based Approximate Triangle Counting over Streaming Graphs
with Duplicate Edges. In Proceedings of the 2021 International Conference on Management of Data. 645-657.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang Chen,
and Enhong Chen. 2014. Chronos: a graph engine for temporal graph analysis. In Proceedings of the Ninth European
Conference on Computer Systems. 1-14.

John Hopcroft. 1971. An n log n algorithm for minimizing states in a finite automaton. In Theory of machines and
computations. Elsevier, 189-196.

Louis Jachiet, Pierre Geneves, Nils Gesbert, and Nabil Layaida. 2020. On the optimization of recursive relational
queries: Application to graph queries. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 681-697.

Ansar Javed, Bibrak Qamar, Mohsan Jameel, Aamir Shafi, and Bryan Carpenter. 2016. Towards scalable java HPC with
hybrid and native communication devices in MP] express. International Journal of Parallel Programming 44, 6 (2016),
1142-1172.

Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong, Hassan Chafi, Hyungyu Shin, and Geonhwa
Jeong. 2018. TurboFlux. In Proceedings of the 2018 International Conference on Management of Data. doi:10.1145/3183713.
3196917

Krys J Kochut and Maciej Janik. 2007. SPARQLeR: Extended SPARQL for semantic association discovery. In European
Semantic Web Conference. Springer, 145-159.

Srdjan Komazec, Davide Cerri, and Dieter Fensel. 2012. Sparkwave: continuous schema-enhanced pattern matching
over RDF data streams. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems.
58-68.

André Koschmieder and Ulf Leser. 2012. Regular path queries on large graphs. In Scientific and Statistical Database
Management: 24th International Conference, SSDBM 2012, Chania, Crete, Greece, June 25-27, 2012. Proceedings 24. Springer,
177-194.

Sofiane Lagraa, Martin Husak, Hamida Seba, Satyanarayana Vuppala, Radu State, and Moussa Ouedraogo. 2024. A
review on graph-based approaches for network security monitoring and botnet detection. International Journal of
Information Security 23, 1 (2024), 119-140.

Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. 2011. A native and adaptive
approach for unified processing of linked streams and linked data. In International Semantic Web Conference. Springer,
370-388.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.


https://doi.org/10.1145/3298989
https://doi.org/10.1145/3183713.3196917
https://doi.org/10.1145/3183713.3196917

317:26 Siyuan Zhang et al.

[37]
[38]
[39]
[40]

[41]

[42]
[43]

[44]

[45]
[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph summarization methods and applications: A
survey. ACM computing surveys (CSUR) 51, 3 (2018), 1-34.

Wim Martens, Matthias Niewerth, Tina Popp, Stijn Vansummeren, and Domagoj Vrgoc. 2022. Representing paths in
graph database pattern matching. arXiv preprint arXiv:2207.13541 (2022).

Kento Miura, Toshiyuki Amagasa, Hiroyuki Kitagawa, R Bordawekar, and T Lahiri. 2019. Accelerating Regular Path
Queries using FPGA.. In ADMS@ VLDB. 47-54.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martin Abadi. 2013. Naiad: a timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 439-455.

Inju Na, Yang-Sae Moon, Ilyeop Yi, Kyu-Young Whang, and Soon J Hyun. 2022. Regular path query evaluation sharing
a reduced transitive closure based on graph reduction. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 1675-1686.

Van-Quyet Nguyen and Kyungbaek Kim. 2017. Efficient regular path query evaluation by splitting with unit-subquery
cost matrix. IEICE TRANSACTIONS on Information and Systems 100, 10 (2017), 2648-2652.

Maurizio Nolé and Carlo Sartiani. 2016. Regular path queries on massive graphs. In Proceedings of the 28th International
Conference on Scientific and Statistical Database Management. 1-12.

Nigini Oliveira, Michael Muller, Nazareno Andrade, and Katharina Reinecke. 2018. The exchange in StackExchange:
Divergences between Stack Overflow and its culturally diverse participants. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1-22.

Anil Pacaci, Angela Bonifati, and M Tamer Ozsu. 2020. Regular path query evaluation on streaming graphs. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 1415-1430.

Anil Pacaci, Angela Bonifati, and M Tamer Ozsu. 2022. Evaluating complex queries on streaming graphs. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 272-285.

Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang. 2024. Materialized View Selection & View-Based Query Planning
for Regular Path Queries. Proceedings of the ACM on Management of Data 2, 3 (2024), 1-26.

Thomas Pellissier Tanon, Gerhard Weikum, and F Yago Suchanek. [n.d.]. 4: A reason-able knowledge base. In
Proceedings of the European Semantic Web Conference. 583-596.

Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Giorgio Iacoboni. 2015. Hdrf: Stream-based
partitioning for power-law graphs. In Proceedings of the 24th ACM international on conference on information and
knowledge management. 243-252.

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jingren Zhou. 2018. Real-time
constrained cycle detection in large dynamic graphs. Proceedings of the VLDB Endowment 11, 12 (2018), 1876-1888.
Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017. Triest: Counting local and global triangles
in fully dynamic streams with fixed memory size. ACM Transactions on Knowledge Discovery from Data (TKDD) 11, 4
(2017), 1-50.

Frank Tetzel, Wolfgang Lehner, and Romans Kasperovics. 2020. Efficient Compilation of Regular Path Queries.
Datenbank-Spektrum 20 (2020), 243-259.

Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien Pham, Alfons Kemper, Thomas
Neumann, and Huy T Vo. 2014. The more the merrier: Efficient multi-source graph traversal. Proceedings of the VLDB
Endowment 8, 4 (2014), 449-460.

Ken Thompson. 1968. Programming techniques: Regular expression search algorithm. Commun. ACM 11, 6 (1968),
419-422.

Sarisht Wadhwa, Anagh Prasad, Sayan Ranu, Amitabha Bagchi, and Srikanta Bedathur. 2019. Efficiently answering
regular simple path queries on large labeled networks. In Proceedings of the 2019 international conference on management
of data. 1463-1480.

Xin Wang, Junhu Wang, and Xiaowang Zhang. 2016. Efficient distributed regular path queries on rdf graphs using partial
evaluation. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.
1933-1936.

Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016. Reachability and time-based path queries
in temporal graphs. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 145-156.

Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2013. Evaluation of SPARQL Property Paths via Recursive SQL.
AMW 1087 (2013).

Siyuan Zhang, Zhenying He, Yinan Jing, Kai Zhang, and X Sean Wang. 2024. MWP: Multi-Window Parallel Evaluation
of Regular Path Queries on Streaming Graphs. Proceedings of the ACM on Management of Data 2, 1 (2024), 1-26.
Ying Zhang, Pham Minh Duc, Oscar Corcho, and Jean-Paul Calbimonte. 2012. SRBench: a streaming RDF/SPARQL
benchmark. In The Semantic Web—ISWC 2012: 11th International Semantic Web Conference, Boston, MA, USA, November
11-15, 2012, Proceedings, Part I 11. Springer, 641-657.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



DRPQ: Distributed Evaluation of Regular Path Queries On Streaming Graphs 317:27

[61] Andy Diwen Zhu, Wenging Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability queries on large dynamic graphs:
a total order approach. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data.
1323-1334.

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 317. Publication date: December 2025.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Streaming RPQ Evaluation
	2.2 The Multi-Window Parallel Strategy

	3 Distributed Regular Path Query
	3.1 Partially Matched Query Task (PMQT)
	3.2 Processing a Single PMQT
	3.3 Processing Multiple PMQTs as a Group
	3.4 System Design

	4 Group-based Allocation Strategy
	4.1 Feature Vectorization of PMQTs
	4.2 Approximated Vectorization
	4.3 PMQT Grouping

	5 Experimental Evaluation
	5.1 Experimental Setup and Implementation
	5.2 Experimental Results

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

