
GAR: A Generate-and-Rank Approach for Natural
Language to SQL Translation

Yuankai Fan, Zhenying He, Tonghui Ren, Dianjun Guo, Lin Chen, Ruisi Zhu, Guanduo Chen
Yinan Jing, Kai Zhang, X.Sean Wang

School of Computer Science, Fudan University, Shanghai, China

{ykfan19, zhenying, thren20, djguo20, lin chen20, rszhu20, gdchen18, jingyn, zhangk, xywangCS}@fudan.edu.cn

Abstract—A Natural Language (NL) Interface to Databases
(NLIDB) aims to help end-users access databases. State-of-the-
art approaches primarily construct language translation models
to convert NL queries to SQL queries. While these models
exhibit good performance on NLIDB benchmarks, the translation
accuracy seems to have stalled at between 70%-75%, and most
erroneous translations happen with complex queries that require
an understanding of the structure and semantics specific to a
database. This paper proposes a Generate-And-Rank approach
called GAR. GAR assumes that a set of sample SQL queries
is given to represent the possible user-intended queries to the
database. In order to provide a broad coverage, akin to avoiding
over-fitting, GAR extracts the basic components from the sample
set to form the basic building blocks to generate a set of general-
ized SQL queries. By leveraging a simple rule-based SQL to NL
technique, a less natural NL expression called a dialect expression
for each sample and generalized SQL query is obtained. Finally, a
learning-to-rank method is used for a given NL query to retrieve
the best dialect expression and hence the resulting SQL query. Ex-
tensive experiments are performed to study GAR in comparison
with other approaches. The results show that GAR achieves better
performance on the NLIDB benchmarks, including in particular
a 78.5% translation accuracy on the popular SPIDER benchmark,
outperforming the best reported accuracy in the literature. An
extension to GAR, called GAR-J, is further introduced to aid the
translation by annotating join semantics in the sample queries.
The experimental results show that GAR-J can further improve
translation accuracy on queries with joins. Code for GAR can
be found at https://github.com/Kaimary/GAR.

Index Terms—NLIDB, NL2SQL, SQL, learning-to-rank

I. INTRODUCTION

Designing user-friendly query interfaces for databases is

becoming an increasingly important goal [1], [2]. Recently,

due to the maturity of language translation techniques, some

interfaces have taken the form of translating natural language

(NL) queries to SQL queries using machine learning methods

[3]–[11]. The main idea is to consider the NL interface to

databases (NLIDB) problem as a language translation task and

train a generalized sequence-to-sequence (Seq2Seq) model.

Despite the significant gains in terms of translation accuracy

(defined as syntactic equivalence), the overall improvement,

however, seems to have stalled. Indeed, the translation accu-

racy results reported in the literature on the popular SPIDER

[12] benchmark are mostly below 75%, and the model [13]

on top of the SPIDER leaderboard1 achieves only 72.1%

1https://yale-lily.github.io/spider. Note that the leaderboard uses unknown
testing queries and databases to evaluate submitted NLIDB algorithms.

translation accuracy on the test set at the time of writing.

Translation difficulties mostly arise in complex queries.

For example, take the two state-of-the-art models, GAP [9]

and SMBOP [8]. The translation accuracy breakdown on the

SPIDER benchmark, in terms of SQL “difficulty levels”2, is as

follows:

TABLE 1: Translation accuracy on SPIDER by SQL difficulty levels

Model Easy Medium Hard Extra Hard Overall
GAP 0.915 0.742 0.644 0.494 0.727

SMBOP 0.890 0.791 0.644 0.470 0.737

As can be observed, the performance of these translation

methods drops when queries become harder. The reason we

believe is that the harder queries may require significantly

more training data on the target database than usually (and

practically) given in the benchmarks, and the training data

on other databases are of little help. Indeed, every database
has its own peculiar structure and semantics, as if forming a
“universe” of its own with its own way of expressing ideas.

Consider the example in Fig. 1 that shows a “Hard” NL-

SQL queries pair and the translation results of the above two

models. Both models correctly use the join path employee-
evaluation, but fail to infer the “highest one time bonus”

with the right SQL clauses. GAP mistakenly infers the em-

ployee with “the most bonuses” semantics by counting the

number of the records for each employee, while SMBOP incor-

rectly gives the “total bonus” of each employee. This example

shows that the translation may fail if a given database’s pecu-

liar semantics and structure are not sufficiently considered.

To add more semantics into the translation, an ontology-

based approach [14] is reported to achieve some improve-

ments, but the approach is rule-based that requires the user-

given NL queries be annotated to map to the ontology elements

before translation. Another recent work [15] stipulates that

providing a small number of in-domain training examples may

be a more promising approach.

In this paper, we propose an approach called GAR. The
basic assumption is that a set of sample queries on a database
is given, and we can use SQL queries that are “component-
similar” to the given samples to answer NL queries. Here,

by “component-similar” we mean the queries that are built

2SPIDER defines the SQL difficulty based on the number of SQL clauses,
so that queries that contain more SQL keywords are considered to be harder.

110

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00016

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

01
6

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

(a) A database schema in the SPIDER benchmark

NL Query: Find the name of the employee who got the highest one time bonus.
SQL Query:

(Gold)
SELECT T1.name FROM employee AS T1
JOIN evaluation AS T2 ON T1.employee_id=T2.employee_id
ORDER BY T2.bonus DESC LIMIT 1

GAP model [9]

Generated SQL:

(Incorrect)
SELECT T1.name FROM employee AS T1
JOIN evaluation AS T2 ON T1.employee_id=T2.employee_id
GROUP BY T2.employee_id ORDER BY COUNT(*)
DESC LIMIT 1

SMBOP model [8]

Generated SQL:

(Incorrect)
SELECT T1.name FROM employee AS T1
JOIN evaluation AS T2 ON T1.employee_id=T2.employee_id
GROUP BY T2.employee_id ORDER BY SUM(T2.bonus)
DESC LIMIT 1

(b) A pair of NL-SQL queries and the corresponding translation
results of two NLIDB models

Fig. 1: An example from the SPIDER benchmark

from some variations of the SQL components appeared in the

sample set. The more query varieties we have in the sample

set, the more capable our translation will be. (More details can

be found in Section III-A.)

With the above assumption, the specific database semantics

and structure that the users are interested in are made more

explicit in terms of the components in the sample SQL

queries. In this manner, GAR can handle much more complex

queries that the users may ask, as the space for SQL clause

combinations is significantly reduced. In the example of Fig. 1,

the given “gold” SQL query as a sample query indicates

that the semantics of combining the ordering operation with

column bonus is what’s interesting to the users. From the

sample, GAR generates component-similar queries to gain

more data for learning. (Detailed explanation of why GAR

works correctly with the example in Fig. 1 will be given in

late sections when the steps of GAR are presented.) In a way,

GAR works in the same spirit of GAN [16] that strives to

compensate for the lack of training data.

Briefly, GAR starts with a set of sample SQL queries on

a given database and works as follows. We first generalize

the sample set in an attempt to capture all the component-

similar SQL queries. We then translate the sample and gen-

eralized SQL queries to NL expressions (SQL2NL). These

NL expressions are mostly correct but less natural, hence

we call them “dialect” expressions. Note that these dialect

expressions are formed from the SQL queries on the given

database schema, so the schema information is considered in

GAR. The above process of generating the dialect expressions

is called the data preparation process. For a given NL query

on the given database, GAR looks into the set of dialect

expressions generated in the data preparation process and

employs a learning-to-rank (LTR) model to find the closest

dialect expression and hence the SQL translation result.

To evaluate the effectiveness of GAR, we conduct our exper-

iments on three public benchmarks, namely GEO [17], SPIDER

and MT-TEQL [18]. GAR attains 65.2% overall accuracy on

GEO3, 78.5% overall accuracy on SPIDER4, outperforming the

best reported accuracy of 76.4% on the validation set5 and

78.4% accuracy on MT-TEQL.

Although improving the state-of-the-art, GAR may still mis-

translate queries, especially those involving join operations,

since the join operations often raise the level of abstraction

in semantics that is difficult for GAR to infer from the

table/column names alone. Therefore, we extend GAR to

GAR-J by adding annotations to the join operations in the

SQL to NL step to help the translation. With GAR-J, the

translation accuracies improve to 67.8% and 78.9% on the

GEO and SPIDER benchmarks, respectively. In addition, we

develop a new benchmark (QBEN) that emulates a collection

of manually-curated NL-SQL query pairs in which the join

operations have semantic meanings that are more than simple

compositions of table/column names. GAR-J achieves 70.0%

accuracy on QBEN, while other NLIDB algorithms, including

GAR, can only achieve about 20-40% accuracy.

To summarize, our contributions is four-fold:

• We propose a novel GAR approach based on a set of

sample SQL queries to tackle the NL to SQL (NL2SQL)

translation problem. With such samples and the SQL2NL

technique, the peculiar semantics of databases may be ap-

propriately captured in the generated dialect expressions.

• We formulate the NL2SQL task as a semantic matching

problem, and utilize the LTR techniques in information

retrieval to achieve the NL query to dialect expression,

hence to SQL query translation.

• We extend GAR to GAR-J to handle queries involving

joins with the help of annotation. We propose a new

benchmark QBEN that explicitly tests the robustness of

NLIDB systems for queries with joins.

• We perform a series of experiments to evaluate GAR and

GAR-J. The experiments show the better performance of

GAR and GAR-J over the existing ones. In addition, with

the experiments, we explore and gain more understanding

of the various aspects of GAR.

The remainder of this paper is organized as follows. First,

we give an overview of GAR in Section II. We then detail

the methodologies introduced in GAR in Section III. Next,

we discuss GAR-J in Section IV. We report the results of our

experiments in Section V. Finally, we discuss the related works

in Section VI and conclude in Section VII.

3Earlier rule-based methods may achieve better results on GEO but are
explicitly tuned, so we do not compare them in this paper.

4We assessed the validation set, as we cannot submit GAR to the scoreboard
for evaluation on the test set due to lacking sample SQL queries.

5The validation set is the test data. It will not be used in training phase.

111

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of GAR

II. GAR IN BRIEF

In this section, we first provide a short explanation about

the usage of sample queries, as GAR relies on them to capture

user interests. Then, we present an overview of GAR.

A. Sample Queries

As mentioned earlier, in order to provide correct NL2SQL

translation when training data is lacking, especially when

dealing with difficult queries with multiple SQL clauses, we

start with a set of sample queries to generate more data.

That is, GAR requires sample SQL queries to represent how

users query the database (and reflect how the particular table

organization is used in queries), and learns from them as a

starting point. The goal is to correctly translate queries that

are component-similar (defined after) to the given samples.

The requirement of sample queries on a database may be

hinted by some recent studies [19]–[21] that realized several

generalization challenges existing under a zero-shot cross-

domain setting (i.e., apply the trained model to an unseen

database) and proposed to perform few-shot learning for the

NL2SQL problem [15]. For example, the study in [21] shows

that the generalization performance of existing models has a

notable drop when domain knowledge is required for unseen

domains. Therefore, we believe that learning from sample

queries on a target database is a correct approach, since each

database is almost like a new “domain”.

B. Overview

A high-level view of GAR can be seen in Fig. 2. Given a

set of sample SQL queries, GAR first uses the following data

preparation process to generate dialect expressions during an

offline initialization phase: generalization and SQL2NL. After

the data preparation process, an LTR model is used to rank the

generated dialect expressions for the final translation. In a way,

this generate-and-rank method used in GAR is similar to the

one applied in Alphacode [22] to generate competition-level

code. We describe each step below.

Generalization. The step in Fig. 2- 1 uses a set of generaliza-

tion rules to generalize the sample queries to provide a good

coverage for component-similar queries (defined after) while

limiting the resulting set to a manageable size. For example,

assume that the “gold” SQL query in Fig. 1b is given as a

sample query of the database. GAR should allow users to ask

an NL query like “Find the age of the employee who got the
highest one time bonus.”, which is expressed by a SQL query

that is component-similar to the “gold” SQL query.

To generalize the sample SQL queries, GAR first converts

each sample query to the corresponding parse tree, and then

implements a generalization process by recomposing, in a

controlled manner, the sub-trees in the set of parse trees to

synthesize a large set of component-similar SQL queries.

SQL2NL. The step in Fig. 2- 2 uses a template-based

SQL2NL method [23]. Each clause of a SQL query is mapped

to an NL phrase mechanically with the help of a parsed query

tree. Then the phrases are combined into a sentence, which

we call a dialect expression. For example, the following is the

dialect expression for the gold SQL query in Fig. 1b: “Find
the name of employee regarding to evaluation with employee.
Return the top one result in descending order of one bonus
of the employee evaluation.”. Note that here we are able to

generate the phrase “one bonus” (instead of “all bonus” or

“total bonus”) since employee id is not the unique key of

the evaluation table.

LTR. The LTR model in Fig. 2- 3 follows the LTR approach

[24] in information retrieval that trains a neural network

in a supervised manner. In GAR, the LTR model learns to

rank the semantic similarities between NL queries and dialect

expressions (explained below). The model is used to rank the

dialect expressions and then find the best-matching one for a

given NL query, leading to the translation result. For example,

for the given NL query “Find the name of the employee who
got the highest one time bonus.”, the model will output the

dialect expression example in the previous paragraph as the

highest ranked dialect expression result, and hence the “gold”

SQL query in Fig. 1b can be found as the translation result.

Fig. 3 shows the overall training phase of the LTR model

implemented in GAR. The training data of LTR model is

composed of a set of triples {(qi, di, si)|qi ∈ Q, di ∈ D, 0 ≤
si ≤ 1}Ni=1, where qi represents an NL query, di denotes a

dialect expression, and si represents the semantic similarity

score between di and qi, such that the more similar di and qi
are, the more the score si tends to 1. In this paper, given an

112

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Training phase of the LTR model

NLIDB benchmark, we use all the NL queries in the bench-

mark as Q, and employ the corresponding “gold” SQL queries

as the sample queries to generate the set of SQL queries and

their dialect expressions via the data preparation process in

the steps of Fig. 2- 1 and 2 . The semantic similarity scores

are calculated as follows: If di is exactly generated from the

“gold” SQL query of qi, then si is set to 1. Such a triple

is called a positive sample. Otherwise, si is calculated by

comparing each clause between (1) the corresponding SQL

query that generates di in the data preparation process and (2)

the given “gold” SQL query for qi in the benchmark. Such a

triple is called a negative sample. The exact calculation of si
is given in the next section.

III. GAR

In this section, we describe in detail the GAR data prepa-

ration process, the LTR model and its training method.

A. Compositional-based SQL Generalizer

The main observation of the generalization step is that SQL

is compositional in a context-free manner, which indicates

that each SQL query is formed by components that can be

recomposed to construct new SQL queries. We employ this

idea to introduce component-level generalization to generate

component-similar queries.

We first give the concept of the component, which is similar

to that of a query fragment introduced in [2].

Definition 1. A SQL component takes the form of one of
the seven types given in Table 2.

TABLE 2: Query component types and examples
Type Component Example NL Semantics
select SELECT employee.name Find the employee name
from FROM employee Employee
where WHERE employee.name="John" The employee named John
group GROUP BY employee.id For each employee ID

order
ORDER BY evaluation.bonus
DESC LIMIT 1 The highest one time bonus

join
FROM employee JOIN evaluation
ON id=employee id The employee with evaluation

compound
INTERSECT id FROM employee
WHERE name="John"

(Find the ID of) the employee
named John

As can be seen in the Table 2, some component types are

aligned with the corresponding SQL clauses, and others are

some combinations of them.

Definition 2. Given a set of sample queries, the component-

level generalization is a process that generates SQL queries
by recomposing the components that are in the given sample
queries. The queries generated by this process are said to be
component similar to the sample queries.

Note that since we assume all the query components come

from the given sample queries, GAR in the current setting may

fail on some “simple” cases where the SQL query includes one

or more simple but unseen query components. For example,

if the sample queries only have GROUP BY employee.id
but not the GROUP BY employee.name component, GAR

is not able to generate the SQL queries that include the latter

component. It will be an interesting future work direction to

see how such a limitation may be resolved, e.g., by examining

the database schema to obtain more basic components.
Based on the above definition, we use the parse tree to

represent the compositional characteristics of a SQL query. A

parse tree is an abstract syntax tree that represents the syntactic

structures of a SQL query according to the grammar [25]. For

example, Fig. 4a shows the two parse trees, where each parse

tree is constructed by a set of sub-trees (i.e., components); each

sub-tree is based on the production of the terminals (dotted-

line nodes) and non-terminals (solid-line nodes). The set of

sub-trees can be recomposed into a new parse tree, as shown

in Fig. 4b, and hence to a new SQL query. The new query may

further be fed to a SQL compiler to ensure its correctness.
Since the generalization process should not depend on

the specific literal values (e.g., a string value specified in a

predicate in a WHERE clause), we mask out literal values with

placeholders when converting the SQL queries to the corre-

sponding parse trees. In this way, we preserve the semantic

structure of the SQL queries irrespective of the exact values

used in the queries. This step makes the generalization process

succinctly handle queries with different literal values. A SQL

query that GAR handles represents the query with all possible

instantiation of its specific values.
1) Component-level Generalization: Given a set of sample

SQL queries, the generalization process is recursive: We first

randomly select two parse trees from the given query parse

trees. Secondly, we randomly choose a non-terminal node

type and select two sub-trees rooted with this node type from

the two chosen parse trees, respectively, and then recompose

the two parse trees by shuffling the two sub-trees. Thirdly,

we perform the syntactic and semantic checks of the newly

recomposed parse trees to ensure their correctness. Finally, we

put those valid recomposed parse trees back into the original

set and repeat the above steps until no more new parse tree

is generated. This process may generate an extensive set and

may not even stop in its general form. Therefore, we add some

composition rules (see below) to force the stopping condition

to satisfy and to make the resulting set manageable. We present

the compositional generalization process in Algorithm 1.
Recomposition Rules We observe that many generalized

SQL queries are syntactically correct but semantically not

component-similar to the sample set. Therefore, to make

the above generalization proceyouss tractable, we introduce

the following recomposition rules to prune out unnecessary

compositions during the generalization process.

• Rule 1 (Join Rule). As we discuss in Section IV, the join

operations may raise abstraction levels in semantics that

the SQL queries express. Since we only answer those NL

113

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

(a) The parse trees of two SQL queries (b) A recomposed example

Fig. 4: Two parse trees and an example of a recomposed SQL query result

Algorithm 1: Compositional Generalization Algorithm

Inputs : Given a set of parse trees T
Output: A new set of parse trees T

Procedure GENERALIZE-QUERIES(T):
if no new parse tree generated in the previous iteration

then
return T

t1, t2 ← random select two parse trees from the set T
nt← random select an nonterminal from t1 and t2
st1, st2 ← FIND-SUBTREES(nt, t1, t2)
// Shuffle the substrees st1 and st2 in

t1 and t2 to form two new trees
t1new, t2new ← RECOMPOSE-TREES(st1, st2, t1, t2)
// If t1new (t2new) does not satisfy the

recomposition rules (see the below
section) or is not syntactically
valid, do not add into T

if VALIDATE-TREE(t1new) then
T = T ∪ t1new

if VALIDATE-TREE(t2new) then
T = T ∪ t2new

// Recursive call
GENERALIZE-QUERIES(T)

queries if they can be expressed by the SQL queries that

have the user interested semantics in the given sample

queries, we require the join operations existing in the

generalized SQL queries to be consistent with those in

sample queries. In other words, the recomposed parse trees

of those SQL queries derived from different join paths

with those used in sample queries are excluded from the

generalized set. In the example of Fig. 4a, the “join” type

sub-tree of the top parse tree represents the join operation

of the corresponding SQL query. Suppose the sub-tree is

recomposed with a new “join” type sub-tree whose terminal

node is the shop table, and this new join operation does not

appear in the sample queries. In that case, the recomposed

parse tree is excluded.

Note that the join operation can appear explicitly with the

“join” keyword but may also be expressed with the WHERE
clause or correlated subquery. The generalization process

makes the best effort to apply this rule.

• Rule 2 (Syntactic Restriction). Since SQL allows unlimited

nesting and other ways to form a very large number of

SQL queries, we define a set of constraints to limit the

syntactic complexity of each SQL clause of the generalized

SQL queries. For example, we define a constraint for the

WHERE SQL clause that specifies the maximum number

of predicates that generalized SQL queries can have. All

the constraints are collected from the given sample queries,

which indicates that the complexity of generalized SQL

queries should be similar to the one in the sample queries.

• Rule 3 (Frequency Preservation). Intuitively, the generalized

SQL queries should reflect the user preference if the user is

more interested in particular semantics in the given database.

Hence, the generalization process generates more parse trees

with sub-trees that occur more frequently in the parse tree

set for the sample SQL queries.

• Rule 4 (Sub-query Preservation). We observe that in most

cases, a subquery only appears as a whole in various queries.

Therefore, we treat a subquery as a whole when performing

the recomposition. That is, we do not change any child nodes

of a subquery when making the generalization.

In this paper, we use the above four rules. It is an intended

future research problem to study if there are other rules to use

in generating component-similar queries, and to study how this

component-similar should be formally defined and enforced.

B. Template-assisted Dialect Builder

An essential question for GAR is how to translate a SQL

query to a dialect expression that is as correct, natural, and

114

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

meaningful as possible. The dialect builder of GAR is based

on the SQL2NL techniques that appeared in the literature

[23], [26]. Since the method in [26] currently is limited to

simple SQL queries, we follow the method introduced in [23]

to construct our dialect builder.

In this section, we provide a short description of the

approach in [23] (we call the method GRAPH-NL in the rest

of the paper) and then explain the improvements needed for

the purpose of GAR. We will discuss further enhancements

introduced in GAR-J for handling join queries in Section IV.

GRAPH-NL first treats a SQL query as a string and splits

the string into chunks representing each clause (much like

a sub-tree in a parse tree) in the query and then builds up

a graph for the SQL query clause by clause. A query graph

Gq(Vq, Eq) is a directed graph, where each node in Vq denotes

a query element in the SQL query, such as the column name
in the SELECT clause; Each edge in Eq is associated with a

type, which denotes a specific relationship between two query

elements. For example, as for the SQL query in Fig. 4b, the

employee table node has a “select” type edge that connects

with the name column node and a “join” type edge that

connects with the evaluation table node. Next, GRAPH-

NL assigns each graph element, either a node or an edge, a

label6 to represent its semantics. Finally, GRAPH-NL traverses

the query graph according to the different traversal algorithms

defined in the paper and then concatenates the element-based

labels found on the way to generate the NL expression by

using some descriptive expressions (e.g., ‘Find’, ‘for’, etc.).

GAR follows the methods introduced in GRAPH-NL but

made some changes: (1) Instead of using query graphs, GAR

directly uses parse trees to represent the SQL queries. Simi-

larly, GAR first assigns the “labels” for the nodes in a parse

tree and then traverses the parse tree in a pre-order fashion

to generate NL expression; (2) To support subqueries, GAR

treats each subquery as a whole (in the same way as the

recomposition process we described earlier in Section III-A),

and uses a specific node type to represent; (3) By leveraging

the database schema information, GAR adds more semantics

specific to the database along with the generation of dialect

expressions. For example, for the “one bonus” (or the “total

bonus”) semantics of column bonus in Fig. 1b, GAR first

checks the database key information of the underlying table

evaluation. Since the evaluation table has compound

keys (i.e., employee id and year awarded), GAR can

recognize the “one bonus” semantics of the column bonus.

Fig. 5 shows the dialect generation process for the top parse

tree in Fig. 4a, where each of the NL phrases highlighted

below is generated from the corresponding sub-tree of the

parse tree, and the dialect expression is then constructed by

concatenating those NL phrases.

6In our experiments, since the SPIDER benchmark provides the annotations
of column names and table names of its databases, we use those annotations as
node labels and provide the column and table annotations for GEO and QBEN

benchmarks in the same way. As for edge labels, we follow GRAPH-NL to
use default labels.

Fig. 5: An example of dialect expression generation

C. Neural Semantic Matching Network

Following the earlier works [27], [28] in the information

retrieval field, GAR employs the LTR technique to implement a

two-stage ranking pipeline with two separate machine learning

models to construct the semantic matching network. In the first

stage, a coarse-grained “retrieval model” is used to narrow the

relatively large set to a relatively small collection of potential

best-matching dialect expressions. Then a second-stage fine-

grained “re-ranking model” is used on the small set from the

first stage to get the final top-ranked dialect expressions.

Fig. 6 presents the overall network architectures of the

two models. More specifically, the network for the retrieval

model on the left side is based on the Siamese BERT-network

introduced in [29]. This retrieval model modifies the pre-

trained BERT network [30] using Siamese and triplet network

structures [31] to derive sentence embeddings. On the other

hand, the network of the re-ranking model on the right side

uses the sentence pair classification architecture derived from

BERT architecture to predict the possibility of relevance (bi-

nary classification) between the input NL-dialect query pairs.

(a) Retrieval model network (b) Re-ranking model network

Fig. 6: The architectures of the two ranking models

1) Retrieval Model: To select a subset of the dialect ex-

pressions from an extensive set, an efficient retrieval model

is helpful in quickly inferring the semantic similarity of each

dialect expression with the given NL query. The semantic sim-

ilarities inferred by the retrieval model may not be accurate,

but is suitable for the first-stage subset retrieval.

115

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

Formally, given an NL query q and a set of dialect

expressions D = {d1, d2, · · · , dn}, the inference objective

of the retrieval model is to produce the relevant scores

S = {s1, s2, · · · , sn} for the corresponding dialect expression

di ∈ D with respect to q. We can then use a threshold k to

select the first k highly ranked results as the subset of D.
Training Data The training data of the retrieval model is a

set of triples {(qi, di, si)}Ni=1, where qi is an NL query, di is a

query dialect and si is the semantic similarity score between

di and qi. We calculate the score si as follows. First, si is set

to 1 initially, and then we compare each clause of the SQL

query that is used to obtain the dialect di with the “gold”

query that is given for qi. If a clause is not the same, we give

a punishment on the si value. Finally, the calculation process

ends until we have compared all the clauses or the si value

drops to 0.
2) Re-ranking Model: Note that the retrieval model pro-

vides the re-ranking model with a much less but more rel-

evant subset of dialect expressions. Hence, the objective of

the second-stage re-ranking model is to accurately rank the

subset based on the semantics similarities with the given

NL query and then to find the top-ranked dialect expression.

Since more relevant dialect expressions with the given NL

query often share “confounding characteristics”, the re-ranking

model should be able to recognize them from the set.
Similar with the retrieval model, given an NL query q

and a set of dialect expressions D = {d1, d2, · · · , dn}, the

inference objective of the re-ranking model is to get the

ranked dialect expression set D
′
= {d′

1, d
′
2, · · · , d

′
n} with their

corresponding relevant scores S
′
= {s′

1, s
′
2, · · · , s

′
n}.

Training Data The training data of the re-ranking model is

defined as a set of triples {(qi, di, li)}Ni=1, where qi is an NL

query, di is a dialect expression and li is the corresponding

binary scores that indicate if di is generated by the “gold”

SQL query of the NL query qi or not.
As we use the listwise approach [24] to train the re-

ranking model, we further group the training triples by

each NL query qi. Therefore, we finally obtain a set of

triples {(qj , Dj , Lj)}Mj=1, where qj is an NL query, Dj =
{dj1, dj2, · · · , djn} is the list of dialect expressions with re-

spect to qi, and Lj = {lj1, lj2, · · · , ljn} are the corresponding

boolean values of Dj .
In addition, to make the training more efficient, we use a

subset of D
′

of D for the training of the re-ranking model.

That is, after the retrieval model is trained, we set a threshold

k, and use the retrieval model to inference a subset of D
′
,

where the si value of the di is among top k.

IV. GAR-J

This section discusses the join operations in queries. We first

introduce the join annotation to capture the specific semantics

and then describe how GAR-J incorporates join annotations to

improve the GRAPH-NL method to handle queries with joins.

A. Join Annotation
We observe that the semantics expressed in a SQL query

may become much more abstract if the query involves join

operations. The intuition is that the output of a join operation

is a new “table”, and its semantics may not be directly inferred

from the names of the tables involved in the join or the names

of their columns. The join condition also plays an important

role in the semantics of join. Consider the example in Fig. 7a.

The meaning of the airports-flights join path through

the foreign key destAirport refers to “arriving flights”,

which is hard to infer only from the textual information of the

table names. Hence, GAR and SMBOP fail similarly by using

the incorrect foreign key sourceAirport to join the two

tables, while GAP fails to generate the join condition at all.

(a) A database schema in the SPIDER benchmark

NL Query: Which city has most number of arriving flights?
SQL Query:

(Gold)
SELECT T1.city FROM airports AS T1
JOIN flights AS T2 ON T1.airportCode = T2.destAirport
GROUP BY T1.city ORDER BY COUNT(*) DESC LIMIT 1

GAR model

Generated SQL:

(Incorrect)
SELECT T1.city FROM airports AS T1
JOIN flights AS T2 ON T1.airportCode = T2.sourceAirport
GROUP BY T1.city ORDER BY COUNT(*) DESC LIMIT 1

GAP model

Generated SQL:

(Incorrect)
SELECT T1.city FROM airports AS T1
JOIN flights AS T2
GROUP BY T1.city ORDER BY COUNT(*) DESC LIMIT 1

SMBOP model

Generated SQL:

(Incorrect)
SELECT T2.city FROM flights AS T1
JOIN airports AS T2 ON T1.sourceAirport = T2.airportCode
GROUP BY T2.city ORDER BY COUNT(*) DESC LIMIT 1

(b) A pair of NL-SQL queries and the corresponding translation
results of GAR and the other two NLIDB models

Fig. 7: An example from the SPIDER benchmark

Based on these observations, we introduce join annotations

to capture the peculiar join semantics. We formulate the join

annotation with the following four aspects of information:

• Joining Tables. The annotation specifies which tables are

involved in the given join operation.

• Join Condition. The annotation specifies the condition

used in the given join operation. A condition conveys

a relationship used in joining the tables.

• Join Description. The annotation provides a description

that represents the semantics of the “new” table, much

like a new table name.

• Table Keys. The annotation provides the key information

of the “new” table.

As an example, the join operation used in the sample SQL

query in Fig. 7b is annotated as follows,

Join Annotation
Joining Tables: airports and flights
Join Condition: airports.airportCode=flights.destAirport
Join Description: the flights arrive in the airports
Table Keys: flight

116

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

How to add join annotations automatically or semi-

automatically is an interesting research problem. In this paper,

we use a manual way to add join annotations by looking

into the given sample SQL queries for each given database,

and demonstrate its usefulness for queries with joins in our

experiments as shown in Section V-E.

B. Dialect Builder in GAR-J

Note that the NL expression generated by GRAPH-NL is

simply concatenating the labels of the graph elements, which

may only express the operations but fail to capture the implicit

semantics. For example, the following NL expression is the

translation result in GAR for the “gold” SQL query presented

in Fig. 7b,

Find the city of airports regarding to airports with flights.
Return the top one result for each city of airports in
descending order of the number of airports with flights.

Although the above NL sentence mostly talks about what

the query operations do, it does not capture the idea that the

description is for arriving flights in airports and the asterisk

(“*”) used in the ORDER BY clause means “flights”. This will

prevent GAR from finding the correct dialect expression (and

hence the SQL query).

To tackle the above problem, GAR-J further incorporates

the join annotations of a given databases into the translation

process, and hence improves the dialect translation results.

More specifically, GAR-J first examines the parse tree and adds

the join annotations as the “labels” to the tree as follows:

• If a set of sub-trees of the parse tree can be mapped to

a join operation of the SQL query, we first normalize

the parse tree by converting other forms (e.g., with the

WHERE clause) of the join operation to be the form of

the “join” type. After the normalization, the set of sub-

trees should be rooted with the same non-terminal node,

and hence we add the join annotation to the non-terminal

node to represent the “join” semantics.

• If a terminal node is an asterisk (“*”), we look into the

parse tree to find the related node associated with either

a table annotation (name) or join annotation, and then

use the “Table Keys” information of the annotation to

annotate this asterisk node.

We also present the dialect generation process for the “gold”

SQL query in Fig. 7b below. As can be seen, in Fig. 8, each

NL phrase is formed by the associated labels of either the

terminal nodes or the “join” non-terminal node found in each

sub-tree. In particular, since GAR (and hence GAR-J) knows

the key information (i.e., flight) of the join annotation, the

asterisk node is annotated as “flight”, and hence COUNT(*)
is interpreted to “the number of flights” accordingly.

V. EXPERIMENTAL EVALUATION

This section evaluates GAR using the three existing NLIDB

benchmarks and then further discusses the importance of the

join semantics using the new QBEN benchmark as well as the

Fig. 8: An example of dialect expression generation with the

help of join annotation.

results of a user study to show the annotation cost. We use

the normalization script provided by the SPIDER benchmark to

do the query normalization7 and then evaluate the translation

accuracy results on the validation set of SPIDER and the test

sets of GEO, MT-TEQL and QBEN, respectively.

A. Experimental Setup

1) Benchmarks: We use three NLIDB benchmarks to eval-

uate the performance of GAR: GEO, SPIDER and MT-TEQL.

Table 3 provides the detailed statistics about the three bench-

marks (and the QBEN benchmark).

GEO is a dataset that consists of NL queries over some geo-

graphical data in the form of a relational database with a single

table about the United States (GEObase). The corresponding

“gold” SQL queries are provided in [32]. The train, validation,

and test sets are all on the same database table.

SPIDER is a large-scale benchmark for complex and cross-

domain NL2SQL tasks. The benchmark splits SQL queries

into four types: Easy, Medium, Hard, and Extra Hard, based on

their hardness level. Unlike other existing NLIDB benchmarks,

SPIDER uses different databases in train and validation data

sets. That is, a database schema is used exclusively for either

training or validation, but not both.

Since the test set of SPIDER is hidden behind an evaluation

server, the experiments we perform are on the validation set.

MT-TEQL proposes a metamorphic testing-based framework

to conduct semantics-preserving transformations toward ut-

terances and schemas. MT-TEQL starts from the SPIDER

validation set and automatically generates a test set of a total

of 62,430 transformed testing samples. In our experiment, we

randomly sampled 10,000 testing queries as the test set.

2) Training Settings: The following illustrates the imple-

mentation details about the retrieval model and re-ranking

model used in our experiments8:

7The script decomposes each SQL into several clauses, respectively.
8We also tried some alternatives to the retrieval and re-ranking models, but

none worked well.

117

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: The statistics of NLIDB benchmarks

Benchmark Data Set Databases
Average Number of
Tables per Database

Total Queries Nested With ORDERBY With GROUPBY
Having Compound

Queries
GEO Train/Validation/Test the same one the same one 585/47/280 188/19/98 17/0/18 11/0/14 0/0/0

SPIDER Train/Validation 146/20 4.1/4.17 8659/1034 1249/155 1803/237 1953/277 526/78
MT-TEQL Validation/Test 20/63,464 4.17/4.34 1034/62,430 155/9949 237/14813 277/16404 78/4588

QBEN Train/Sample/Test 146/7/7 4.1/4.86/4.86 8659/293/200 1249/28/17 1803/38/24 1953/39/25 526/1/1

Retrieval Model The embedding layer of the retrieval model

is initialized with stsb-mpnet-base-v29 pre-trained model. We

use the Adam [33] optimizer with a learning rate of 2e-5 and

warmup over the first 10% of total steps to fine-tune the model.

Re-ranking Model is initialized with the ROBERTA [34] pre-

trained model. We use the Adam optimizer with a learning

rate of 5e-6 and adopt a learning rate schedule that reduces

the learning rate by a factor of 0.5 once learning stagnates,

i.e., the training metric has stopped improving, in training.

To accelerate the training phase (and the inference phase),

we only leverage the trained retrieval model to encode both the

NL queries and the large set of dialect expressions to get the

corresponding sentence embeddings. We then use the Faiss

library [35] for efficient similarity search to get the closest

subset of dialect expressions for each given NL query.

To better support the listwise learning paradigm, we further

group the training triples by NL query. We set the threshold k
to 100 to obtain a list of 100 dialects for each NL query and

set the batch size to 2 due to the GPU memory limit. We use

the listwise algorithm NeuralNDCG [36] to train the model.

3) Inference Settings: We use the same threshold (i.e.,

k=100) as in the training phase to get a subset from a large

dialect expression collection for the retrieval model and then

pass it along to the re-ranking model for the final inference.

Sample Queries Since GEO and SPIDER benchmarks only

provide test queries for their databases, we adopt the following

evaluation setting to evaluate GAR. We first use the SQL

queries of the SPIDER validation set and the GEO test set

to generate generalized query sets. Then we rule out all the

ground truth queries from the generalized query sets and use

the sets as the sample queries. For the MT-TEQL and QBEN

benchmarks, we use the SPIDER validation set and the sample

query set as sample queries and then evaluate on the test set.

For each database of the benchmarks, we randomly chose

20,000 generalized SQL queries10 from the large sets resulting

from the data preparation process and then made the inference.

We run the data preparation process five times for each

database in the benchmarks and report the average results.

Value Post-processing As GAR masks out the specific values

during the generalization process and does not use the cell

values of the databases for the translation process, after getting

the top-ranked results, we examine the dialect expressions

in the result set: If a value (e.g., “Spain”) appeared in the

given NL query, it strongly indicates that a particular column

(e.g., “country name”) should be mentioned in the dialect

9https://huggingface.co/sentence-transformers/stsb-mpnet-base-v2
10We attempted to increase the generalization size to 30,000, but the result

was not significantly different, so we fixed the size in the current setting.

expression. Otherwise, the result set will drop those dialect

expressions that do not include the column name.

We also use this post-processing step to specify values for

the translation results of GAR for the purpose of evaluating

on execution accuracy metric described below.

4) Evaluation Metrics: Following are the metrics we adopt

to assess model performance:

Translation Accuracy If the top-ranked SQL query exactly

matches the “gold” SQL, then the translation is said to be

accurate. It is a performance lower bound since a semantically

correct SQL may differ from the “gold” one syntactically.

This metric is the same as the Exact Match Accuracy metric

suggested by SPIDER. After query normalization, the metric is

calculated by conducting set comparison in each SQL clause.

Execution Accuracy evaluates if the execution result matches

the ground truth by executing the generated SQL query against

the underlying relational database. This metric is the same as

the Execution Match Accuracy metric introduced in SPIDER.

Translation Precision at K (denoted Precision@K), where

K is a positive integer, is the number of NL queries that

an NLIDB system has the “gold” SQL queries in the top-K
translation results divided by the total number of NL queries.

In our experiments, we choose K to 1, 3, and 10, respectively.

Translation MRR (Mean Reciprocal Rank) is a statistical

measure [37] that can be used to evaluate a ranked list of SQL

queries for each NL query. The metric is defined as follows,

MRR =
1

N

N∑

i=1

1

ranki
(1)

where N denotes the number of given NL queries, ranki
refers to the rank position of the “gold” SQL query for the

ith NL query. Thus, the closer the value of MRR is to 1, the

more effective the translation ranking scheme is.

B. SPIDER&GEO Results

We compare GAR with four state-of-the-art machine

learning-based models11, GAP, SMBOP, RAT-SQL [6] and

BRIDGE [7]. Fig. 9 shows the overall accuracy of GAR

comparing to the four models on the two existing benchmarks.

The results of the five methods on the GEO benchmark are

almost on par, all at around 70.0%, which is not as good as

those earlier rule-based NLIDB systems. The main reason is

that machine learning-based models may not get sufficiently

trained since the GEO benchmark only has one database, and

its number of training queries is small.

One notable result is that in the current setting, GAR

achieves 78.5% translation accuracy on the SPIDER validation

11Another state-of-the-art model NATSQL [10] was developed based on
RAT-SQL, but we fail to reproduce as the model code is unavailable.

118

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

SPIDER GEO

0

0.2

0.4

0.6

0.8

1

T
ra

n
sl

at
io

n
A

cc
u
ra

cy

GAR GAP SMBOP RAT-SQL BRIDGE

Fig. 9: Translation accuracy on the corresponding valida-

tion/test set of the two NLIDB benchmarks.

set, outperforming the best reported accuracy 76.4% on the

SPIDER leaderboard by 2.1%.

TABLE 4: Breakdown results on the SPIDER validation set
Model Easy Medium Hard Extra Hard Overall Exec.
GAR 0.907 0.816 0.787 0.518 0.785 0.726

SMBOP 0.890 0.791 0.644 0.470 0.737 0.752
BRIDGE 0.911 0.733 0.540 0.392 0.687 0.680

GAP 0.915 0.742 0.644 0.494 0.727 0.349
RAT-SQL 0.851 0.735 0.580 0.476 0.694 0.341

Next, we conduct additional experiments to better under-

stand GAR. Table 4 provides a breakdown of the translation

accuracy and the execution accuracy on the SPIDER validation

set. Unsurprisingly, the performance of all the models drops

with increasing difficulty. However, the performance of GAR

is much more stable over the four categories. In particular,

GAR attains 78.7% accuracy for the “Hard” queries (176 out

of 1034 queries) and achieves 51.8% accuracy in the “Extra

Hard” category (166 out of 1034 queries), which surpasses

the best counterpart (i.e., SMBOP) by 4.8% absolute improve-

ment. In addition, by using value post-processing step, GAR

achieves 72.6% execution accuracy on the SPIDER validation

set, surpassing the other models, except the SMBOP model.

We also present the results on the SPIDER validation set

in terms of different SQL clause types in Table 5. Overall,

the performance of GAR is better over different SQL clauses

compared with the other four models. Notably, GAR is better at

handling complex SQL queries with nested sub-queries, which

achieves 69.8% accuracy.

TABLE 5: Translation accuracy on SPIDER by SQL clause types
Model Nested Negation ORDERBY GROUPBY Others
GAR 0.698 0.811 0.745 0.679 0.853
GAP 0.472 0.600 0.710 0.679 0.825

SMBOP 0.509 0.611 0.732 0.705 0.819
RAT-SQL 0.453 0.558 0.688 0.649 0.784
BRIDGE 0.528 0.589 0.636 0.568 0.793

Next, we study the effectiveness of the final ranking of GAR.

Note that in order to calculate the MRR values, we treat the

reciprocal rank as 0 if the “gold” dialect expression is not

returned in the final top-10 ranked results for a given NL query.

Table 6 shows the precision and MRR values over the two

NLIDB benchmarks, which indicates that in most cases, GAR

can correctly select the closest dialect expression (and hence

the SQL query) in the first few returned results.

TABLE 6: Precision and MRR values of GAR

Dataset MRR Precision@1 Precision@3 Precision@10
SPIDER 0.823 0.785 0.859 0.875
GEO 0.680 0.652 0.679 0.680

To evaluate the efficiency of GAR, we compare the pro-

cessing time with that of the other four models. Note that

since the data preparation process of GAR can be done entirely

offline, we make the the comparison in an online setting. That

is, we assume that all the trained neural network models in

all the methods have already been loaded into the memory,

and in particular, the generalized queries for the underlying

database in GAR have been generated offline12. Table 10

shows that all models can react to a user query in real-time

(100s milliseconds), though GAR needs to take about 2× more

processing time than the other models (except SMBOP) since

ranking a large set of dialect expressions may be relatively

time-consuming. Note that SMBOP fails on almost all “Extra

Hard” queries and returns invalid queries as the translation

results, so a notable drop in its response time can be observed.

0 100 200 300 400 500 600

Extra Hard

Hard

Medium

Easy

Average Response Time (ms)

BRIDGE

RAT-SQL

SMBOP

GAP

GAR

Fig. 10: Comparison of the average response time on the

SPIDER validation set, in terms of SQL difficulty levels.

C. MT-TEQL Results

Table 7 presents the results experimented on MT-TEQL.

GAR achieves 78.4% translation accuracy on the unknown

test set by utilizing the SPIDER validation set as the sample

queries, outperforming the other two baseline models.

TABLE 7: Translation results on a randomly selected test subset
(10,000 queries) of the MT-TEQL benchmark

Model Overall Exec.
GAR + SPIDER validation set 0.784 0.693
SMBOP 0.726 0.705
BRIDGE 0.648 0.626
GAP N/A N/A
RAT-SQL N/A N/A

Since the MT-TEQL benchmark does not publish the test

databases, we cannot evaluate the RAT-SQL and GAP models

as they rely on the database content for the schema linking.

12For the 20,000 generalization size, GAR approximately takes 65s to
generate the SQL queries for each database in SPIDER benchmark on average.
In our work, we take the naive approach to make the generalization and leave
the optimization for future exploration.

119

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

D. Ablation Study
We conduct an ablation study for both the dialect builder

and second-stage re-ranking model13 to verify the effectiveness

of these designs. As shown in Table 8, the performance of the

first-stage retrieval model drops sharply without using the di-

alects, while the re-ranking model retains a good performance

result in the setting. Moreover, we can see that the performance

of GAR has a remarkable drop without using the re-ranking

model, proving its importance in our approach.

TABLE 8: The ablation study of GAR on the SPIDER validation set.
The “w/o Dialect Builder” denotes learning the two ranking models
using SQL queries directly.

Model
Retrieval Model

Miss Count
Re-ranking Model

Miss Count
Overall

Base Model (GAR) 33 132 0.785
w/o Dialect Builder 578 60 0.330
w/o Re-ranking Model 527 N/A 0.435

E. Experiments with GAR-J

To explore the importance of the join semantics, we add the

evaluation of the combination of GAR with join annotations

(GAR-J). Specifically, we manually add the join annotations

for QBEN benchmark (and also GEO and SPIDER), generate

the dialect expressions for all the generalized SQL queries with

the help of the annotations, and then re-train the two ranking

models using the same training settings as above.
QBEN uses the same train set as SPIDER but develops a sample

set and a test set that consists of 7 databases that are different

from those in the train set. The sample and test sets include

293/200 manually-curated NL-SQL query pairs. Each database

has a number of sample and test queries, where the test queries

for each are component-similar to those in the sample set. The

test databases of QBEN are made so that some insights into

the schemas are needed to construct the correct SQL queries.

Below is an example from the test set of QBEN:

NL: Give the “red bull” team mechanics’ first names.
SQL: SELECT T2.FName FROM mechanic AS T1
JOIN team member AS T2 ON T1.MechanicCode=T2.uid
JOIN teams AS T3 ON T2.TeamCode=T3.uid
WHERE T3.Name="red bull"

In the above, the meaning of the table formed by joining

mechanic, teams, and team member tables through the

foreign keys is unclear from the table names. Hence, all five

models, including GAR, fail the translation.
Results As shown in Fig. 11, GAR-J achieves 70.0% ac-

curacy, while GAR achieves 47.0% accuracy, and the other

machine learning-based models can only achieve about 20-

30% accuracy on the QBEN benchmark. It is important to

note that performing annotations bring about 23.0% absolute

improvements for GAR-J. The result demonstrates that join

annotation can efficiently capture the implicit semantics that

is hard to only infer the textual information of the table and

column names, especially for the queries with multiple joins.

13Since GAR leverages the retrieval model to filter extensive “irrelevant”
queries, relying only on the re-ranking model requires a prohibitive computing
cost. Therefore, we exclude the retrieval model from the ablation study.

QBEN SPIDER GEO

0

0.2

0.4

0.6

0.8

1

T
ra

n
sl

at
io

n
C

o
rr

ec
tn

es
s

GAR-J GAR GAP SMBOP RAT-SQL BRIDGE

Fig. 11: Translation accuracy on the corresponding valida-

tion/test set of the three NLIDB benchmark.

Another interesting finding is that the contribution of join

annotations may vary greatly across different NLIDB bench-

marks. For SPIDER and GEO benchmarks, GAR-J achieves

smaller improvements than the counterpart. We analyze the

results and reveal that most of the tables of the databases in the

two benchmarks are exact meaningful names, closely matching

the terms mentioned in the NL queries. Since GAR is built on

top of existing pre-trained language models, GAR can infer

most join semantics from the table names and select the SQL

query of the corresponding correct dialect expression.

User Study In the rest of this section, we report a user study to

assess the annotation cost needed to apply GAR-J. We asked

10 computer science students who have knowledge of SQL

and tasked them with annotating the join semantics of each

database in the NLIDB benchmarks. Firstly, participants were

briefed about the study and then provided sample annotations

on a toy database to explain the process. The databases were

equally distributed among all the participants and they used the

schema information and the given queries in the corresponding

benchmark to annotate. We recorded the completion time of

each participant for each database.

As shown in Fig. 12, the participants on average took about

3 minutes to complete for small databases with 1∼2 tables;

For databases with 3∼5 tables, the time cost was about 7

minutes; For rather complicated databases with 6∼10 tables,

it took about 13 minutes on average.

The study shows that the annotation cost is relatively low

and can even be completed within a few minutes for small

databases. Yet the time requires for the task increases when

the database involves more tables and more sample queries.

0 2 4 6 8 10 12 14 16 18 20 22 24

#1∼2 Table/DB

#3∼5 Table/DB

#6∼10 Table/DB

Time(minutes)

Fig. 12: User Study Results: box plot of completion time for

different scales of schema size of databases.

120

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

F. Analysis of GAR

To gain more understanding of GAR (and GAR-J), we

examine the failed cases in terms of translation accuracy. Table

9 lists the number of incorrectly answered NL queries in the

three NLIDB benchmarks, with respect to the three steps (data

preparation process, retrieval model, and re-ranking model).

We identify the following three major causes for the failures.

TABLE 9: Error analysis on each step of GAR/GAR-J

Dataset
Data Preparation

Miss Count
Retrieval Model

Miss Count
Re-ranking Model

Miss Count

GAR GAR-J GAR GAR-J GAR GAR-J

SPIDER 86 86 33 33 132 120
GEO 8 8 63 63 31 13

QBEN 7 7 34 21 65 32

• Generalization Coverage Problem. 22.8% of the failed

cases (i.e., the data preparation miss count) are because

GAR (and GAR-J) fail to generate the “gold” SQL queries.

The reason is that some databases in the benchmarks are

provided a relatively varied and large number of SQL

queries, leading to a poor coverage under the pre-defined

generalization size (20,000). To some extent, such failures

can be eliminated by increasing the size of the generalization

set, but in view of the extremely large sample SQL query

set, finding a more effective and efficient way to balance be-

tween achieving broad generalization coverage and limiting

the number of resulting queries may be indispensable.

• Dialect Interpretation Problem. 25.4% of the failed cases

are caused by the retrieval model mostly due to semantic-

equivalent sentences with a clear length difference. For

example, for the NL query How long is the longest river
in California? (GEO), following is the dialect generated,

Find the length of river. Return results only for river that
traverse is California and river that length is the maximum
length of river that river that traverse is California.
The above dialect expression mostly captures the idea of

finding the longest river in California, but the interpretation

is lengthy. Learning a neural network model to help sum-

marize lengthy sentences may avoid such a problem.

• Re-ranking Problem. 53.7% of the failed cases are caused

by the re-ranking model failing to distinguish similar sen-

tences with minor differences over certain words among the

top-ranked results. For instance, an example in SPIDER,

NL Query: What is the name and capacity of the stadium
with the most concerts after 2013?
Dialect for the Gold SQL: Find the capacity of stadium,
the name of stadium regarding to stadiums that had
concerts. Return the top one result only for concert that
hosting year is or after 2014 for each of the stadium in
descending order of the number of concerts.
Top-ranked Dialect: Find the capacity of stadium, the
name of stadium regarding to stadiums that had concerts.
Return top one results only for concert that hosting year
is 2014 for each of the stadium in descending order of the
number of concerts.

Such failures may be avoided if we can find a way to prevent

the re-ranking model from collapsing from the confounding

characteristics among similar sentences.

VI. RELATED WORK

Natural Language Interface to Database. NLIDBs have

been studied for several decades in database management

and NLP communities. Early works [2], [14], [17], [38]–[42]

are rule-based approaches, which use handcrafted grammar

and rules to map NL queries to SQL queries specific to a

certain database. With the recent success of neural machine

translation, many machine learning-based approaches [3], [5]–

[13], [43], [44] have been proposed to build NLIDB systems,

which treat the NL2SQL problem as a translation task and

employ the encoder-decoder architecture to tackle the problem.
Natural language translations. Various ideas have been pro-

posed to address the SQL2NL problem [23], [26], [45]–[48].

[45], [46] discuss the usefulness of translating SQL queries

into NL perspective. Earlier attempts [49], [50] explicitly

study the problem of translating small databases under certain

constraints. [48] employs an iterative training procedure by

recursively augmenting the training set to generate the text.
Learning-to-rank The framework of LTR has been success-

fully applied in multiple areas, such as question answering

[51], recommendation [52], and document retrieval [53]. With

the recent advances in pre-training for text, many recent works

in this field have been proposed [27], [28], [54] by utilizing

the pre-trained language models [30], [34].

VII. CONCLUSION & FUTURE WORK

This paper proposed a practical approach named GAR

for the NL2SQL problem. GAR learns from sample queries

to generate a large set of SQL queries with corresponding

dialect expressions and utilizes the LTR technique to find

the final result. Experimental results showed that GAR beats

the four baseline methods on existing NLIDB benchmarks.

In addition, we extended GAR to GAR-J, which incorporates

join annotations into the SQL2NL process, to further improve

translation accuracy, particularly in the QBEN benchmark.
There are a number of directions for future work. For

example, in the current setting, GAR assumes that the given

sample queries are representative enough to generate all possi-

ble user-intended queries. To make GAR capable of handling

“out-of-domain” queries, we may adopt existing translation

models as the backbone and employ the model outputs to

augment sample queries for better coverage. Also, exploring an

automatic or semi-automatic way to add the join annotations

would be an interesting research topic. Lastly, another future

work is to consider augmenting the query components by

examining the underlying database schema to get some more

basic components for generalization.

VIII. ACKNOWLEDGMENTS

The authors would like to thank all the anonymous review-

ers for their insightful comments and suggestions. This work

was supported by NSFC (Grant No. 61732004, 62272106) and

the Zhejiang Lab (Grant No. 2021PE0AC01).

121

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] I. Gur, S. Yavuz, Y. Su, and X. Yan, “Dialsql: Dialogue based structured
query generation,” in ACL, 2018.

[2] C. Baik, H. V. Jagadish, and Y. Li, “Bridging the semantic gap with
SQL query logs in natural language interfaces to databases,” in ICDE,
2019.

[3] B. Bogin, J. Berant, and M. Gardner, “Representing schema structure
with graph neural networks for text-to-sql parsing,” in ACL, 2019.

[4] B. Bogin, M. Gardner, and J. Berant, “Global reasoning over database
structures for text-to-sql parsing,” in EMNLP, 2019.

[5] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang, “To-
wards complex text-to-sql in cross-domain database with intermediate
representation,” in ACL, 2019.

[6] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, “RAT-SQL:
relation-aware schema encoding and linking for text-to-sql parsers,” in
ACL, 2020.

[7] X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data
for cross-domain text-to-sql semantic parsing,” in EMNLP, 2020.

[8] O. Rubin and J. Berant, “Smbop: Semi-autoregressive bottom-up seman-
tic parsing,” in NAACL, 2021.

[9] P. Shi, P. Ng, Z. Wang, H. Zhu, A. H. Li, J. Wang, C. N. dos Santos,
and B. Xiang, “Learning contextual representations for semantic parsing
with generation-augmented pre-training,” in AAAI, 2021.

[10] Y. Gan, X. Chen, J. Xie, M. Purver, J. R. Woodward, J. H. Drake,
and Q. Zhang, “Natural SQL: making SQL easier to infer from natural
language specifications,” in EMNLP, 2021.

[11] T. Scholak, N. Schucher, and D. Bahdanau, “PICARD: parsing in-
crementally for constrained auto-regressive decoding from language
models,” in EMNLP, 2021.

[12] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, Z. Zhang, and D. R. Radev, “Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task,” in EMNLP, 2018.

[13] B. Hui, R. Geng, L. Wang, B. Qin, Y. Li, B. Li, J. Sun, and Y. Li,
“S2sql: Injecting syntax to question-schema interaction graph encoder
for text-to-sql parsers,” in ACL, 2022.

[14] J. Sen, C. Lei, A. Quamar, F. Özcan, V. Efthymiou, A. Dalmia, G. Stager,
A. R. Mittal, D. Saha, and K. Sankaranarayanan, “ATHENA++: nat-
ural language querying for complex nested SQL queries,” PVLDB,
13(11):2747–2759, 2020.

[15] A. Suhr, M. Chang, P. Shaw, and K. Lee, “Exploring unexplored
generalization challenges for cross-database semantic parsing,” in ACL,
2020.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in NIPS, 2014.

[17] J. M. Zelle and R. J. Mooney, “Learning to parse database queries using
inductive logic programming,” in AAAI, 1996.

[18] P. Ma and S. Wang, “Mt-teql: Evaluating and augmenting neural NLIDB
on real-world linguistic and schema variations,” PVLDB, 15(3):569–582,
2021.

[19] Y. Gan, X. Chen, Q. Huang, M. Purver, J. R. Woodward, J. Xie, and
P. Huang, “Towards robustness of text-to-sql models against synonym
substitution,” in ACL, 2021.

[20] X. Deng, A. H. Awadallah, C. Meek, O. Polozov, H. Sun, and
M. Richardson, “Structure-grounded pretraining for text-to-sql,” in
NAACL, 2021.

[21] Y. Gan, X. Chen, and M. Purver, “Exploring underexplored limitations
of cross-domain text-to-sql generalization,” in EMNLP, 2021.

[22] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert, P. Choy,
C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl,
S. Gowal, A. Cherepanov, J. Molloy, D. Mankowitz, E. Suther-
land Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals,
“Competition-level code generation with alphacode,” arXiv preprint,
2022.

[23] G. Koutrika, A. Simitsis, and Y. E. Ioannidis, “Explaining structured
queries in natural language,” in ICDE, 2010.

[24] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in ICML, 2007.

[25] K. Lin, B. Bogin, M. Neumann, J. Berant, and M. Gardner, “Grammar-
based neural text-to-sql generation,” CoRR, 2019.

[26] K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin, “Sql-to-text generation
with graph-to-sequence model,” in EMNLP, 2018.

[27] Z. Dai and J. Callan, “Deeper text understanding for IR with contextual
neural language modeling,” in SIGIR, 2019.

[28] S. Han, X. Wang, M. Bendersky, and M. Najork, “Learning-to-rank with
BERT in tf-ranking,” CoRR, 2020.

[29] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in EMNLP, 2019.

[30] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
2019.

[31] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015.

[32] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
“Learning a neural semantic parser from user feedback,” in ACL, 2017.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[34] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, 2019.

[35] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” arXiv preprint, 2017.

[36] P. Pobrotyn and R. Bialobrzeski, “Neuralndcg: Direct optimisation of a
ranking metric via differentiable relaxation of sorting,” CoRR, 2021.

[37] D. A. Hull, “Xerox TREC-8 question answering track report,” in TREC,
1999.

[38] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language
interfaces to databases - an introduction,” Natural Language Engineer-
ing, 1(1):29–81, 1995.

[39] A. Simitsis, G. Koutrika, and Y. E. Ioannidis, “Précis: from unstructured
keywords as queries to structured databases as answers,” PVLDB,
17(1):117–149, 2008.

[40] L. S. Zettlemoyer and M. Collins, “Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars,”
in Uncertainty in Artificial Intelligence, UAI, 2005.

[41] F. Li and H. V. Jagadish, “Constructing an interactive natural language
interface for relational databases,” PVLDB, 8(1):73–84, 2014.

[42] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R.
Mittal, and F. Özcan, “ATHENA: an ontology-driven system for natural
language querying over relational data stores,” PVLDB, 9(12):1209–
1220, 2016.

[43] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured queries from
natural language without reinforcement learning,” CoRR, 2017.

[44] T. Yu, C. Wu, X. V. Lin, B. Wang, Y. C. Tan, X. Yang, D. R. Radev,
R. Socher, and C. Xiong, “Grappa: Grammar-augmented pre-training for
table semantic parsing,” in ICLR, 2021.

[45] Y. E. Ioannidis, “From databases to natural language: The unusual
direction,” in NLDB, 2008.

[46] A. Simitsis and Y. E. Ioannidis, “Dbmss should talk back too,” in
Conference on Innovative Data Systems Research, CIDR, 2009.

[47] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in ACL, 2016.

[48] C. Shu, Y. Zhang, X. Dong, P. Shi, T. Yu, and R. Zhang, “Logic-
consistency text generation from semantic parses,” in ACL, 2021.

[49] A. Simitsis and G. Koutrika, “Comprehensible answers to précis
queries,” in CAiSE, 2006.

[50] A. Simitsis, G. Koutrika, Y. Alexandrakis, and Y. E. Ioannidis, “Synthe-
sizing structured text from logical database subsets,” in EDBT, 2008.

[51] L. Yang, Q. Ai, D. Spina, R. Chen, L. Pang, W. B. Croft, J. Guo,
and F. Scholer, “Beyond factoid QA: effective methods for non-factoid
answer sentence retrieval,” in ECIR, 2016.

[52] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H. Shum, “An empirical study
on learning to rank of tweets,” in COLING, 2010.

[53] T. Liu, Learning to Rank for Information Retrieval. Springer, 2011.
[54] X. Sun, H. Tang, F. Zhang, Y. Cui, B. Jin, and Z. Wang, “TABLE: A

task-adaptive bert-based listwise ranking model for document retrieval,”
in CIKM, 2020.

122

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 10:48:24 UTC from IEEE Xplore. Restrictions apply.

