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Abstract—GPUs have demonstrated the capability of significantly improving the performance of network functions (NF). In an Network

Function Virtualization (NFV) system, multiple NFs form a service chain to provide services. However, NFs in state-of-the-art GPU-

accelerated NFV systems still utilize a GPU independently where each NF needs to transfer data to the GPU memory for acceleration.

As a result, a packet might be transferred into the GPU memory by each NF when it passes through the service chain. We find these

expensive and repetitive transfers are the main factor that limits the overall performance of an NFV system. We propose Gaviss, a

GPU-accelerated NFV system with effective data sharing. By sharing packets in the GPU memory among network functions, a packet

needs to be transferred to the GPU only once, eliminating the performance overhead caused by repetitive transfers. Extensive

experimental results show that Gaviss can improve the overall throughput by 2.6-13.2� and reduce the latency by up to 37.9%, when

compared with state-of-the-art approaches. Moreover, Gaviss also demonstrates up to 2.5� higher price-performance ratio than CPU-

based implementations, making GPUs competitive for building NFV systems.

Index Terms—Communications technology, computer networks, network function virtualization

Ç

1 INTRODUCTION

NETWORK Function Virtualization (NFV) is a network
architecture concept that virtualizes network functions

(NFs) to provide agile implementation, deployment and
management. With the fast growing of network bandwidth,
the performance of NFV systems is a critical metric for their
supporting of Internet services. Thus, how to enhance the
performance of NFV systems is a hot spot in the field of net-
worked system implementations.

Current approaches for building high-performance NFV
systems can be categorized into two classes. Some studies [1],
[2] discard virtualization since the data movement between
virtual machines incurs non-trivial overheads. While the
approaches can improve system performance, the flexibility
offered by virtualization is compromised. Another class of
research advocates the use of heterogeneous general-pur-
pose hardware to improve the performance of NFV systems,
such as programmable NICs [3] andGPUs [4], [5].

GPUs are promising accelerators for building NFV systems
for their massive number of cores and high memory band-
width. It has been demonstrated that compute-intensive algo-
rithms widely employed in network applications can benefit
from the parallel computation capacity of GPUs [6], [7], [8], [9].
To utilize a GPU for acceleration, packets are batched in the
host memory and transferred into the GPU memory for

processing. In an NFV system, several NFs generally form a
service chain to provide customized services, where the output
of anNF can be the input of the following one. Therefore, differ-
entwith a singleGPU-accelerated network function, theGPU is
accessed bymultipleNFs concurrently in anNFV system.

G-NET [4] is one of the state-of-the-art GPU-based NFV
systems, which improves its efficiency by enabling multiple
NFs to spatially share the GPU computing resources. In G-
NET, each NF in a service chain works independently and
transfers packets from the host memory to the GPU memory
to offload tasks. Thisway of utilizingGPUs in anNFV system,
however, has inherent drawbacks. With a service chain con-
sisting of n NFs running on one node, a packet may be trans-
ferred into the GPU memory for n times by each NF in the
chain. PCIe data transfer is known to incur high over-
heads [10], [11], [12] and may result in lower system through-
put than CPU-based NFs [13], [14]. Even worse, we find that
the repetitive transfers in an NFV system would further exert
a huge impact on the performance from two aspects. 1) Data
transfer conflicts: Since there is only one DMA engine in each
direction in a commodity GPU, there would be conflictswhen
multiple NFs are transferring data between the host memory
and the GPU memory. Consequently, other data transfers
will be postponed when the PCIe bus is occupied, degrading
the overall throughput. Performance would be further
degraded when NFs need to transfer packets back to the host
memory, such as an IPsec gateway that performs encryption
in the GPU. 2) Bandwidth bottleneck: The repetitive data trans-
fers may limit the maximum system performance to only 1=n
of the PCIe bandwidth. We have measured the maximum
PCIe transfer speed to the GPU on our server as 101.3Gbps.
As a result, the theoretical maximum overall throughput is
limited to 25.3Gbps when four NFs in a service chain need to
transfer entire packets to the GPU. Besides the overhead of
PCIe data transfers, our experimental evaluations also show
that current systems cannot fully exploit the computation
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power of GPU due to the imbalanced CPU-GPU pipeline.
Overall, the design of current NFV systems constrains the
power of GPUs and leads to sub-optimal performance with
low resource utilization.

In this paper, we propose Gaviss, an NFV system that
adopts data sharing to address the issue of the repetitive
data transfers on the CPU-GPU heterogeneous architecture.
In Gaviss, packets in the GPU memory are shared among
NFs to avoid the repetitive PCIe data transfers and mitigate
the potential conflicts. Different with other systems, an NFV
system should be able to build various service chains and
incorporate NFs with different implementations. The main
challenges to reduce data transfers in Gaviss are 1) dynami-
cally generating the synchronization plan for each service
chain; 2) minimizing the amount of synchronized data
according to the NF implementations and the service chain.
By proposing an automatic data synchronization scheme
between the host memory and the GPU memory, Gaviss
exploits domain knowledge and hints from NFs to enable
fine-grained data synchronization. Gaviss derives the opti-
mal synchronization plan which dramatically reduces the
amount of transferred data for a service chain. With the pro-
posed set of techniques, Gaviss unleashes the power of
GPUs to significantly improve the overall performance by
data sharing. As far as we know, Gaviss is the first NFV sys-
tem that effectively shares GPU memory among NFs. The
main contributions of this paper are as follows.

� We proposed an adaptive GPU data sharing mecha-
nism to reduce repetitive PCIe data transfers and
potential conflicts for GPU-accelerated NFV service
chains.

� We proposed a fine-grained data synchronization
plan generation scheme which utilizes domain
knowledge and read/write hints from NFs to mini-
mize synchronization costs.

� We designed and implemented Gaviss, a high-perfor-
mance GPU-accelerated NFV system prototype with
effective and efficient data sharing and synchronization.

Through extensive evaluations, we show that Gaviss is
capable of enhancing the overall throughput by 2.6–13.2�
and reducing the latency by up to 37.9%, for service chains
with complex functionalities. Moreover, Gaviss shows up to
2.5� higher price-performance ratio than CPU-based NFV
implementations.

2 BACKGROUND AND MOTIVATION

2.1 Utilizing GPUs in NFV Systems

Network functions are the essential building blocks in the
network infrastructure. Typical NFs include firewall, net-
work intrusion detection system (NIDS), IPsec gateway and
router. In a production system, multiple NFs are typically
formed into a service chain to deliver customized network
functionalities. Recently, several NFV systems [1], [2], [15],
[16], [17] have been proposed to build NF service chains on
commodity CPUs. The systems have different designs in
terms of virtualization and resource sharing. To improve
performance on CPUs, some works [1], [2] reduce data
movement overheads by multiplexing the packet processing
pipeline of a service chain, i.e. executing multiple network

functions on the same core to exploit the locality of packet
data. These approaches discard the benefits of virtualiza-
tion, including independent NF development, flexible
deployment and migration.

Another class of research focuses on utilizing general-
purpose commodity accelerators like GPUs to improve the
performance of NFV systems. With high-bandwidth device
memory and massive execution cores, GPUs show great
potential in accelerating data-intensive and compute-inten-
sive tasks in NFs, such as pattern matching in NIDS [6], [7],
encryption/decryption [8] and packet switching [9]. A CPU
and a GPU generally form a pipeline for cooperative packet
processing, where operations like packet switching and net-
work stack processing are performed by CPU, while com-
pute-intensive operations like encryption and pattern
matching are offloaded to GPU. For GPU processing, packet
data should be transferred from host memory to GPU
device memory via PCIe. Then the processed results are
transferred back to the host memory for further actions.

G-NET [4] is the state-of-the-art GPU-accelerated NFV
system that addresses the GPU underutilization and perfor-
mance issues caused by temporal GPU sharing. By exploit-
ing concurrent kernel execution (CKE) in modern GPUs, G-
NET enables multiple NFs to utilize a GPU with spatial
sharing, i.e., kernels from different NFs can run on a GPU
simultaneously. There are three major components in the
hypervisor of G-NET. Manager acts as the proxy for GPU
virtualization, which creates a common GPU execution con-
text for all NFs to utilize the CKE feature. Manager receives
kernel execution and data transfer requests from NFs and
performs the corresponding operations within the context.
Scheduler monitors and optimizes the overall performance
of a service chain by dynamically allocating demanded
GPU resources for each NF. Then Scheduler sends messages
to Manager to specify resource allocation parameters such
as the thread blocks in kernel execution. Switch performs
packet I/O with NIC and forwards packets among NFs. G-
NET significantly enhances system performance by sharing
GPU compute resources.

2.2 Inefficiencies in State-of-the-Art GPU-
Accelerated NFV Systems

After quantitative analysis of state-of-the-art GPU-acceler-
ated NFV system, we find that the current way of using
GPUs has following inherent drawbacks, which severely
constrains the GPU power.

Repetitive PCIe data transfers cause conflicts and limit
overall performance. GPU-accelerated NFs transfer packets
to the GPU device memory for kernel processing, and pack-
ets should be transferred back if they are modified by the
kernel. For instance, an IPsec gateway not only needs to
transfer data into the GPU memory for encryption/decryp-
tion, but also requires the encrypted/decrypted packets
being transferred back into the host memory. As a result,
when several NFs co-run on one physical node, the number
of PCIe data transfer operations grows linearly with the
number of NFs.

PCIe data transfer is the main factor that affects the per-
formance of GPU-accelerated NFs, which will compromise
the advantage of GPU over CPU [13]. Specifically, a well-
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optimized CPU implementation with G-Opt [14] may easily
outperform a GPU-accelerated NF with PCIe data transfers.
G-Opt is an optimization framework for automatically hid-
ing DRAM latency for data structure lookup algorithms
with prefetching. Our experiments also prove it, where the
data transfer time of four implemented NFs, i.e., router, fire-
wall, IPsec gateway and NIDS, takes 89.0%, 27.3%, 46.7%,
28.7% of the overall GPU execution time, respectively. In an
NFV system with multiple NFs, a packet would be trans-
ferred to the GPU memory by each NF. We find that the
repetitive data transfers are unnecessary and would
severely impact the overall performance of an NFV system
for two main aspects.

1) PCIe transfer conflict postpones data transfer and ker-
nel execution of other NFs. As demonstrated in Fig. 1, since
there are only one Host-to-Device (HtoD) and one Device-
to-Host (DtoH) DMA engine in a commodity GPU, a data
transfer request would be queued and executed sequen-
tially if the demanded DMA engine is occupied by another
NF [4]. Furthermore, the execution of subsequent kernels
would also be postponed. The impact to the overall perfor-
mance increases with more NFs. Fig. 2 shows the adverse
performance impact of data transfer conflict on the HtoD
data transfer performance. We evaluate three service chains
with different lengths, which are composed of following
four NFs: firewall (F), NIDS (N), router (R) and IPsec gate-
way (I). In the figure, R-I, for instance, denotes a service
chain with a router and an IPsec gateway. We measure the
HtoD data transfer time of the router in the three service
chains. As shown in the figure, the HtoD time of the router
increases with longer service chains, which implies more
intense PCIe conflicts. For the service chain with four NFs,
the HtoD transfer time is 3.2� longer than the case when
the GPU is exclusively accessed by the router. This demon-
strates that PCIe conflicts can cause severe performance
degradations to an NFV system, especially with a long ser-
vice chain.

2) PCIe data transfer bandwidth limits the performance
of an NFV system. Previous studies only focus on accelerat-
ing NFs with exclusive accessing to a GPU. For an NFV sys-
tem running at T Gbps with n GPU-accelerated NFs, the
PCIe is required to deliver T � n Gbps HtoD transfer perfor-
mance. Moreover, another T � n Gbps DtoH transfer perfor-
mance is demanded if the processed packets need to be
transferred back. We have measured the PCIe data transfer
performance of an NVIDIA Titan X (Pascal) GPU on PCI
Express 3.0 � 16, which achieves 101.3 Gbps HtoD and 95.7
Gbps DtoH data transfer throughputs. It limits the upper
bound of the system theoretical throughput to only 101:3=n

Gbps if n NFs require transferring entire packets to the
GPU. For instance, with four NFs, the maximum through-
put of the system is limited to be only 25.3 Gbps. The lim-
ited data transfer bandwidth would also result in low GPU
utilization.

Overall, the repetitive PCIe data transfers in existing
GPU-accelerated NFV systems severely degrade the perfor-
mance and block its adoption in production systems.

3 GAVISS OVERVIEW

Our goal is to fully exploit the GPU power to enhance the
performance of GPU-accelerated NFV systems. In this sec-
tion, we introduce our main approaches and make an over-
view of our system architecture.

3.1 Main Approach

Wemake a key observation that the main overhead that hin-
ders the overall NFV system performance comes from the
repetitive PCIe data transfers. Based on the observation, we
propose Gaviss, a GPU-accelerated NFV system that enhan-
ces the overall performance by effective data sharing among
NFs in a service chain. NetVM [17] and NetBricks [2] have
demonstrated the benefits of zero-copy approaches. How-
ever, they do not need to consider any sycnrhonization costs
and adaptivity for different service chains, because all NFs
access shared data in the host memory. Instead, the data
sharing and synchronization in Gaviss is adaptive and flexi-
ble for minimizing the data transfer overhead for various
service chain compositions and NF implementations. In
Gaviss, we employ the zero-copy principle to manage the
life cycle of a packet, where each packet can be transferred
into the GPU for only once. GPU kernels of subsequent NFs
directly access packets in the GPU memory, avoiding trans-
ferring packets in and out repeatedly. With an automatic
data synchronization scheme, NFs are allowed to access the
latest packet in both the CPU memory and the GPU mem-
ory. Developers are provided with an API to build NFs
with no knowledge to the underlying system implementa-
tion details.

To flexibly derive the optimal data synchronization plan
for each service chain, Gaviss proposes a dynamic fine-
grained data synchronization scheme in GPU memory shar-
ing. The way of synchronization is special for reducing data
transfer overheads because it exploits NFV domain knowl-
edge and utilizes application layer hints. The dynamic data
synchronization scheme takes hints from NFs to derive the
optimal synchronization plan for a service chain. With fine-
grained hints on each packet field, such as source IP address
in IP header, Gaviss only transfers modified fields instead of
synchronizing entire packets. This avoids unnecessary

Fig. 1. Data transfer conflicts postpone kernel executions.

Fig. 2. Latency penalty to HtoD data transfers of a router by PCIe
conflicts.
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synchronizations and significantly saves the amount of
transferred data. Moreover, by knowing the read and write
behaviors of each NF in the service chain, Gaviss further
avoids transferring modified packet fields that will not be
read by the following NF. The scheme fully exploits poten-
tial opportunities in an NFV system to reduce both the num-
ber of data transfers and the amount of transferred data.

3.2 System Architecture

Fig. 3 shows the system architecture of Gaviss. Gaviss
adopts the state-of-the-art GPU virtualization techniques
including spatial GPU sharing and API remoting. Different
from previous works, the overall architecture of Gaviss is
designed and optimized for effective data sharing. There
are three major functional components in the hypervisor
layer: Buffer Manager, Execution Proxy, and Scheduler. Buffer
Manager manages the shared GPU memory space and con-
trols the data transfer between the host memory and the
GPU memory. Execution Proxy is in charge of GPU virtuali-
zation, which creates a common GPU execution context for
all NFs so that their kernels can share the GPU memory
space and execute simultaneously. It receives GPU execu-
tion requests from NFs or Buffer Manager, and then exe-
cutes the corresponding commands. Scheduler monitors the
performance of NFs, allocates GPU resources dynamically.

Gaviss adopts a holistic approach to apply the zero-copy
design principle in both the GPU memory and the host
memory. As shown in Fig. 3, a packet buffer in the GPU
memory is shared among NFs, allowing packets in the
buffer to be accessed and processed by different NF kernels.
In the host memory, there is a shared packet buffer and a
flow table for fast data accessing. Packets received from the
NIC are stored in the host packet buffer, and the parsed
state information is stored in the flow table. With a shared
network stack that performs common packet processing
procedures like parsing and flow state management, NFs
can access the packet fields and shared states directly. For
flexible development, NFs are not responsible for transfer-
ring packets and managing host and GPU memory. Instead,
Buffer Manager batches received packets and transfers
them into the GPU memory. With hints passed by NFs,
Buffer Manager employs a scheme to automatically syn-
chronize packet data between the host and the GPU packet
buffer, so that both the CPU stage and the GPU stage of an

NF can access the latest packets if needed. By effectively
sharing packets in a service chain, Gaviss avoids extra PCIe
data transfers to unleash the overall performance, and NFs
are provided with a consistent view of packets in both CPU
and GPU.

4 SYSTEM DESIGN AND IMPLEMENTATION

The basic idea of GPU memory sharing is to manage a
shared packet buffer for incoming packets in the GPU mem-
ory and allow GPU kernels from different NFs to directly
perform packet processing operations on the packets. In this
section, we demonstrate system design and implementation
of Gaviss.

4.1 Shared GPU Ring Buffer

Sharing packets in the GPU memory requires the system to
perform memory management on GPU packet buffers. In
host memory management solutions like DPDK [18], packet
buffers are managed independently, where a buffer is
directly freed or reclaimed once the packet is dropped by an
NF. However, such a fine-grained memory management
scheme should not be simply adopted by GPU-accelerated
systems. As the PCIe data transfer throughput of small
memory regions can be several orders of magnitude lower
than that of large continuous ones, packets are batched and
transferred into a large buffer in the GPU memory. The rec-
lamation of the buffer requires the system to confirm that all
the packets in it will no longer be used by any NF. For a ser-
vice chain that contains branches or has NFs dropping
packets, the overhead of maintaining the status of all pack-
ets is high, which would significantly impact the overall
performance.

In Gaviss, we design Shared Packet Buffer (SPB), a first-in-
first-out ring buffer in the GPU memory shared by all NFs
in a service chain. As shown in Fig. 4, SPB is a pre-allocated
large continuous memory region, which is initialized at sys-
tem startup. Unlike previous ring buffers, SPB only main-
tains one pointer called gTail, which points to the tail of the
queue. Incoming packets are directly transferred to the
memory space referenced by gTail, overwriting obsolete
packets in the buffer circularly. We use a calculated buffer
size to guarantee that the overwritten packets have already
been processed by all NFs, so that their memory space can
be reused safely. In general, for a service chain with k
branches, all NFs in the service chain share the same SPB.
With the designed maximum system throughput as T and

Fig. 3. Gaviss architecture.

Fig. 4. Shared packet buffer in GPU memory. Show case for a 2-NF ser-
vice chain.
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the allowed maximum latency of the ith branch as Li, the
size of SPB is calculated as

S ¼ T �maxfLi; i ¼ 1; 2; . . .; kg � a (1)

For instance, with T ¼ 100 Gbps and Lmax ¼ 10 ms, the size
of SPB is calculated as 200 MB with a set to 1.6. Since com-
modity GPUs are generally equipped with more than 4GB
device memory, the scheme can easily scale up in an NFV
system with even higher throughput.

4.2 GPU Buffer Management

In Gaviss, we develop Buffer Manager, a functional compo-
nent in the hypervisor that is in charge of data transfer and
GPU buffer management. Buffer Manager batches packets
received from NICs and transfers them to the GPU memory
referenced by gTail. Packets stay in the GPU memory and
are transferred back to the host memory after NFs in a ser-
vice chain have performed corresponding operations. The
performance of packet data transfer heavily depends on the
batch size, where a larger batch size lead a much higher
throughput but also suffers higher latency. At run time,
Buffer Manager dynamically set the batch size to ensure the
input PCIe data transfer can meet the performance require-
ment while minimizing the latency.

Because NFs may drop packets based on their policies
(such as firewall and NIDS), packets to be processed by a
GPU kernel may not be stored in a continuous memory
region. To support random accesses in the packet buffer, a
pointer to the packet’s location in the GPU memory called
gpointer is used. gpointers are generated by Buffer Manager
when the packet HtoD transfer is performed, and both the
gpointer and the cpointer (pointer to the same packet in the
host memory) of a packet are recorded in its packet descrip-
tor. Pointers to packet descriptors are passed among NFs,
while each NF passes an array of gpointers of designated
packets to GPU kernels for data processing.

After being processed by all NF kernels, packets should
be transferred back into the host memory and sent via a
NIC. As some packets may be dropped by NFs in the ser-
vice chain, the continuous SPB can be split into several small
memory regions. If we selectively transfer packets which
are not dropped, the memory copy batch size can be much
smaller, but will also result in low PCIe transfer perfor-
mance. In Gaviss, Buffer Manager transfers continuous
memory regions back to the host memory, including the
dropped packets. With the packet descriptors passed from
the last NF of the service chain, Buffer Manager only pro-
cesses and forwards valid packets, where dropped packets
are skipped. This scheme delivers a robust and predictable
performance.

4.3 CPU-GPU Data Synchronization

In a GPU-accelerated NFV system, the CPU and the GPU
may access and process packets in turn by multiple NFs in a
service chain. The modification made to packets in the
memory of one processor should be synchronized into that
of the other processor to ensure the correctness of the fol-
lowing packet processing procedures. For instance, packets
decrypted by an IPsec gateway have to be transferred into

the host memory if the following NF needs to access packets
in its CPU processing stage.

To free NF developers from handling such complex data
synchronizations and minimize the overhead, Gaviss pro-
vides a dynamic CPU-GPU data synchronization scheme by
which NFs always see the latest and consistent packet data in
both the host memory and the GPU memory. Our provided
API allows NFs to pass their read-write hints to notify Gaviss
about their CPU andGPU behaviors in packet processing. For
instance, gpu_write denotes that the GPU kernels of an NF
would modify packets. Simply applying the hints on the
entire packet, however, would result in unnecessary data syn-
chronizations. For instance, if an NF writes packet payloads
in the GPU while the following NFs only read the packet
headers in the CPU, packets do not need to be synchronized.
In Gaviss, four 32-bit vectors are used to represent the CPU/
GPU behavior on the fields in the packet header and the
packet payload, i.e., CPU read (CR), CPU write (CW), GPU
read (GR) andGPUwrite (GW). Each bit in a vector represents
the CPU/GPU behavior on a field of the packet header or the
payload. For instance, setting the 5th bit of GW to 1 means
that this NF would modify the destination IP address in the
GPU kernel.

Algorithm 1. Data Synchronization Plan Generation

1: n Number of NFs in the service chain
2: RVi  ðGRi � 32Þ j CRi

3: WVi  ðCWi � 32Þ j GWi

4: LMASK  0xFFFFFFFF
5: HMASK  LMASK � 32
6: plan1  0
7: for i ¼ 1! n do
8: plan1  plan1 j ðRVi&HMASKÞ j ðWVi � 32Þ
9: end for
10: dirty WV1.
11: for i ¼ 2! n do
12: plani  dirty&RVi

13: dirty ðdirty� planiÞ jWVi

14: end for
15: lastPlan dirty&LMASK
16: return plan; lastPlan

Based on the read and write vectors of NFs in the service
chain, Buffer Manager performs Algorithm 1 to derive the
places where synchronizations should be performed. With
the four vectors passed through APIs, the system derives a
64-bit read vector (RVi) and a 64-bit write vector (WVi) for
NF i (lines 2-3). plani denotes the data synchronization plan
for NFi, whose higher and lower 32 bits indicate the packet
fields that are required to be synchronized from host to
device and device to host, respectively. The algorithm first
identifies the packet fields that would be accessed by the
GPU in NFs of a service chain (lines 7-9). The dirty vector is
initialized to WV1 to denote the modified fields by NF1

(line 10). dirty denotes the packet fields that are modified
but have not been synchronized in the host memory and the
GPU memory. For the i th NF, plani is calculated as
dirty&RVi, which gets the modified packet fields that will
be accessed by NFi but are not synchronized yet (line 12).
The dirty vector is updated at line 13, which marks the mod-
ified fields and resets the bits of synchronized fields as 0.
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Finally, Buffer Manager identifies the fields that should be
transferred into the host memory for forwarding, which are
recorded in the lower 32 bits of lastPlan(line 15). The
scheme transfers data on a per-field basis to reduce the
amount of transferred data. By transferring the dirty fields
of multiple packets in a batch, which is a common practice
in GPU acceleration, the PCIe transfer can still achieve good
performance. By performing synchronizations according to
the plans, Gaviss enables flexible NF implementations and
avoids unnecessary data transfers.

4.4 System Framework

When repetitive PCIe data transfers are avoided with data
sharing, the performance of the GPU pipeline stage is further
enhanced. As the overhead of per-packet processing and data
movement is non-trivial [19], the CPU stage can be unable to
provide enough tasks to fully exploit GPUs. Therefore, after
Gaviss enhances GPUperformancewithmemory sharing, the
CPU performance should also be improved to balance the
pipeline. Gaviss alleviates the CPU overhead by 1) avoiding
repetitive packet parsing amongNFs, and 2) minimizing data
copying overheads in the hostmemory.

In Gaviss, we implement a shared stack processing mod-
ule whose data is shared across NFs in a service chain. The
processing module parses incoming packets, performs IP
defragmentation, manages the flow states and providing
entries for per-flow NF state storage in shared host memory.
Removing repetitive and redundant packet processing to
improve the performance of an NFV system have proven to
be effective previous studies [15], [20]. In the shared stack,
information encoded in the packet descriptor includes L3
and L4 header pointers with which protocol fields can be
accessed by adding an offset. There is a pointer to the cur-
rent flow in the flow table. Besides common flow states,
maintaining NF states is demanded for NFs such as automa-
ton states in an NIDS and AES keys in an IPsec gateway. In
the flow table, a field is reserved for each NF in a flow table
entry. The size of the field is 64 bits in our implementation,
which is sufficient for storing state in most NFs, and more
memory can be allocated to store if needed.

Besides shared packet information, the framework applies
zero-copy principle through its design. When launching a
GPU kernel, buffers that store packets and input parameters
are shared between NFs and the hypervisor. Execution Proxy
in the hypervisor directly transfers the buffers to the GPU
memory, avoiding extra memory copies in the host memory.
Moreover, with Buffer Manager managing packet lifecycle in
the host memory, only packet pointers are passed between
NFs. Gaviss initiates an input queue for each NF, where an
NF directly inserts packet pointers into the queue of the next
NF with provided APIs. For the last NF on the node, the
framework automatically sends packets via NICs. In sum-
mary, the framework of Gaviss is designed to balance the
CPU-GPU pipeline, thereby effectively utilizing the perfor-
mance advantage brought byGPUdata sharing.

5 EXPERIMENTS

5.1 Experimental Setup

Platform.We evaluate Gaviss on a server with an Intel Xeon
E5-2695 v4 CPU (2.10 GHz, 18 physical cores) and 128 GB

main memory (DDR4, 2400MT/s, 16GB x8). The server is
equipped with a dual-port Intel XL710 40GbE NIC for net-
work I/O. An NVIDIA Titan X (Pascal) GPU with 28
streaming multiprocessors (3584 CUDA cores in total) is
installed. The server runs on Ubuntu 16.04 with Linux ker-
nel 4.15.0-43-generic. Docker 18.09.3 is used as our virtuali-
zation platform, with each NF running as a Docker
instance. The GPU kernels of NFs are compiled and exe-
cuted with NVIDIA CUDA Toolkit 9.2, and the Gaviss infra-
structure and the NF binaries are compiled with gcc 7.3.0.

System Implementation. We implement Gaviss based on
OpenNetVM [21] with Intel DPDK 18.02 for userspace
packet I/O and queue operations. The implementation of
the shared stack processing module is based on Libnids
1.24 [22]. The hypervisor layer of Gaviss is deployed as a
system process, with its major components running as sep-
arate threads, including Buffer Manager, Execution Proxy
and Scheduler. Each NF takes 2 threads to execute, one
for CPU packet processing stages and the other for GPU
kernel function execution requests submission. Each th-
read is bound to a unique CPU core with sched_setaffinity,
which avoids context switching initiated by the scheduling
mechanism in the operating system. NFs communicate
with the Gaviss infrastructure in the hypervisor layer with
shared memory provided by DPDK’s multi-process
support.

NFs and Service Chains. We implement four NFs with
GPU acceleration for our experimental evaluation: (a) Router
is an IPv4 router that performs DIR-24-8-BASIC lookup
algorithm [23] in packet routing; (b) Firewall performs
packet filtering with bit vector linear search on the 5-tuple
of packets [24]; (c) IPsec gateway performs packet encryption
with HMAC-SHA1 and AES-128 (CTR mode) algorithms;
(d) NIDS performs deep packet inspection with the Aho-
Corasick algorithm [25] consisting of 147 rules. Composed
by the NFs, four service chains are used in the evaluation of
Gaviss. C1: NIDS - IPsec gateway, C2: NIDS - Router - IPsec
gateway, C3: Firewall - NIDS - IPsec gateway, C4: Firewall -
NIDS - Router - IPsec gateway.

Test Traffic. We implement a traffic generator based on
DPDK, which runs on a separate server equipped with a
dual-port Intel XL710 40 GbE NIC. The two servers are con-
nected with a 40 Gbps optical fiber. The packet generator
consistently generates TCP packets with fixed pattern pay-
load and different destination IP addresses to simulate
packets from multiple TCP flows. The input traffic consists
of 10,000 TCP flows by default unless specified.

5.2 System Throughput

In this subsection, we show the throughput that Gaviss
achieves on our evaluation platform. GPU processing
requires batching to achieve high throughput, but a larger
batch size also results in higher latency in the packet proc-
essing pipeline. In the experiments, we set 1 ms (ms) as the
latency upper bound for each NF. According to the input
network speed and the latency requirements, Scheduler
would allocate GPU resources for each NF to meet the
requirements. The method of calculating the demanded
GPU resource is the same as that in G-NET [4], which uses
the regression method to approximate the computational
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resource needed for each NF to achieve maximum perfor-
mance within a certain latency bound.

Fig. 5 shows the system throughput of Gaviss on the four
service chains with different packet sizes. As shown in the
figure, Gaviss achieves up to 33.8 Gbps throughput on the
service chain C1, which consists of two network functions,
and it achieves up to 23.5 Gbps throughput on the service
chain C4. Since the GPU kernels used in our experiment are
not based on state-of-the-art GPU-optimized algorithms [6],
[8], [9], we believe that the throughput of Gaviss can be fur-
ther unleashed with highly optimized GPU implem-
entations.

As shown in Fig. 5, the throughput of a service chain
increases with the packet size. The main reason is that, for
the same network speed, more packets need to be processed
when packet size is small. As a result, higher per-packet
processing overhead is introduced into the CPU processing
stage, including packet parsing, protocol stack processing,
state retrieval, and enqueue/dequeue operations. In the
experiments, the CPU becomes the bottleneck that limits the
overall performance for workloads with small packet sizes.
With the CPU workload alleviated with larger packet sizes,
system throughput increases accordingly.

Fig. 6 shows the throughput improvements of Gaviss over a
baseline system. The baseline system for comparison works in
the same way as G-NET, which does not share the GPUmem-
ory and the protocol stack across NFs. Therefore, NFs in the
baseline system have to perform PCIe data transfer and proto-
col stack processing independently. The only difference is that
the baseline system does not have a software switch, and the
NFs pass packet descriptor pointers directly to the next NF,
which is the same with Gaviss. As shown in the figure, Gaviss
achieves 2.6–13.2� higher throughput comparedwith the base-
line system. Specifically, Gaviss achieves 10.3–13.2� higher
throughputwhen the packet size is smaller than or equal to 256
bytes. The reason is that the per-packet stack processing is the
major overhead of workloads with small packet sizes, espe-
cially in the baseline system since it performs the operations
repetitively in each NF. Thus, the workload with small packets
can benefit more from the optimized CPU-GPU framework
with alleviatedCPUprocessing overhead.

5.3 Comparison With CPU-Based NFV Systems

CPU-Based System Implementation. To investigate the effi-
ciency of CPUs and GPUs in building NFV systems, we
build a CPU-based NFV system and compare its perfor-
mance with Gaviss. The CPU-based system is based on

OpenNetVM [21], an open-source NFV solution with the
support for building service chains. With OpenNetVM, we
built the four network functions optimized with G-Opt [14].
G-Opt is a source-to-source transformation framework that
hides DRAM latency for data structure lookup operations
with batch prefetching. In order to adopt G-Opt in NF
implementations, we made modifications to the NF APIs of
OpenNetVM, allowing a user-implemented network func-
tion to get access to a batch of input packets in the callback
function, instead of one at a time. By applying G-Opt, net-
work functions like NIDS and Firewall achieve 1-2�
throughput improvements for variant packet sizes. For IPsec
gateway, we use Intel AES-NI [26] hardware instructions to
accelerate AES encryption. Compared with the open source
implementation in the OpenNetVM repository, our imple-
mentation with AES-NI achieves around 10� higher
throughput. We also add a network stack in NIDS and Fire-
wall NFs for stateful packet processing, making the CPU-
based system have similar workloads with Gaviss.

Single Core Performance. Running on the same platform
with Gaviss, the single core performance of our CPU-based
NFs is listed in Table 1. As shown, the NF throughput
increaseswith larger packet sizes, due to the lower per-packet
processing overheads. The throughputs of NIDS and IPsec
gateway are less sensitive to packet sizes comparedwith other
NFs, because they scan packet payloads instead of only
accessing packet headers. IPsec gateway achieves the lowest
throughput among the four NFs. The compute-intensive
operations in IPsec gateway are AES-128-CTR encryption and
HMAC-SHA1 authentication digest generation. When the
packet size is 1024 bytes, AES-NI enhances encryption perfor-
mance from 0.3 Gbps to 2.9 Gbps. As the performance of
SHA1 operation is 2.8 Gbps, the overall IPsec throughput is
halved to 1.4 Gbps. Studies have already demonstrated that
GPUs achieve much higher efficiency than CPUs for crypto-
graphic algorithms such as SHA-1 [8], [13].

Throughput Comparison. We evaluate the performance of
CPU-based NFV system with the four service chains. In the

Fig. 5. System throughput. Fig. 6. Throughput improvements of Gaviss compared with the baseline.

TABLE 1
The Single Core Performance of Our CPU-Based NFs (Gbps)

Packet Size 64B 128B 256B 512B 1024B 1518B

NIDS 3.8 4.9 5.5 5.9 6.1 7.2
IPsec 0.38 0.61 0.89 1.2 1.4 1.7
Router 6.5 13.0 26.0 38.2 39.1 39.7
Firewall 1.8 3.4 7.1 14.6 29.1 39.4
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experiments, we manually adjust the core allocations to NFs
to maximize the performance of the service chains. With
three cores allocated to RX, TX and performance monitor,
the rest 15 cores are shared by NFs. The throughput com-
parison of the CPU-based NFV and Gaviss is shown in
Fig. 7. Among the four service chains, Gaviss achieves 1.3-
2.8� higher throughput than the CPU-based system. The
performance of the CPU-based system is constrained by the
IPsec gateway, even when most computational resources
are allocated to it (9-13 cores in our experiments). Instead,
the IPsec gateway with GPU acceleration can reach up to
37.7Gbps with 1ms NF processing latency. This is also the
main reason that Gaviss achieves more significant through-
out improvements for service chains with less NFs. When
more NFs are added in the service chain, less than 4 cores
that are reclaimed from the IPsec gateway would be enough
for Router or Firewall to reach the performance require-
ment, while the performance of IPsec gateway would not be
severely influenced. For GPU-based implementations,
although spatial sharing is enabled in Gaviss, the API calls
and driver operations from NFs are still serialized and per-
formed in a queued manner [27], which overhead is non-
trivial. Our profiling results show that there is higher GPU
driver latency and more data transfer conflicts with more
kernels launched. As a result, for service chains with more
NFs, the advantage of Gaviss over CPU-based system
would be less notable.

Performance-Cost Ratio. As the two system setups are
based on different processors, we adopt the performance-
per-dollar metric to compare their efficiency. The release
price of the 18-core Intel Xeon E5-2695v4 CPU we use in the
evaluation is $2424, and the CPU-based system uses all
cores in the experiments. The release price of NVIDIA
TITAN X Pascal GPU is $1200, and we add it to the price of
CPU cores used in the experimental setup. The per-core
price of the CPU is calculated as the total price divided by
the number of cores. Fig. 8 compares the performance-per-
dollar of Gaviss and the CPU-based system. We can see
Gaviss surpasses the CPU-based system in terms of the

performance-per-dollar metric for almost all cases, with up
to 2.53� improvements. For C4 with 1518-byte packets, as
an exception, the performance-per-dollar is 5% lower than
that of the CPU-based system. Considering the 30%
throughput improvement in the case (as shown in Fig. 7d),
GPUs still demonstrate the notable advantages as process-
ors in NFV systems.

Overall, we keep an optimistic outlook for GPU-acceler-
ated NFV systems, for (1) GPUs are good at cryptographic
algorithms which are prevalent and important in server
workloads; (2) GPUs are still under fast development for
more cores and higher performance thus are easier to scale
for heavier loads. Our experiments show that GPUs are
cost-efficient for building NFV systems.

5.4 Reduced Data Transfer With GPU Memory
Sharing

To evaluate the performance improvements brought by the
GPU memory sharing technique, we disable the GPU mem-
ory sharing in Gaviss as the baseline for comparison, which
is called No-Memshare. In No-Memshare, GPU memory is
not shared, and explicit HtoD and DtoH packet data trans-
fers are required for GPU kernels of each NF. In the evalua-
tion, we set the same key performance parameters in both
the systems to get the same GPU kernel performance,
including the batch size and the number of utilized GPU
streaming multiprocessors.

To understand the performance improvement brought
by shared GPU memory, we measure the amount of data
transferred in No-Memshare and Gaviss in a fixed period of
time. For a fair comparison, the input network speed and
the throughput of the two systems are the same. Fig. 9 dem-
onstrates the normalized volume of HtoD transferred data
in the two systems. For the four service chains, the GPU
memory sharing reduces the amount of transferred data by
24.3–48.4% in the HtoD direction. Note that in No-Mem-
share, the amount of data transferred in the DtoH direction
is the same as Gaviss in our 4 service chain setups, but it
can also benefit from GPU memory sharing in certain ser-
vice chains. For instance, consider a service chain consisting
of two NFs that need to alter the packet data within the
GPU memory buffer. No-Memshare needs to perform DtoH
packet data transfer on each of these NFs. However, Gaviss
only needs to perform DtoH data transfer once because they
can make the modifications in place. With significantly less
amount of transferred data, the GPU memory sharing

Fig. 7. Performance comparison between CPU and GPU NFV systems
on four service chains.

Fig. 8. Comparison of performance-per-dollar of Gaviss and the CPU-
based system. Performance-per-dollar values are normalized to that of
CPU.

GUO ETAL.: GAVISS : BOOSTING THE PERFORMANCE OF GPU-ACCELERATED NFV SYSTEMS VIA DATA SHARING 4479

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 10,2024 at 11:12:27 UTC from IEEE Xplore.  Restrictions apply. 



technique has the potential to achieve higher throughput
when the PCIe bandwidth becomes a scarce resource in
high speed network processing.

As shown in Fig. 9, there is a larger reduction in the data
transfer size with larger packet size. The reason lies in the
data transfer of NF states, such as AES keys and HMAC
keys in IPsec gateway and DFA automaton states in NIDS.
With larger packet size, an NF handles less number of pack-
ets under the same throughput, which results in less
amount of NF states to be transferred in the HtoD direction.
Therefore, for workloads with large packet sizes, the rela-
tively reduced amounts of transferred data are larger than
those with small packet sizes.

Another influential factor for the performance improve-
ment of memory sharing comes from mitigating GPU data
transfer conflicts. As shown in Fig. 2, the average HtoD data
transfer latency of a router can be increased by 3.2� by PCIe
conflicts. Instead, with the memory sharing in Gaviss, the
HtoD transfer latency of the router in chain C4 is only 2.0�
higher, which demonstrates a huge alleviation of PCIe con-
flicts. Fig. 10 shows part of the profiled timeline of GPU
host-to-device data transfers in No-Memshare and Gaviss
under the same input traffic. In the figure, the horizontal
axis represents the timeline, and each bar represents an
HtoD data transfer, while the vertically stacked bars indi-
cate those data transfers are overlapped. �1 and �3 in
Fig. 10a indicate two individual data transfer operations in
No-memshare initiated by two different NFs: IPsec gateway
and NIDS. As they are initiated nearly at the same time,
there’s a data transfer conflict, where �4 can only be per-
formed after �3 completes, leading to higher latency. Differ-
ent from No-memshare, the HtoD data transfers in Gaviss
are initiated by Buffer Manager in Gaviss which is shown as
�5 in Fig. 10b. In Gaviss, there is less packet data that need
to be transmitted on the PCIe, thus the frequency of data
transmission conflicts will be lower. Even when there is
another NF-issued data transfer �7 overlaps with �5 , �6 is
roughly unaffected. The reason is that, with GPU memory
sharing, the data transferred by NFs are only NF states,

whose sizes are typically small. When the transferred data
size is below a certain threshold (64KB in some NVIDIA
GPUs), the data can be sent via the command stream, avoid-
ing the DMA copy engine being involved1. In this way, the
executions of NFs are unaffected even when its data trans-
fers overlap with that initiated by Buffer Manager.

5.5 Latency

Fig. 11 shows the Cumulative Distribution Function (CDF)
of the overall packet processing latency in Gaviss. As shown
in the figure, the 50th percentile latencies of the four service
chains are 2:9ms, 3:4ms, 3:6ms and 4:0ms, and the 95th per-
centile latencies of the four service chains are 3:4ms, 4:0ms,
4:1ms and 4:5ms. The system latency comes with a variation
of �0:5ms for all the four service chains. This variation
mainly comes from packet batching in the processing pipe-
line. As GPU acceleration requires batch processing to
achieve high performance, packets are batched before being
transferred to the GPU memory. In a batch, some packets
arrive earlier than others, which leads to latency variations.

Fig. 12 shows the latency reduction of Gaviss compared
with the baseline system which has no GPU memory shar-
ing and shared stack processing, given the same input
throughput. Gaviss dramatically reduces the 50th percentile
latency and the 95th percentile latency by up to 35.2% and
37.9%, respectively. By utilizing the GPU memory sharing
and shared stack processing, Gaviss eliminates the repeti-
tive packet processing and PCIe transfer overhead in the
service chains, which are the major sources of system
latency (described in Section 2.2). In addition, the alleviation
of PCIe conflicts also reduces the average waiting time of
data transfer. As shown in the figure, Gaviss has a larger
latency reduction on longer service chains. For instance,
14.9–19.8% and 35.2–37.9% of the 95th percentile latencies
are reduced for C1 and C4, respectively. This is because the
two more NFs in C4 almost double the PCIe data transfer
and per-packet processing overheads. Therefore, the data

Fig. 9. The reduction of GPU data transfer size.

Fig. 10. Alleviated PCIe data transfer conflicts in Gaviss. The horizontal
axis represents time and the blocks represents the copy operations.

Fig. 11. Gaviss latency of four service chains.

1. NVIDIA DevTalk Post:http://bit.ly/2kBHdQ6
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sharing techniques in Gaviss make it more efficient than the
state-of-the-art GPU-accelerated implementations, when
processing packets in long service chains.

5.6 Performance of Batched Data Transfer

In a service chain, packets may be dropped by certain NFs
such as Firewall and NIDS, where the dropped packets may
split the buffer into several parts. Because transferring a
small amount of data would result in low PCIe perfor-
mance, the Buffer Manager in Gaviss transfers all processed
packets and lets CPU decides which packets to drop. In
Fig. 13, we compare the efficiency of our scheme (all-trans-
fer) with selective-transfer, i.e., without transferring dropped
packets. We evaluate the performance in a 200KB buffer
with a workload of 1024-byte packets. As shown in the
figure, when dropped packets are uniformly or randomly
distributed in the buffer, the speed of selective-transfer can
be up to 15.3 times slower than the all-transfer scheme in
Gaviss (40% packets are dropped). It performs worst when
dropped packets are uniformly distributed, because the
buffer is divided into many small regions for data transfer-
ring. Only when the dropped packets gather as one cluster
in the buffer, the performance of selective-transfer can be
slightly higher than that of Gaviss. But this is the optimal
situation which is almost unlikely to happen. Overall, the
evaluation proves that the all-transfer scheme adopted by
Gaviss achieves almost ideal performance with only simple
implementations.

6 RELATED WORK AND DISCUSSION

6.1 Related Works

CPU-Based NFV Systems. NetVM [17] is a CPU-based NFV
system that utilizes data sharing in the host memory. In the
system, packets are shared among NFs and are transferred
by only passing pointers. As the followup work, Micro-
boxes [28] exposes publish/subscribe-based APIs to facili-
tate modular NF implementation. Data sharing can bring
significant performance advantages for NFV systems where
NFs in a service chain cooperatively process packets. Gaviss
is the first system that adopts data sharing in GPU memory.

In NFV systems, virtualization allows the deployment of
NFs from different vendors with different software depen-
dencies, independently management of resources, instanti-
ating and consolidating NF instances with ease, and at the
same time, providing isolation for the NF runtime [17].
While virtualization is the de-facto standard in the NFV
domain, it may have an impact on the system performance.
There is another class of work including OpenBox [15],

SNF [16], Metron [1] and Netbricks [2] that improves packet
processing performance by discarding virtualization.
Although these approaches can ensure NF execution isola-
tion by providing proper programming abstractions, other
benefits brought by virtualization are discarded.

GPU-Accelerated Network Function and NFV Systems.
Developing high performance NFs with GPUs has been
studied by a wide class of work, including router [9],
NIDS [6], NDN system [29], SSL reverse proxy [8] and net-
work monitoring [30]. G-NET [4] and Grus [5] are NFV sys-
tems that utilize GPUs to enhance system performance.
However, both of them face the inefficiencies described in
Section 2.2. FlowShader [31] concentrates on exploiting
GPUs for L7 flow processing in NFs. APUNet [13] addresses
the PCIe transfer overheads by utilizing APUs, where a
GPU is integrated on the same die with a CPU. The CPU
and the GPU share the same physical memory to eliminate
the data transfer overhead. This is a promising solution.
However, the performance of current APUs is still much
lower than that of discrete GPUs. Since discrete GPUs are
widely deployed in enterprise infrastructures, PCIe data
transfers are still required in utilizing GPUs for high perfor-
mance network processing.

A bunch of works study and optimize the performance of
network stacks for end hosts [32], [33], [34] and middle-
boxes [15], [20], [28], [35], [36]. The goal of adopting a shared
stack in Gaviss is to unleash the power of GPUs. There’re
research efforts like GASPP [34] and GPUnet [37] that
implement GPU-based protocol stacks, but they are targeted
for pure GPU-based network functions. Instead, Gaviss is
designed for enhancing NFV system performance on CPU-
GPU heterogeneous architectures, where the CPU is in
charge of stateful packet processing in the pipeline.

6.2 Processors for Implementing NFs

Previous studies have shown that both CPUs and GPUs are
good at building certain types of NFs [13], [14]. GPUs
always demonstrate higher performance for compute-inten-
sive algorithms such as RSA decryption, while CPUs, with
techniques including memory prefetching, perform better
for memory-intensive algorithms such as IPv4 forward-
ing [13]. Therefore, we believe the hybrid NFV system with
a mix of CPU-based NFs and GPU-based NFs has the poten-
tial of achieving higher performance. However, this pro-
poses new challenges because a CPU-based NF and a GPU-
based NF process packets in the host memory and the GPU
device memory, respectively. To allow CPU-GPU co-proc-
essing, it requires providing the latest copy of packets in the

Fig. 12. Latency improvements of Gaviss.
Fig. 13. Performance comparison of data transfer schemes.
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corresponding memory space to make an NF work. As a
result, a new bi-directional synchronization mechanism
needs to be designed to address the new challenge. We
leave it as a future work.

A Data Processing Unit (DPU) or a SmartNIC is a NIC
with integrated cores and memory to directly process
received packets. We find that current SmartNICs do not fit
for high performance network processing because the pro-
cessor in a SmartNIC is much weaker than commodity off-
the-shelf CPUs and GPUs. In our evaluation of a Mellanox
Bluefield-2 SmartNIC with 16 ARM cores, its performance
for running NFs is an order of magnitude slower than either
CPUs or GPUs. In our evaluation, the SmartNIC is incompe-
tent in building complex service chains for 1 Gbps+ net-
work, not mentioning the 10Gbps+ speed achieved in our
paper. Instead, a DPU or a SmartNIC fits for low latency
packet processing because packets do not need to be moved
to the host memory through the PCIe bus. In the future, for
DPUs with a custom instruction set and coupled hardware
acceleration, we believe the performance can be signifi-
cantly enhanced.

7 CONCLUSION

Having conducted thorough experiments and analyses, we
have identified the bottleneck of GPU-accelerated NFV sys-
tems, which is the PCIe conflict and overall performance
limitations imposed by repetitive PCIe data transfers. We
have made a strong case by designing and implementing
Gaviss for effectively sharing data in the GPU memory
among NFs to address the bottleneck. Our evaluation
results show that Gaviss achieves 5.0–13.2� higher through-
put while reducing the latency by up to 37.9%, compared
with state-of-the-art GPU-accelerated NFV system solu-
tions. Moreover, Gaviss achieves 1.1–2.5� higher perfor-
mance-per-cost than CPU-based NFV implementations on
service chains with computational intensive NFs.
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