
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025 4089

Genie: A Lightweight Serverless Infrastructure for
In-Memory Key-Value Caching With Fine-Grained

and Prompt Elasticity
Huijuan Xiao , Shixi Yang , Kai Zhang , Yinan Jing , Member, IEEE, Zhenying He ,

and X. Sean Wang , Senior Member, IEEE

Abstract—An increasing number of web applications require
cloud in-memory key-value stores to minimize latency and achieve
higher throughput. They generally have diverse characteristics
and constantly changing traffic volumes, which require different
computational and memory resources. A serverless in-memory
key-value store characterized by elastic resource allocation and
pay-as-you-go billing could satisfy the requirements of diverse and
dynamic workloads. However, we find current serverless IMKVs
fail to achieve fine-grained and prompt resource elasticity due to
the limitations of their infrastructures. This paper proposes Genie,
a lightweight serverless infrastructure for in-memory key-value
caching with fine-grained and immediate elasticity. In Genie, a
novel approach is adopted to enable dynamic and independent
resource allocation to multiple tenants. It processes all arrived
requests and estimates the vCPU consumption with a lightweight
machine-learning approach for fine-grained billing. Moreover, Ge-
nie estimates the working set and dynamically resizes the allocated
memory for hit ratio requirements. Evaluation results show that
CPU estimation could be achieved every 100 microseconds without
impacting system performance, and memory capacity could be ad-
justed by megabytes within seconds. The holistic design incurs 1%
-2% performance degradation compared to our baseline. More-
over, Genie achieves an average of 58.3% CPU and 49.9% memory
savings compared to AsparaDB for Memcache.

Index Terms—In-memory key-value store, fine-grained resource
elasticity, serverless infrastructure.

I. INTRODUCTION

W ITH the development of cloud computing, cloud in-
memory key-value stores (IMKVs) are widely used

to reduce latency and achieve high throughput for increasing
web applications [1], [2]. They require both memory and CPU
resources: memory for caching working sets of web applications,
and CPU for request processing. Conventional cloud IMKVs
are typically deployed on virtual machines with coarse-grained
and tightly coupled CPU and memory resources [3], [4], [5]. A
more expensive instance is generally allocated with more vCPUs
and larger memory space. For instance, a r5.large node in

Received 19 April 2024; revised 16 March 2025; accepted 22 March 2025.
Date of publication 15 May 2025; date of current version 28 May 2025. This
work was supported in part by the Project of Key R&D Program of Shandong
Province under Grant 2024CXGC010113. Recommended for acceptance by S.
Salihoglu.

The authors are with the School of Computer Science, Fudan University,
Shanghai 200437, China (e-mail: zhangk@fudan.edu.cn).

Digital Object Identifier 10.1109/TKDE.2025.3556427

Amazon DynamoDB Accelerator (DAX) [6] has 2 vCPUs and
16 GiB memory, and a r5.xlarge node has 4 vCPUs and 32
GiB memory. With such a coarse-grained resource allocation,
an application that demands 3 vCPUs and 10 GiB memory
has to select a r5.xlarge node, incurring 1 vCPU and 22
GiB memory reserved but unused. Moreover, the demands on
CPU and memory for an IMKV instance are determined by
distinct factors: computational resources are strongly associated
with the IMKV request rate, while memory depends on the
application’s working set size [7], [8], [9]. Web applications also
exhibit diverse workload characteristics and fluctuating traffic
patterns, further complicating resource allocation. For example,
Twitter workloads demonstrate varying working set sizes [10],
Wikipedia access traces report memory demands changing by
up to 2× [11], and Facebook workloads exhibit diurnal patterns
or unpredictable traffic [12]. Overall, as web applications have
diverse workload characteristics and constantly changing traffic
volumes [10], [12], [13], the resource allocation of conventional
cloud IMKVs often leads to significant resource underutiliza-
tion.

Serverless is an emerging paradigm of cloud computing
that frees users from managing underlying components, adjusts
resources according to users’ demands, and optimizes billing
from a fixed strategy to a pay-as-you-go basis. A serverless
in-memory key-value store, featuring elastic resource allocation
and pay-as-you-go billing characteristics [14], is specifically
designed to serve diverse and dynamic workloads in the cloud. It
is expected to provide automatic and agile resource allocation in
real-time and bill according to actual computational and memory
usage. Current serverless IMKVs are implementations on virtual
machines [15] and serverless functions [16]. However, they fail
to achieve fine-grained and prompt resource elasticity due to
their underlying infrastructures.

VM-based serverless IMKVs fail to achieve fine-grained and
prompt resource elasticity. Recently, AWS released ElastiCache
Serverless [15], a serverless in-memory key-value store that
adopts virtual machines as the underlying component. Elas-
tiCache Serverless automatically scales the VM cluster for
resource elasticity and bills users based on their resource us-
age [17]. However, as we illustrated above, the resource inef-
ficiency from VM-based allocation is still unsolved. Moreover,
the auto-scaling has to take several minutes for migrating and
rebalancing data between different VMs, which incurs delayed

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-0627-193X
https://orcid.org/0009-0004-4325-9554
https://orcid.org/0000-0001-7518-5466
https://orcid.org/0000-0002-1169-8032
https://orcid.org/0000-0002-2926-4814
https://orcid.org/0000-0002-9059-3713
mailto:zhangk@fudan.edu.cn

4090 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 1. Resources are tightly coupled to allocate with a coarse granularity.

resource elasticity [18] and non-negligible business loss on
web applications [19]. Some studies have exploited serverless
functions [16], [20] to construct serverless caching. However,
since serverless functions are built on virtualized instances [3],
[21] with short lifetimes and significant invocation times [16],
[22], it is inefficient to implement high-performance in-memory
caching atop them. Overall, current serverless IMKVs lack
fine-grained and prompt elasticity owing to their underlying
infrastructures.

In this paper, we propose Genie,1 a lightweight infrastructure
for serverless in-memory key-value caching with fine-grained
and immediate elasticity. In Genie, a novel approach is employed
to enable multiple tenants to efficiently utilize computational and
memory resources, ensuring that these resources are dynami-
cally and independently allocated. Computational resources are
shared among tenants through processing requests from different
tenants and are measured independently at millisecond granu-
larity. Memory resources are managed through a shared pool
and allocated to each tenant independently and dynamically. For
computational resources, we find out critical factors of users’ re-
quests that affect computational usage. We train and implement
a machine learning model to quantify the vCPU consumption
according to users’ workload characteristics and request rates.
For memory resources, we design a flexible memory alloca-
tion mechanism to dynamically resize the memory capacity
according to users’ hit ratio requirements. Furthermore, we
analyze the cause of inefficiency and propose adaptive caching
to improve memory efficiency. Genie constantly monitors the
memory, CPU, and network resource utilization and scales in-
stantly to accommodate changes to the access patterns of each
tenant’s workload. As a lightweight infrastructure, it could be
deployed on various underlying environments with fine-grained,
immediate, and on-demand serverless caching.

In summary, the contributions are as follows:
� We propose a serverless IMKV infrastructure that achieves

fine-grained and prompt elasticity in CPU and memory
resources, respectively.

� We study workload characteristics that affect CPU usage
and propose a lightweight machine-learning approach to
estimate the vCPU usage of each tenant.

� We propose a flexible memory allocation mechanism to
resize the memory capacity for each tenant to meet the hit
ratio requirement and an adaptive mechanism that adjusts
the eviction policy based on the workload distribution to
improve memory efficiency.

1Genie is a magical spirit, originally in Arab traditional stories, who provides
whatever the person who controls it asks.

� We design and implement Genie, a serverless infrastruc-
ture for in-memory key-value caching that achieves fine-
grained and on-demand resource elasticity under diverse
and dynamic workloads with minimal overhead.

II. BACKGROUND AND MOTIVATION

A. Issues of Conventional Cloud Key-Value Stores

Nowadays, cloud vendors have provided various IMKVs
to meet customers’ needs, i.e., ElastiCache [23], Dynamo
Accelerator (DAX) [5], ApsaraDB [24], etc. Specifically, they
provide various IMKV nodes with different resource quotas,
including a specific number of vCPUs, a specific amount of
memory, and a certain network performance (e.g., a r5.large
node in DAX is allocated with 2 vCPUs and 16 GiB memory [5]).
These nodes derive from various virtualization approaches,
including virtual machines (VMs) and containers, as well as
disaggregated memory (DM) architectures that overcome the
resource limitations of monolithic servers [3], [4], [25], [26],
[27]. However, as plenty of applications with diverse charac-
teristics and constantly changing traffic volumes emerge on the
cloud [1], [28], we found conventional cloud IMKVs result in
varying degrees of resource underutilization and inflexibility.

1) Resource underutilization when facing diverse workloads:
Fig. 1(a) illustrates the resource underutilization of conven-
tional cloud IMKVs [5], [23], [24] under diverse workloads.
W1 to W6 are synthetic workloads that have the same charac-
teristics as the well-known Yahoo! Cloud Serving Benchmark
(YCSB) [29], but with different working sets and request rates.
In ApsaraDB, W1 necessitates a VM instance of type P to meet
resource demands, while W2, W3, W4, W5, and W6 all require
instances of type Q due to the coarse-grained VM instances.
From Fig. 1, we observe that the computational and memory
resources of IMKVs’ VM instances are coarse-grained with
exponential growth and tightly coupled to allocate. In Fig. 1(a),
both the memory capacities and the number of vCPUs grow
exponentially, and a linear relationship exists between memory
and compute resources.

However, for IMKV workloads, the demanded computational
resources are strongly associated with the request rate, and the
memory depends on the working set of the application [8],
indicating that this tightly coupled approach does not reflect
real-world requirements. For instance, the USR workload in
Facebook exhibits high traffic while occupying only a small
amount of memory [12], for which it requires a VM instance
with a large number of vCPUs and a small amount of memory.
Nevertheless, it has to select a VM instance in current cloud
IMKVs that meets the vCPU requirement but memory capacity
much greater than the working set size. It incurs a significant
underutilization of memory resources. In Fig. 1, W2 leads to an
82.5% under-utilized vCPUs and for W6, the memory underuti-
lization rate is 96.6%. This issue has been further highlighted
by industry studies [30].

2) Inflexibility and underutilization under dynamic work-
loads: Research on key-value workloads reveals that different
applications exhibit dynamic characteristics, leading to variable
demands for resources over time [1], [10], [13]. Specifically,

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4091

the dynamic characteristics comprise request rates (e.g., traffic
spikes and troughs of ETC workload in Facebook [12]), item
sizes (e.g., sudden changes and periodic shifts in size distribution
in Twitter [10]), the ratio of different operations [31], the skew
factor (e.g., the changing skewness of Alibaba’s production
workloads [32]), and so on.

Fig. 1(b) depicts the vCPU utilization throughout a day from
ETC workload in Facebook [12]. It presents an evident diurnal
pattern characterized by alternating traffic spikes and troughs.m
represents the maximum vCPUs required from the traffic spike,
and n is the vCPU capacity from the most suitable VM. Zone
Z1 is the actual usage of computational resources, Z2 represents
the underutilization coming from users selecting an instance that
could handle all of the traffic spikes, and Z3 shows the vCPU
underutilization from the coarse-grained provisioned instance.

When the computational resources required for peak traffic
of ETC workload match the number of vCPUs in a single in-
stance, the vCPU underutilization is minimized. Computational
resources experience a 19.3% underutilization that comes from
Z2 (Z3=0). However, when the vCPU required by the traffic
peak slightly exceeds the computational capacity of a single
VM, the coarse-grained resource allocation results in significant
underutilization. In this scenario, users have to purchase a VM
instance with twice the number of vCPUs to accommodate the
traffic spike, resulting in an approximate underutilization of
59.7% (50% from Z3 and 9.7% from Z2).

Overall, the coarse-grained and tightly coupled resource al-
location of conventional cloud IMKVs ignores the diverse and
time-varying resource demands. It will easily result in resource
underutilization and inflexibility.

B. Limitations of State-of-the-Art Serverless IMKVs

Serverless [14], [33] is an emerging paradigm of cloud com-
puting that benefits users to focus on their own functionality of
applications. It aims to relieve users from managing underlying
components, auto-scale the services according to users’ demand,
and optimize the billing strategy to the pay-as-you-go model. A
serverless in-memory key-value store characterized by elastic
resource allocation and pay-as-you-go billing is an important
implementation of serverless computing.

Specifically, elastic resource allocation refers to automati-
cally adjusting the allocated computational resources based on
the request traffic and resizing the memory capacity according
to the working set size of the current workload [7], [8], [9]. Fine-
grained and immediate resource elasticity further optimizes cost
efficiency for tenants and enhances resource utilization for cloud
providers, creating a win-win scenario that benefits both parties.
Meanwhile, pay-as-you-go billing ensures users pay only for the
CPU and memory resources their workloads actually occupy,
making it a cost-effective and resource-efficient caching solution
in the cloud. However, we find that state-of-the-art serverless
IMKVs fail to achieve fine-grained and immediate resource
elasticity due to their underlying infrastructures.

1) Serverless IMKVs based on VMs: Recently, AWS proposed
a serverless in-memory key-value store, ElastiCache Server-
less [15] that uses VMs as underlying components. It auto-scales

the cluster of VMs to achieve resource elasticity. Specifically,
the elasticity comes from horizontal scaling to add or remove
VM nodes and vertical scaling to modify the resource capacities
of VM nodes [17]. Compared to conventional cloud KVs [5],
[23], [24], it relieves users from managing key-value instances
and changes the billing to a usage-based model.

However, the frequent scaling for resource adjustment in-
troduces significant overheads. Specifically, data migration and
synchronization across different nodes consume additional CPU
and network resources, as highlighted in previous studies [34],
[35]. Moreover, the performance improvements expected from
scaling up, or the resource savings anticipated from scaling
down, are often delayed by minutes. This delay results from the
time required for data migration and rebalancing [18]. Although
the impact varies according to the data volume, the node type,
and the ongoing traffic, the delayed elasticity will result in
a non-negligible business loss on web applications [19]. Not
only that, as described in Section II, the resource granularity it
supports to allocate and resize is coarse-grained, which to some
extent deviates from pay-as-you-go billing [15].

2) IMKVs based on serverless functions: Serverless func-
tions are popular implementations of serverless computing [14],
[22]. A serverless function is short-lived and stateless; they
are provided by serverless infrastructures like AWS Lambda.
Recent research has exploited serverless functions as underlying
components to build serverless key-value stores [16], [20].

Nevertheless, research reveals that serverless functions are
based on virtualized instances where vCPUs and memory are
tightly coupled to allocate [3], [21]. For instance, in AWS
Lambda [22], for every 1,769 MiB of memory allocated, one
vCPU will be allocated to this function. This tightly coupled
architecture results in an inability to scale one kind of re-
source independently, which limits the elasticity. Although there
has been research on resource allocation for serverless func-
tions [36], [37], the short lifetime of serverless functions (up to
15 minutes in AWS Lambda) and the significant invocation time
(8 ms in AWS Lambda) make it inefficient to implement high-
performance in-memory caching on serverless functions [16].
The evaluation in InfiniCache shows that it’s not cost-effective
when the request rate exceeds 86 requests per second [16]. In
other words, the overhead and prices are significant when serving
high-performance web applications.

Overall, state-of-the-art serverless IMKVs fall short of
achieving fine-grained and prompt resource elasticity due to
their underlying infrastructures.

III. GENIE DESIGN

In this section, we first clarify the goals and architecture of
Genie. After that, we analyze the difficulties and challenges.
Finally, we give an overview of the entire system.

A. Design Goal

We aim to propose a lightweight serverless infrastructure
that implements serverless in-memory caching with fine-grained
and immediate resource allocation. Our design will address
the issues of coarse granularity and scaling delay in resource

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

4092 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 2. Performance loss of measuring CPU time of each request.

adjustment in existing designs, thereby providing serverless
caching for web applications in an agile manner.

Specifically, we have the following goals:
� Allocate the CPU and memory resources separately.
� Process as many requests as the user sends and measure

the CPU consumption at the millisecond level.
� Dynamically resize the memory capacity to meet hit ratio

requirements at MegaByte level and improve the memory
efficiency of key-value items.

It has been reported that most tenants occupied very few
resources in the cloud and approximately followed the heavy-
tailed distribution [38]. The heavy-tailed distribution indicates
that it’s reasonable to simultaneously support dozens or even
hundreds of tenants within an in-memory key-value caching with
sufficient resources.

To enhance resource efficiency and reduce costs for cloud
users, the serverless infrastructure we are going to propose is
expected to share computational and memory resources with
multiple tenants rather than using the conventional VM-based
approach for isolation and allocation. The computational re-
sources will be shared among different tenants through mixed
traffic, and the memory resources will be managed separately
and then allocated to each tenant to meet their hit ratio require-
ments. The serverless infrastructure aims to provide lightweight,
fine-grained, and prompt resource elasticity for each tenant,
which poses challenges to our design.

B. Challenge

The challenges for the fine-grained and immediate resource
elasticity of Genie are as follows.

1) Measure the CPU consumption with small overhead: To
get the computational resource consumption of each tenant in
mixed traffic, directly measuring the time of processing each
request on physical cores seems to be a straightforward solution.
However, this approach is costly and inefficient for serverless
in-memory key-value caching concerning tens of millions of
key-value operations per second of the state-of-the-art key-value
stores [39]. Fig. 2 reveals the performance degradation from
measuring the CPU time of each request. Even the lightweight
RDTSC is adopted for time measurement, it still results in a
performance degradation of around 25%. Therefore, measuring
each tenant’s CPU consumption in a lightweight approach is a
crucial challenge in Genie.

2) Efficiently resize the memory capacity: A slab-based or
log-based item store is commonly used in key-value stores [8],
[39], [40], where a slab divides memory into classes and smaller
chunks for storing items, and a log stores items sequentially.

However, a slab-based store leads to internal fragmentation
and calcification, causing overhead and inflexibility in resizing
memory [1], [8]. In contrast, a log-based approach provides
fast insertions, easier defragmentation, and flexible memory
reassignment without the need for reallocating memory among
classes [39].

To resize memory in a log for hit ratio guarantees, a miss ratio
curve (MRC) is used to illustrate the cache size and miss ratio
relationship. However, a log exhibits various inefficiencies due
to inherent characteristics, for which it’s ineffective to resize
the log based on the MRC directly. Besides, memory reclaim
may lead to hit ratio fluctuations as all items on the outgoing
memory will be evicted. The memory inefficiencies and hit ratio
fluctuations pose challenges to memory elasticity.

C. System Overview

1) Our Approach: To achieve the goals we proposed in
Section III-A, we design a serverless infrastructure Genie, that
dynamically estimates the CPU usage and allocates memory for
each tenant. Specifically, Genie manages compute and memory
resources separately. It enables the whole computational re-
sources to be shared among multiple tenants while dynamically
resizing the memory of each tenant. It processes all of the
tenants’ requests in mixed traffic, and the resource utilization
of each tenant is measured and estimated in real time to bill
them in a fine-grained approach.

To estimate the CPU consumption with trivial overhead, we
study characteristics that affect the CPU usage from users’
workloads and quantify this impact through a learned approach.
Genie generates workloads with diverse characteristics and gets
the maximum throughput with different CPU cores. After that,
it estimates the impact of workload characteristics on computa-
tional resource usage through a machine-learning model. While
processing requests, Genie samples the requests of each tenant
and calculates corresponding characteristics in real time. After
that, it employs the machine learning model to measure the CPU
usage of each tenant with a fine granularity.

To resize the memory capacity of each tenant with fine-
grained while maintaining high performance, Genie adopts the
append-only log as the underlying data structure to store key-
value items. It proposes a flexible memory allocation mechanism
to allocate and reclaim memory with minimal side effects. To
determine the amount of memory each tenant should allocate,
Genie periodically builds a miss ratio curve to model the cache
locality. Then, it dynamically allocates or reclaims the pro-
visioned memory of each tenant according to the miss ratio
curve. With a two-phase memory resizing scheme, Genie resizes
tenants’ memory capacities to meet the hit ratio requirements.

Through the holistic design we present, Genie addresses the
aforementioned challenges and achieves fine-grained, immedi-
ate, and on-demand resource scaling.

2) System Framework: Fig. 3 depicts the framework of Genie,
which demonstrates the core components for fine-grained and
immediate serverless caching. During the request processing,
Genie utilizes a lightweight Workload Profiler to profile dy-
namic characteristics for workload-inspired resource resizing,

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4093

Fig. 3. System framework(T1-Tn represent the tenants).

including skewness, average item size, GET/SET ratio, and
reuse distance histogram. It decouples the memory into a shared
Memory Pool, which is managed by Flexible Memory Allo-
cator. The allocator resizes the memory capacity according
to the miss ratio curve. Besides, it adjusts the eviction policy
to improve memory efficiency through Adaptive Caching. In
terms of computational resources, a machine learning model is
implemented to estimate the CPU consumption of each tenant.
As for network resources, it incorporates a Network Monitor to
track the network traffic and occupancy. Moreover, we imple-
ment namespace isolation and access control mechanisms for the
isolation of multi-tenancy. Based on the holistic design, Genie
enables fine-grained, immediate, and flexible resource resizing
and billing.

IV. COMPUTE ELASTICITY

Elasticity in cloud computing requires the ability to adapt
to time-varying workload pressures. For Compute Elasticity,
Genie finds out the relationship between workload character-
istics, throughput, and the usage of computational resources. It
proposes a lightweight learned approach to measure CPU usage
in fine granularity.

A. Workload Characterization

To determine which factors affect CPU usage in IMKVs, we
study various workload characteristics and identify the following
four characteristics. These characteristics are inherent properties
of the request stream and have varying degrees of impact on sys-
tem performance, providing insights into estimating the vCPU
usage.

The skewness of the access distribution: Web accesses have
been shown to follow an approximate Zipfian distribution [10],
[12] with various skew factor α,

yx = Cx−α, (1)

where yx is the access count of x-th most popular item, and
α is the skew factor. A larger α indicates that most requests
access fewer popular keys, and α = 0 and 0.99 corresponds to
uniform and skewed distribution, respectively. A highly skewed
workload indicates good locality and fewer CPU cache misses,
while a low skewness incurs more random memory accesses
and significantly degrades system performance. As shown in
Fig. 4(a), a highly skewed workload leads to a better throughput
when α is close to 0.99 with 0.5 GET.

GET/SET ratio: In IMKVs, a GET operation retrieves the
value for a given key if it exists; otherwise reloads the value into

memory, and a SET operation adds a new item into the store
or updates the value if it already exists. GET/SET ratio is the
percentage of GET requests that occupies the overall operations.
For instance, a 0.95 GET (0.05 SET) implies GET operations
occupy 95% of tenants’ requests, and SET operations occupy
5%. A larger GET/SET ratio implies fewer memory copies
of the key, which leads to a higher throughput. As shown in
Fig. 4(b), uniform and read-intensive workloads lead to a modest
performance improvement (The server is network bottlenecked
under large items with 0.95 GET).

Key size and value size: In IMKVs, items’ key sizes and value
sizes significantly affect the performance. Larger keys lead to
apparent performance degradation, occupying more computa-
tional resources to process memory comparison when parsing
the request and memory copy when storing items. As shown in
Fig. 4(c), larger keys result in performance loss (value size is
8 bytes). For value sizes, a GET or SET operation will incur a
memcpy to retrieve or store the value for sooner access, for which
larger values occupy more computational resources and result
in a performance decrease. The effect of value size is shown in
Fig. 4(d) (key size is 8 bytes).

The characteristics analyzed above could characterize the
impact of users’ workloads. Under the same CPU utilization of
the server, these characteristics have different impacts on system
performance. Therefore, workloads with different characteris-
tics will occupy varying numbers of computational resources
under a stable request rate. It brings insight into achieving
computational resource estimation through a machine-learning
model.

B. The Model for Lightweight vCPU Usage Estimation

As the CPU consumption of each tenant depends on the
characteristics of their workloads and request rates, Genie adopts
regression models to estimate the CPU usage with fine granular-
ity. Specifically, the request rate, which refers to the number of
requests generated by the tenant and processed by the system,
is equivalent to the tenant’s throughput in the context of Genie’s
model. After the model has been trained and adopted in Genie,
it predicts the vCPU usage by taking as input the workload
characteristics (key size, value size, skewness, GET/SET ratio)
and the tenant’s throughput.

To ensure that users can purchase computational resources
in a unified unit on different servers, Genie abstracts CPUs
and provides tenants with a conception of virtual CPU quota,
vCPU to represent a portion of the underlying physical CPU. The
model’s input includes workload characteristics we analyzed in
Section IV-A and the maximum throughput of Genie under the
corresponding workloads. The model’s output is the number of
vCPUs occupied by each tenant.

Through our custom key-value request generator that based
on the YCSB benchmark [29], we create diverse work-
loads by varying the key size (8–128 bytes), value size
(8–1024 bytes),GET/SET ratio (50% –95%GET), and the skew
factorα (0–0.99). YCSB’s popularity generation function is used
to simulate different access skewness levels, while key and value
sizes are selected to reflect typical web application scenarios.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

4094 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 4. End-to-end throughput under various workloads.

Fig. 5. R2 of different models.

After generating workloads, we adjust the number of vCPUs
and measure the maximum meaningful throughput (with a 90%
GET hit ratio) under each configuration.

The dataset, comprising 16,000 data points, was divided into
training and test sets. We evaluated several regression models
for their predictive accuracy, shown in Fig. 5. Among these
models, we adopt the multilayer perceptron to predict vCPU
consumption in Genie due to its high accuracy, low prediction
cost, and ability to extrapolate values beyond the training set.
With this model, Genie could achieve precise vCPU allocation
and optimize resource utilization, which ultimately benefits both
tenants and cloud vendors.

Through the machine learning model, we input the tenant’s
characteristics and throughput; then, we get the vCPU usage
in real-time. The estimation cost we implemented in Genie is
negligible. It takes less than 1 μs to make an estimation. After
the estimation, the tenant’s computational resource consumption
could be billed under various billing policies with trivial over-
head. When new CPU types are introduced, our model needs
to be retrained to accommodate performance differences across
CPUs for the same workload.

V. MEMORY ELASTICITY

To achieve fine-grained and prompt memory elasticity, Genie
adopts an append-only log as the underlying data structure to
store items. On top of the log-structured allocator, it proposes
a flexible mechanism to resize the memory capacity through
the analysis of data locality. Meanwhile, it proposes adaptive
caching to improve memory efficiency.

A. Flexible Log-Structured Memory Allocator

Genie designs a flexible log-structured memory allocator
to achieve memory elasticity, shown in Fig. 6. To optimize
memory utilization, Genie proposes a pooled memory policy
across tenants, and the memory pool is composed of 2 MiB

Fig. 6. Design of the flexible log-structured memory allocator.

hugepages (from P0 to Pn in this figure), which reduces TLB
misses and improves performance. To start with, each thread of
Genie applies for a virtual address space for each tenant (e.g.,
232). Then Genie allocates hugepages from the memory pool
and maps them to the corresponding virtual addresses.

In Genie, each data partition of a tenant is a flexible log with
in-place updates. Head points to the start (offset = 0), and Tail
points to the location where new data items will be written.
With the move of Tail brought by the newly stored items, old
items will be overwritten sequentially in the order in which they
were stored. When the log needs to expand, Genie calculates the
number of required hugepages and requests available hugepages
from the memory pool (Pm and Pn). After that, it maps them to
the end of the log. When the log needs to shrink, Genie unmaps
corresponding hugepages and reclaims them to the memory pool
(Pi and Pj).

Hit ratio: is an important indicator. It has been reported that
improving the cache hit ratio will greatly improve system per-
formance [8], [12]. Genie aims to resize the memory according
to users’ hit ratio requirements. Since a miss (or hit) ratio curve
depicts the relationship between the cache size and the miss
ratio [41], Genie periodically constructs the miss ratio curve to
guide the memory allocation of each tenant.

Miss Ratio Curve Construction: A miss ratio curve could
be calculated from reuse distance distribution of the workload.
Reuse distance for an item is measured as the number of other
unique items since the last access to the item, e.g., the number
of access to other unique items from the previous access to
item A to the current access to item A. After capturing the
reuse distance distribution, we calculate the miss ratio curve
through the following equation, where c is the cache size, and the
probability of reuse distance is acquired from the distribution:

miss-ratio(c) = 1−
c∑

x=0

P (reuse-distance = x) (2)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4095

In Genie, we apply SHARDS [41] to obtain the reuse distance
distribution, then calculate the miss ratio curve of an LRU cache
through (2). SHARDS is a recent advancement in reuse distance
analysis, which makes use of spatial sampling to track references
and constructs miss ratio curves with the space complexity of
O(1) and linear run time.

Flexible Memory Allocation: Upon a tenant’s first arrival,
Genie will allocate a predefined cache size, currently set to 20
MiB. Then it periodically resizes the memory of each tenant
according to the miss ratio curve. The flexible memory allocation
mechanism consists of two phases, Direct-Fit and Fine-Grained
Resizing. Before memory resizing, Genie samples and collects
item access-related information with a 0.1% sampling rate of set
sampling [42].

1) Direct-Fit: After analyzing the current workload, Genie
calculates the optimal log sizeL′ for a desired hit ratio (e.g., 90%
) using the MRC. If the new size is larger, Genie expands the log
by allocating more hugepages from the memory pool(1©). For
shrinkage (L′>L), to prevent hit ratio fluctuations, Genie delays
shrinking memory until the Tail points to the next hugepage.
This ensures that shrinking removes rarely revisited items rather
than popular ones (2©). Additionally, Genie prioritizes reclaim-
ing memory from the log’s Head, where expired items tend
to accumulate due to the replacement strategy that reinserts
popular items at the Tail. By targeting underutilized regions,
this approach reduces fragmentation and improves memory
efficiency. The shrinking process lasts at most two rounds to
ensure stable performance, with the reclaimed hugepages re-
turned to the memory pool. This approach ensures that memory
reclamation targets regions with higher levels of underutiliza-
tion, effectively reducing fragmentation and improving memory
efficiency.

2) Fine-Grained Resizing: Direct-Fit may not always pre-
cisely meet a tenant’s target hit ratio due to SHARDS’ median
MAE of 2% at a 0.1% sampling rate and potential workload
shifts. Additionally, the log’s sequential writes and replacement
strategy impact memory efficiency. To overcome this, Genie
implements Fine-Grained Resizing, adjusting log size to bridge
the gap between actual and target hit ratios, and refining the
memory allocation until the target is achieved. Specifically,
we incrementally adjust the corresponding log in 2MiB units
(consistent with the size of a hugepage). The added hugepage
is placed immediately after the one currently pointed to by
Tail, while the memory to be reduced is the one following the
hugepage pointed to by Tail. Besides, when a tenant does not
access the Genie for an extended period and all its items have
expired, Genie will reclaim the memory resources allocated to
that tenant and maintain records of their historical cache sizes.
Upon resuming activity, the newly allocated cache size is set to
match their previous usage.

Overall, Genie employs a flexible memory allocator with
append-only logs to store items and a shared pool for re-
source sharing. It designs a dynamic mechanism to period-
ically adjust memory capacities based on miss ratio curves,
which meet the demand of hit ratios while maintaining stable
performance.

Fig. 7. Relative memory sizes under various thresholds of approx-LRU.

B. Adaptive Caching

Genie studies the inefficiencies of a log-structured memory
allocator and designs an adaptive caching to improve memory
efficiency under different workloads.

To keep popular items in memory, MICA, a high-performance
IMKV that adopts append-only logs for item storage, proposes
an approximate LRU (approx-LRU for short) that reinserts fre-
quently visited items. It reinserts the currently accessed item
while its position is more than half the entire log from Tail.
However, the approx-LRU it proposed will result in varying
inefficiencies under different workloads, as popular items may
occupy two positions in the log. Specifically, under a skewed
distribution, only a small proportion of items are frequently
visited and will be reinserted into the log, which leads to a slight
inefficiency. Under a uniform distribution, items are almost
equally accessed, and a large portion occupies two positions,
resulting in apparent memory waste.

Recent studies have shown FIFO and LRU perform similarly
in hit ratios according to real-world traces [10], [43]. Moti-
vated by their comparable effectiveness and the inefficiencies of
approx-LRU, we examined memory usage with a 90% hit ratio
across various workloads and tiny items, focusing on different
approx-LRU thresholds. These thresholds determine when to
reinsert items based on their distance from Tail. For instance,
with a 0.7 threshold, items are reinserted if they’re beyond 70%
of the log’s length from Tail. Notably, a 1 threshold equates to
FIFO, whereas MICA uses 0.5 as the threshold. We excluded
thresholds below 0.5 to avoid the inefficiency of popular items
occupying multiple positions.

Fig. 7 depicts relative memory sizes under different thresh-
olds of approximate LRU. The memory size calculated from
SHARDS is the baseline, representing the ideal log size with
100% efficiency. As shown in Fig. 7, different thresholds of
approx-LRU require different amounts of memory to achieve
the same hit ratio. When the skew factor α < 1, FIFO is closest
to the ideal memory size, and when α > 1, approx-LRU with
threshold 0.5 is most comparable to LRU.

To improve memory efficiency under various and time-
varying workloads, we propose an adaptive caching policy. It
dynamically adjusts the eviction policy according to the work-
load’s skewness, a low skewness (α < 1) using FIFO and a
high skewness (α > 1) using approx-LRU with threshold 0.5.
The adaptive eviction policy is memory efficient regardless of
various skewness of workloads. It considers factors including
access frequency, item size, and memory efficiency.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

4096 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 8. Design of the lossy hash table for data locality analysis.

Fig. 9. Genie’s architecture.

Overall, Genie proposes an adaptive mechanism for evicting
items according to workload distributions dynamically. It im-
proves the memory efficiency of each tenant and contributes to
resizing memory efficiently and effectively.

C. Genie Implementation

1) Workload Profiler: Genie designs a lightweight workload
profiler to profile dynamic workload characteristics. As shown
in Fig. 8, a lossy hash table is designed for data locality analysis.
Each hash entry consists of a keyhash, a last access time, and
a total access count of the item. Once an item is sampled,
Genie will update the hash table to track the workload. The
last access time of sampled items is used to update the reuse
distance histogram for Memory Elasticity, and the total access
count is used for estimating the skewness.

The skew factor α is derived using Least-Squares Regression
(LSR) [44] on popular items, as it forms a straight line in a
logarithmic scale with slopeα. AR2 value over 0.8 is considered
a good fit for the Zipf distribution. Additionally, a profiler tracks
each tenant’s average key size, value size, and GET/SET ratio
for Compute Elasticity.

2) System Implementation and Architecture: In our experi-
ments, we first evaluated Genie on a single machine and then
extended the setup to include two server nodes and two client
nodes, analyzing its scalability across these configurations.

In Genie, each tenant is authenticated with a unique names-
pace, and each of their requests is routed to a specific CPU using
a hash function. Each CPU handles a partition of the tenant’s
requests and stores the corresponding data in its memory. Mem-
ory partitions are independently resizable based on workload
demands, and overall CPU usage is tracked per tenant. This
design ensures high performance through data partitioning while
maintaining strong tenant isolation via namespace authentica-
tion and independent memory spaces.

Fig. 9 illustrates the system architecture, highlighting key
components along with control and data flows. Genie ensures
resource isolation and efficient data handling through flow-level
core affinity, decoupled memory management, and workload-
aware elasticity. Flow-level core affinity directs tenant traffic to
dedicated server cores, reducing context switching and enhanc-
ing CPU cache efficiency. Tenants’ items are stored in dynami-
cally resizable logs from a decoupled memory pool, enabling ef-
ficient workload-driven memory elasticity. In Genie, each CPU
core is bound to dedicated RX/TX queues, enabling fast packet
processing with low latency. This design achieves high through-
put, low latency, and scalable resource management. The source
code can be accessed at https://github.com/Yangsx-1/Genie.

VI. EVALUATION

In this section, we evaluate fine-grained and prompt elasticity,
multi-tenancy, throughput, and latency in Genie under various
workloads and configurations.

A. Evaluation Setup

Genie, developed in C++, starts with MICA [39] but signif-
icantly evolves with a redesigned architecture to emphasize its
serverless features. For all workloads, a 1 GiB hash table is
used to index key-value items of each worker thread. For each
partition of the tenant, Genie uses a 16 MiB hash table for data
locality. Besides, it uses the open-source DPDK [45] to support
high-speed I/O.

1) Server/Client Configuration: To evaluate Genie’s effec-
tiveness and lightweight design, we developed a prototype
deployed on individual bare metal machines, simplifying our
experiments to focus on serverless caching. The Genie server
runs on a machine with an Intel Xeon E5-2695 v4 Broadwell
processor with 18 cores, 2 NUMA nodes, and 45 MiB L3
cache, running at 2.1 GHz. The server is equipped with 128 GiB
DDR4 DRAM and two 100 Gbps Ethernet ports. The server uses
eight cores, and reserves 42 GiB for hugepages, with each core
processing requests through a dedicated worker thread and one
additional thread for cleanup duties. The client employs an Intel
Xeon Gold 6140 processor with 18 cores, a single NUMA node,
and 24.8 MiB L3 cache at 2.3 GHz, complemented by 128 GiB
DDR4 DRAM and a 100 Gbps Ethernet port.

2) Baseline: We use two baselines in experiments for com-
parison. First, we use MICA-r, a custom version of MICA [39],
as one of our baseline for its high performance of key-value
caching. It allows a single thread to clean up stale pointers of
hash tables that were previously held by each worker thread, for
the binding between the width of the log and the scanning speed
limits the scalability of the memory, which is consistent with
Genie. Besides, we add a RELOAD operation after a GET MISS
to restore the item into the system, consistent with research on
memory estimation for caches [41]. Therefore, MICA-r has the
same underlying IMKV structure as Genie but does not have
serverless modules.

Second, we use InfiniCache [16], a state-of-the-art server-
less in-memory key-value caching atop serverless functions, as
the other baseline. To ensure a fair comparison, we deployed

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Yangsx-1/Genie

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4097

TABLE I
THREE DATASETS FOR EVALUATION

InfiniCache on the same physical machine used for Genie’s ex-
periments and allocated them with the same resources. This ap-
proach ensures fairness by addressing the significant differences
in resource allocation and management between Genie, which
can be deployed on bare-metal machines or virtual machines,
and InfiniCache, which relies on deployment across multiple
serverless functions.

To capture the optimal performance of InfiniCache, we adhere
to the original design and setup outlined in the InfiniCache
paper while exploring additional configurations for comparison.
Specifically, InfiniCache employs erasure coding (d+ p) to
encode a key-value item into multiple shards (d data shards and
p parity shards). These shards are distributed across different
serverless functions. Following the original configuration, we
evaluate three variants of InfiniCache to explore the best perfor-
mance: InfiniCache-(8+0), (7+1), and (6+2). In each variant, a
key-value item is divided into 8 shards, with varying levels of re-
dundancy provided by the parity shards. These shards are cached
separately, requiring reconstruction during retrieval. Besides, we
evaluate a modified configuration, InfiniCache∗, in which each
item is stored as a whole without being divided into shards.
This eliminates the need for the client to wait for all shards to
arrive and reconstruct the item. It enables parallel processing of
requests and leads to improved performance compared to the
original design.

3) Workloads and Datasets: We evaluate Genie with YCSB
synthetic workloads [29] and real-world key-value traces from
Twitter [10], [46]. Both of them have been widely used in evalua-
tions of key-value stores [1], [39], [47], [48]. For YCSB synthetic
workloads, Genie clients adopt three kinds of datasets (shown
in Table I) and approximated Zipf distribution algorithms [49],
[50] to generate the working set.

To evaluate the elasticity of CPU and memory resources, we
use synthetic time-varying workloads with dynamic character-
istics that have been proven to change over time in Section II-A.
For studies on performance isolation of multi-tenancy, system
throughput, and latency, we use two workload types:Uniform
and Skew, which is in line with YCSB [29] and has been widely
adopted in evaluations of KVs [39], [48]. Besides, to evaluate the
effectiveness of the adaptive eviction policy, we use two Twitter
traces [10], [46], namely clusters 24 and 48 that have been used
in recent cache studies [1].

B. Fine-Grained vCPU Estimation

In this subsection, we aim to assess the effectiveness of vCPU
estimation in handling diverse and dynamic workloads. We use
a synthetic workload with dynamic characteristics and request

Fig. 10. vCPU estimation under a dynamic workload.

rates and compare the system throughput and vCPU usage
between MICA-r and Genie.

As shown in Fig. 10, the evaluation of workload dynamism
encompasses five distinct stages, denoted as S1 to S5, with each
stage’s workload being modified based on the preceding stage.
S1 represents a 128 MiB uniform Tiny workload with 0.95 GET,
and the request rate is 6 Mops.

As depicted in Fig. 10(a), the Compute Elasticity in Genie is
reactive and incurs little performance degradation compared to
MICA-r. Genie exhibits significant fluctuations in vCPU usage
across different stages rather than the constant vCPU usage (8
vCPUs in this experiment) in MICA-r. The transition of the
doubled request rate from S1 to S2 leads to the vCPU usage
increasing from 0.92 to 2.2, which follows the CPU scalability
of Genie. From S2 to S3, the item size grows from Tiny to Small,
and the vCPU usage grows to 2.87 as large items occupy more
computational resources during the request processing. From
S3 to S4, the workload distribution changes from uniform to
0.99 skewed, leading to a vCPU usage change from 2.87 to
2.36. Lastly, the transition from S4 to S5 changes the workload
from 0.95 GET to 0.5 GET, contributing to the vCPU usage
changing from 2.36 to 2.6. Meanwhile, its ability to promptly
adapt to workload changes across different stages and accurately
estimate CPU resource usage in real time underscores the ex-
ceptional efficiency of Genie’s workload profiler and prediction
model.

Fig. 10(b) exhibits the vCPU saving rates under the dynamic
workload compared to MICA-r. From S1 to S5, the saving rates
range from 64% to 88%, which is very considerable compared
to current cloud IMKVs.

C. Workload-Inspired Memory Elasticity

In this subsection, we demonstrate the efficiency and effec-
tiveness of memory elasticity. It resizes the memory capacity
of each tenant under the hit ratio requirement and optimizes
memory efficiency under various workloads in real-time.

First, we evaluate Genie’s memory elasticity using a synthetic
workload with changing skewness and item sizes. Fig. 11 shows
the memory usage and hit ratio variation under the dynamic
workload. The dynamism comprises three stages, each repre-
senting a distinct working set of ten minutes. S1

′ is a highly
skewed workload (α = 1.1) on small items, S2

′ is a uniform

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

4098 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 11. Memory resizing under a dynamic workload.

workload on small items, and S3
′ is a uniform workload on tiny

items. The initial size of each log is 20 MiB. At the beginning
of S1

′, the hit ratio is about 80% as a highly skewed workload
requires less space for popular items. After sampling, Genie
captures the locality of the workload. It calculates the ideal
memory size and the skew factor α. Then, it resizes the memory
to meet the hit ratio requirement and adjusts the eviction policy
to improve efficiency.

As shown in Fig. 11(a), after flexible memory allocation,
Genie achieves memory saving under different working sets and
item sizes (using adaptive caching as the baseline). In S1

′, FIFO
requires about 5% extra memory capacity to meet the hit ratio
requirement compared to adaptive caching, and in S2

′ and S3
′,

the approx-LRU(0.5) requires around 23% and 19% extra space
compared to adaptive caching, respectively.

Fig. 11(b) shows the changes in hit ratios under the dynamic
workload. The Fine-Grained Resizing of each stage enables the
hit ratio to reach the target (i.e., 90%) within a few minutes. From
S1

′ to S2
′, as the skew factor α changes from 1.1 to 0, there is

a drastic drop in hit ratio because more memory is required to
cache popular items. From S2

′ to S3
′, the item size shifts from

Small to Tiny, for which the hit ratio descends a lot and reaches
almost 100% quickly. The shrink of the log from Direct-Fit of
S2

′ leads to a hit ratio trembling of no more than 5%. Finally,
the hit ratio remains stable at 90%.

Second, we evaluate the effectiveness of memory elasticity in
Genie under Twitter workloads, including cluster 48 with α of
0.8191 and cluster 24 with α of 1.3726, respectively. As shown
in Fig. 13, Genie improves memory efficiency regardless of the
various skewness of workloads.

D. System Throughput and Latency

In this subsection, we evaluate and compare the end-to-end
throughput (maximum throughput with 90% GET hit ratio) and
the latency distribution of Genie with MICA-r and InfiniCache.
The interval of vCPU estimation is one second.

Comparison with MICA-r: We compare the throughput and
latency distributions of Genie with MICA-r under various work-
loads from Table I with differentGET/SET ratios and skewness.
As is shown in Fig. 12(a)-(c), We find that the throughput is rarely
affected by compute and memory elasticity of Genie. It performs
only 1% -2% degradation with compute and memory elasticity
under various workloads. Besides, as shown in Fig. 12(d), with

only compute elasticity, the distribution exhibits almost the same
as that of MICA-r, except for the tail latency varies from 84
to 92 μs. For Genie with compute and memory elasticity, the
average latency is about 1-2 μs higher than MICA-r, which is
imperceptible for users, and the tail latency grows to 98 μs.

The main source of performance overhead in Genie is the
workload profiler, which samples and computes workload char-
acteristics in real time. With a sampling rate under 0.1%, it
introduces roughly 1% -2% overhead.

Comparison with InfiniCache: We further compare and evalu-
ate the end-to-end throughput and latency distributions of Genie
and the baseline InfiniCache on uniform 50% GET workloads
with workloads from Table I.

Specifically, Fig. 15(a) depicts the throughput of Genie and
InfiniCache under different workloads and configurations. As
shown in the figure, under the original erasure coding configu-
ration, the throughput of InfiniCache for tiny, small, and large
items is 28, 22, and 17 operations per second, respectively, which
represent the best performance achieved across three different
configurations (InfiniCache-(8+0), (7+1), and (6+2)). Without
erasure coding, the throughput of InfiniCache (InfiniCache∗ in
the figure) increases significantly to 122, 107, and 90 operations
per second, respectively. However, even with this improvement,
its performance falls far short of Genie. As shown in this figure,
Genie achieves around 35, 28, and 13 million operations per
second (Mops) for tiny, small, and large items, respectively.

Fig. 15(b)-(d) illustrates the end-to-end latency distributions
of Genie and InfiniCache. The results show that InfiniCache
incurs significant end-to-end request latency across different
scenarios, with most values ranging from 20 to 100 ms under
its original erasure coding configurations (InfiniCache-(8+0),
(7+1), and (6+2)). Even without erasure coding, the latency of
InfiniCache (InfiniCache∗ in this figure) remains between 10
and 60 ms, which is still much higher than Genie’s. However, as
shown in the figure, Genie consistently maintains an end-to-end
latency of less than 1 ms even under large items.

We further examine the performance of Genie and InfiniCache
with item sizes from 4 KiB to 4 MiB, which are significantly
larger than those typically encountered in the web applications
we focused on. We use a uniform 100% GET workload, with
results shown in Fig. 16. In this experiment, Genie continues to
outperform InfiniCache in both throughput and latency distri-
butions. Specifically, Genie achieves 6.4 Mops for 4 KiB items,
and 3218 ops for 4 MiB items, which are around 5 and 2.8 orders
of magnitude higher than InfiniCache’s throughput (29 ops for
4 KiB items and 5 ops for 4 MiB items). As for latency, Genie
delivers an average latency of around 40 μs, 250 μs, and 2.5 ms
with 4 KiB, 512 KiB, and 4 MiB item sizes. For InfiniCache, the
average latency is around 38 ms, 70 ms, and 184 ms, which is
lower than InfiniCache about 98.64% to 99.89%.

The significant performance improvement of Genie over In-
finiCache, especially for small items, can be attributed to two
main factors. First, InfiniCache relies on serverless functions
for dynamic resource allocation, which are built on virtualized
instances. These virtualized instances introduce inherent over-
head and significant invocation latency, which reduce system
throughput and limit InfiniCache’s efficiency in handling small

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4099

Fig. 12. Comparison on end-to-end throughput and latency distribution between MICA-r and Genie.

Fig. 13. Memory efficiencies of adaptive caching.

Fig. 14. System throughput and performance isolation with multiple tenants.

items. Second, serverless functions could be reclaimed by cloud
providers at any time, resulting in potential item loss. To address
this, InfiniCache implements a fault-tolerance mechanism that
shards items into multiple data and parity shards, which are
distributed across different serverless functions. To retrieve an
item, InfiniCache must fetch these shards, decode them, and
reconstruct the original item, introducing extra overhead. In
contrast, Genie introduces a dynamic resource allocation mecha-
nism with real-time workload profiling and resource modeling. It
avoids the virtualization overhead and the need for item sharding
and reconstruction, enhancing overall system efficiency. With
this approach, Genie achieves microsecond-level response times
with only a 1% –2% performance overhead for small items.

E. Resource Savings

In this subsection, we evaluate the resource savings of Genie
compared to cloud IMKVs under W1 to W6 workloads. Fig. 17
shows the relative resource savings of Genie, using instances P
andQofecs.u1 from AsparaDB for Memcache as the baseline.
For workloadsW1 toW6, Genie saves an average of 58.3% CPU
and 49.9% memory.

F. Multi-Tenancy

In this subsection, we evaluate the ability of multi-tenancy
and its impact on performance. It achieves lightweight serverless
caching with per-tenant performance isolation.

First, we measure the system’s overall throughput with in-
creasing tenants and demonstrate that the multi-tenancy intro-
duces negligible overhead. Fig. 14(a) depicts the throughput
as a function of the number of tenants under uniform and
skewed workloads of 0.5 GET and 0.95 GET on tiny items. The
performance degradation is only about 1.5 to 3 Mops (4% -6%)
under four workloads with 128 tenants, which evidences Genie
is a lightweight infrastructure for serverless caching.

Second, we evaluate Genie’s performance isolation as mul-
tiple tenants access the server concurrently. As shown in
Fig. 14(b), whenT1 andT2 join at 30 s and 60 s, respectively,T0’s
throughput and hit ratio remain unaffected. This demonstrates
Genie’s ability to efficiently handle bursty tenant arrivals, with its
workload profiler and prediction model quickly adapting to new
workloads while maintaining stable performance for existing
tenants.

G. vCPU Estimation Interval

This subsection shows Genie achieves vCPU estimation at
millisecond granularity with minimal overhead. Fig. 20 shows
the overall throughput and the latency distribution with various
intervals of vCPU measurement on Tiny items. The estimation
has a trivial impact on performance when the estimation interval
≥ 10−4 s (0.1ms). The end-to-end throughput degrades around
7% and 10% under uniform and skewed workloads when interval
= 10−6s (1 μs). Moreover, an interval ≥ 10−3s has minimal
impact on the latency distribution. When interval = 10−4s,
it brings about a poor tail latency, and when the interval is
smaller than 10−4s, the median and upper quartile latency values
significantly increase.

H. Scalability

Fig. 21(a)-(c) depicts Genie’s throughput with two server
nodes (Genie∗ refers to Genie with two server nodes). The
throughput of Genie∗ is consistently around 1.9 times higher
than that of Genie across different workloads. Besides, Fig. 21(d)
depicts the end-to-end throughput with varying numbers of
tenants from two client nodes. As shown in this figure, Genie’s
multi-tenant performance under different workloads, with a
single server node and two client nodes, is consistent with the
multi-tenant performance presented in Fig. 14. Due to resource
constraints, our experiments were limited to three physical
servers, but the observed linear scalability indicates that Genie
can scale to larger deployments. Addressing challenges like
distributed coordination and data consistency will be critical for
future extensions.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

4100 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

Fig. 15. Comparisons of throughput and end-to-end latency distributions between Genie and InfiniCache under different workloads and configurations.

Fig. 16. Comparisons of throughput and end-to-end latency distributions between Genie and InfiniCache with value sizes from 4 KiB to 4 MiB.

Fig. 17. Resource savings of Genie.

Fig. 18. Impact of adaptive caching thresholds.

Fig. 19. Skewness impact on throughput.

I. Impact of Adaptive Caching Thresholds on Performance

Fig. 18 depicts the system throughput under various thresh-
olds of approx-LRU. It can be observed that under different
workloads, the larger the approx-LRU threshold, the higher the
system’s throughput. The throughput with a threshold of 1 is
typically 1–2 Mops higher than that with a threshold of 0.5.
This is because the smaller the thresholds, the more frequently
popular items will be reinserted to the Tail of the log, which
degrades the overall performance.

Fig. 20. End-to-end throughput and latency distributions under different in-
tervals of vCPU estimation.

J. Impact of Workload Skewness on Performance

As shown in Fig. 19, we evaluated Genie’s end-to-end
throughput across varying levels of workload skewness (α). The
results clearly show that the throughput increases with higher α
values across all three kinds of workloads. This increase is due
to a highly skewed workload, which improves data locality and
reduces CPU cache misses, thereby enhancing Genie’s overall
performance.

VII. RELATED WORK

Memory-Disaggregated key-value stores: Current memory-
disaggregated KVs focus on either enhancing performance [26]
or executing various caching algorithms [25]. However, the
elasticity and efficiency they achieve are constrained due to the
thread-level computational allocation and the inefficient slab-
based memory allocator. Considering the long-tailed distribution
of resource demands on the cloud [38], the coarse-grained and
inefficient allocation leads to a significant number of users pay-
ing for resources that are allocated but unused. As a lightweight
infrastructure, Genie could achieve better resource elasticity on
disaggregated memory.

Resource efficiency and isolation: Prior work has improved
resource efficiency and isolation in IMKVs through various
policies. Segcache [1] optimizes TTL management to enhance
memory efficiency, while LHD [2] prioritizes evictions based on
expected storage contribution. Unlike these, Genie emphasizes
resource elasticity, achieving flexible memory allocation and

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4101

Fig. 21. Comparison of end-to-end throughput with different numbers of server and client nodes.

adaptive caching. For compute resources, SQLVM [51] mea-
sures task runtime on available cores to manage CPU utilization
in relational databases, but this method incurs high overhead for
high-performance IMKVs (shown in Fig. 2).

Dynamic memory management: Several studies focus on dy-
namically managing the memory of applications to optimize the
hit ratio [8]. They adopt cache locality modeling algorithms [41]
to estimate the miss ratio curve and adjust the memory ac-
cordingly. However, the slab-structured memory allocator they
adopted limits system performance and multi-tenancy [1], [8].
Instead, Genie adopts append-only logs and proposes corre-
sponding algorithms to improve memory efficiency and flexi-
bility.

Several works focus on resource allocation and memory man-
agement in serverless computing. Cuki [52] estimates working
set sizes and cache miss ratio curves but is incompatible with
log-structured memory allocators. OFC [53] uses machine learn-
ing to predict memory demands but struggles with dynamic
workloads due to its reliance on per-application models and
coarse-grained adjustments. Faa$T [54] integrates CPU scaling
with memory allocation but couples these resources, leading
to coarse-grained elasticity and underutilization. Faasm [55]
enables memory sharing for stateful functions but lacks fine-
grained and dynamic CPU allocation.

Resource allocation of serverless functions: Several works
have explored resource allocation and management for server-
less functions. Freyr [36] uses deep reinforcement learning to
reallocate over-provisioned serverless function resources, im-
proving utilization. INFless introduces an ML domain-specific
serverless platform with unified and heterogeneous resources.
Rethinking [37] evaluates static CPU and memory configura-
tions to optimize performance and cost but lacks the adaptability
to runtime fluctuations. However, the inherent invocation latency
of serverless functions reflects a fundamental limitation, making
it challenging to support latency-sensitive in-memory key-value
caching.

VIII. CONCLUSION

This paper introduces Genie, a lightweight serverless in-
frastructure for in-memory key-value caching, featuring fine-
grained and prompt elasticity. Genie employs a novel approach
that enables dynamic and independent resource allocation of
multiple tenants. It adopts a lightweight machine learning ap-
proach to estimate vCPU consumption at ms level. Not only
that, Genie dynamically adjusts the allocated memory based on
estimations of each tenant’s working set size at the megabyte

level. Our experiments validate that Genie’s implementation
of a serverless, in-memory key-value caching system not only
delivers lightweight and fine-grained resource elasticity but also
significantly outpaces existing solutions.

REFERENCES

[1] J. Yang, Y. Yue, and R. Vinayak, “Segcache: A memory-efficient and
scalable in-memory key-value cache for small objects,” in Proc. 18th
USENIX Symp. Netw. Syst. Des. Implementation, 2021, pp. 503–518.

[2] N. Beckmann, H. Chen, and A. Cidon, “{LHD}: Improving cache hit rate
by maximizing hit density,” in Proc. 15th USENIX Symp. Netw. Syst. Des.
Implementation, 2018, pp. 389–403.

[3] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” 2019, arXiv: 1902.03383.

[4] A. Fox et al., “Above the clouds: A berkeley view of cloud computing,”
Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[5] AWS, “Dynamodb accelerator,” 2023. [Online]. Available: https://aws.
amazon.com/dynamodb/dax/

[6] AWS, “Dynamodb pricing,” 2023. [Online]. Available: https://aws.
amazon.com/dynamodb/pricing/on-demand/

[7] D. Carra, G. Neglia, and P. Michiardi, “Elastic provisioning of cloud
caches: A cost-aware TTL approach,” IEEE/ACM Trans. Netw., vol. 28,
no. 3, pp. 1283–1296, Jun. 2020.

[8] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman, “Memshare: A
dynamic multi-tenant key-value cache,” in Proc. 2017 USENIX Annu. Tech.
Conf., 2017, pp. 321–334.

[9] X. Hu, X. Wang, L. Zhou, Y. Luo, C. Ding, and Z. Wang, “Kinetic modeling
of data eviction in cache,” in Proc. 2016 USENIX Annu. Tech. Conf., 2016,
pp. 351–364.

[10] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at twitter,” in Proc. 14th USENIX Symp.
Operating Syst. Des. Implementation, 2020, pp. 191–208.

[11] C. Wang, A. Gupta, and B. Urgaonkar, “Fine-grained resource scaling in
a public cloud: A tenant’s perspective,” in Proc. IEEE 9th Int. Conf. Cloud
Comput., 2016, pp. 124–131.

[12] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proc. ACM SIGMET-
RICS/PERFORMANCE Joint Int. Conf. Meas. Model. Comput. Syst., 2012,
pp. 53–64.

[13] Z. Cao, S. Dong, S. Vemuri, and D. H. C. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in Proc.
18th USENIX Conf. File Storage Technol., 2020, pp. 209–223.

[14] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A sur-
vey of opportunities, challenges, and applications,” ACM Comput. Surv.,
vol. 54, no. 11s, pp. 1–32, 2022.

[15] AWS, “Amazon elasticache serverless for redis and memcached is now
available,” 2023. [Online]. Available: https://aws.amazon.com/blogs/
aws/amazon-elasticache-serverless-for-redis-and-memcached-now-
generally-available/

[16] A. Wang et al., “InfiniCache: Exploiting ephemeral serverless functions to
build a Cost-Effective memory cache,” in Proc. 18th USENIX Conf. File
Storage Technol., 2020, pp. 267–281.

[17] AWS, “Introducing amazon elasticache serverless,” 2023. [Online]. Avail-
able: https://www.youtube.com/watch?v=YYStP97pbXo&ab_channel=
AWSEvents

[18] M. Labib, “Amazon elasticache deep dive,” 2020. [Online]. Available:
https://pages.awscloud.com/rs/112-TZM-766/images/Session%201%
20-%20ElastiCache-DeepDive_v2_rev.pdf

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/dynamodb/pricing/on-demand/
https://aws.amazon.com/blogs/aws/amazon-elasticache-serverless-for-redis-and-memcached-now-generally-available/
https://aws.amazon.com/blogs/aws/amazon-elasticache-serverless-for-redis-and-memcached-now-generally-available/
https://aws.amazon.com/blogs/aws/amazon-elasticache-serverless-for-redis-and-memcached-now-generally-available/
https://www.youtube.com/watch{?}v$=$YYStP97pbXo&ab_channel$=$AWSEvents
https://www.youtube.com/watch{?}v$=$YYStP97pbXo&ab_channel$=$AWSEvents
https://pages.awscloud.com/rs/112-TZM-766/images/Session%201%20-%20ElastiCache-DeepDive_v2_rev.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Session%201%20-%20ElastiCache-DeepDive_v2_rev.pdf

4102 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 7, JULY 2025

[19] A. Singla, B. Chandrasekaran, P. B. Godfrey, and B. Maggs, “The internet
at the speed of light,” in Proc. 13th ACM Workshop Hot Top. Netw., 2014,
pp. 1–7.

[20] J. Zhang et al., “Infinistore: Elastic serverless cloud storage,” in Proc.
VLDB Endow., vol. 16, no. 7, pp. 1629–1642, Mar. 2023.

[21] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. 2018 {USENIX} Annu. Tech.
Conf., 2018, pp. 133–146.

[22] AWS, “AWS lambda,” 2023. [Online]. Available: https://aws.amazon.
com/lambda/

[23] AWS, “Elasticache,” 2023. [Online]. Available: https://aws.amazon.com/
elasticache/

[24] Alibaba, “ApsaraDB,” 2023. [Online]. Available: https://www.
alibabacloud.com/product/apsaradb-for-memcache

[25] J. Shen et al., “Ditto: An elastic and adaptive memory-disaggregated
caching system,” in Proc. 29th Symp. Operating Syst. Princ., 2023,
pp. 675–691.

[26] J. Shen et al., “{FUSEE}: A fully{ Memory-Disaggregated}{Key-Value}
store,” in Proc. 21st USENIX Conf. File Storage Technol., 2023, pp. 81–98.

[27] S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggregated
{Key-Value} stores,” in Proc. 2020 USENIX Annu. Tech. Conf., 2020,
pp. 33–48.

[28] S. Chatterjee, M. Jagadeesan, W. Qin, and S. Idreos, “Cosine: A cloud-
cost optimized self-designing key-value storage engine,” in Proc. VLDB
Endowment, vol. 15, no. 1, pp. 112–126, 2021.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143–154.

[30] J. Guo et al., “Who limits the resource efficiency of my datacenter: An
analysis of alibaba datacenter traces,” in Proc. IEEE/ACM 27th Int. Symp.
Qual. Service, 2019, pp. 1–10.

[31] A. Mahgoub et al., “Sophia: Online reconfiguration of clustered NoSQL
databases for time-varying workloads,” in Proc. USENIX Annu. Tech.
Conf., 2019, pp. 223–240.

[32] J. Chen et al., “HotRing: A hotspot-aware in-memory key-value store,” in
Proc. 18th USENIX Conf. File Storage Technol., 2020, pp. 239–252.

[33] I. Baldini et al., “Serverless computing: Current trends and open problems,”
in Research Advances in Cloud Computing. Berlin, Germany: Springer,
2017, pp. 1–20.

[34] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and R. Stutsman, “Rock-
steady: Fast migration for low-latency in-memory storage,” in Proc. 26th
Symp. Operating Syst. Princ., 2017, pp. 390–405.

[35] X. Qin, W. Zhang, W. Wang, J. Wei, X. Zhao, and T. Huang, “Optimizing
data migration for cloud-based key-value stores,” in Proc. 21st ACM Int.
Conf. Inf. Knowl. Manage., 2012, pp. 2204–2208.

[36] H. Yu, H. Wang, J. Li, X. Yuan, and S.-J. Park, “Accelerating serverless
computing by harvesting idle resources,” in Proc. ACM Web Conf., 2022,
pp. 1741–1751.

[37] M. Bilal, M. Canini, R. Fonseca, and R. Rodrigues, “With great
freedom comes great opportunity: Rethinking resource allocation for
serverless functions,” in Proc. 18th Eur. Conf. Comput. Syst., 2023,
pp. 381–397.

[38] C. Loboz, “Cloud resource usage—heavy tailed distributions invalidat-
ing traditional capacity planning models,” J. Grid Comput., vol. 10,
pp. 85–108, 2012.

[39] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic
approach to fast in-memory key-value storage,” in Proc. 11th USENIX
Symp. Netw. Syst. Des. Implementation, 2014, pp. 429–444.

[40] Memcached, “Memcached,” 2023. [Online]. Available: https://www.
memcached.org/

[41] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient
{MRC } construction with { SHARDS},” in Proc. 13th USENIX Conf.
File Storage Technol., 2015, pp. 95–110.

[42] X. Hu et al., “Fast miss ratio curve modeling for storage cache,” ACM
Trans. Storage, vol. 14, no. 2, pp. 1–34, 2018.

[43] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat, “It’s time to revisit
LRU versus FIFO,” in Proc. 12th USENIX Conf. Hot Top. Storage File
Syst., 2020, pp. 12–12.

[44] Y. Yang and J. Zhu, “Write skew and zipf distribution: Evidence and
implications,” ACM Trans. Storage, vol. 12, no. 4, pp. 1–19, 2016.

[45] Intel, “Data plane development kit,” 2023. [Online]. Available: https://
www.dpdk.org/

[46] Twitter, “Twitter cache trace,” 2020. [Online]. Available: https://github.
com/twitter/cache-trace

[47] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-KV:
A case for GPUs to maximize the throughput of in-memory key-value
stores,” in Proc. VLDB Endowment, vol. 8, no. 11, pp. 1226–1237, 2015.

[48] Z. Qiu et al., “FrozenHot cache: Rethinking cache management for modern
hardware,” in Proc. 18th Eur. Conf. Comput. Syst., 2023, pp. 557–573.

[49] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in Proc. 1994
ACM SIGMOD Int. Conf. Manage. Data, 1994, pp. 243–252.

[50] W. Hörmann and G. Derflinger, “Rejection-inversion to generate vari-
ates from monotone discrete distributions,” ACM Trans. Model. Comput.
Simul., vol. 6, no. 3, pp. 169–184, 1996.

[51] S. Das, V. R. Narasayya, F. Li, and M. Syamala, “CPU sharing techniques
for performance isolation in multi-tenant relational database-as-a-service,”
in Proc. VLDB Endowment, vol. 7, no. 1, pp. 37–48, 2013.

[52] R. Gu et al., “Adaptive online cache capacity optimization via lightweight
working set size estimation at scale,” in Proc. 2023 USENIX Annu. Tech.
Conf., 2023, pp. 467–484.

[53] D. Mvondo et al., “OFC: An opportunistic caching system for FaaS
platforms,” in Proc. 16th Eur. Conf. Comput. Syst., 2021, pp. 228–244.

[54] F. Romero et al., “Faa$T: A transparent auto-scaling cache for serverless
applications,” in Proc. ACM Symp. Cloud Comput., 2021, pp. 122–137.

[55] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in Proc. 2020 USENIX Annu. Tech. Conf.,
2020, pp. 419–433.

Huijuan Xiao received the master’s degree from the
School of Computer Science, Fudan University. She
is currently working towards the PhD degree with the
School of Computer Science, Fudan University. Her
research interests include database systems and cloud
computing.

Shixi Yang received the bachelor’s degree from the
Department of Atmospheric and Oceanic Science,
Fudan University. He is currently working towards
the master’s degree with the School of Computer Sci-
ence, Fudan University. His research interests include
database systems and high-performance computing.

Kai Zhang received the PhD degree from the Uni-
versity of Science and Technology of China in 2016.
He is an associate professor with the School of Com-
puter Science, Fudan University. He was a research
fellow with the National University of Singapore and
a visiting scholar with The Ohio State University. His
research interests are mainly in the fields of parallel
and distributed computing and database systems.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.memcached.org/
https://www.memcached.org/
https://www.dpdk.org/
https://www.dpdk.org/
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace

XIAO et al.: GENIE: A LIGHTWEIGHT SERVERLESS INFRASTRUCTURE FOR IN-MEMORY KEY-VALUE CACHING 4103

Yinan Jing (Member, IEEE) received the PhD degree
in computer science from Fudan University, Shang-
hai, China, in 2007. He is an associate professor with
the School of Computer Science at Fudan University.
He was also a visiting scholar with the Department of
Computer Science, the University of Southern Cali-
fornia. His current research interests include Big Data
analytics, database systems, spatial and temporal data
management, and data security and privacy. He is a
member of ACM.

Zhenying He received the BS, MS, and PhD degrees
in computer science from the Harbin Institute of
Technology, China, in 1998, 2000, and 2006, respec-
tively. Currently, he is an associate professor with the
School of Computer Science, Fudan University. His
current research interests include keywords search on
structured data, query processing on RDFdata, and
Big Data.

X. Sean Wang (Senior Member, IEEE) received the
PhD degree in computer science from the University
of Southern California. He is a distinguished pro-
fessor with the School of Computer Science, Fudan
University, Shanghai, China. Before joining Fudan
University in 2011, he was the Dorothean chair pro-
fessor with the University of Vermont. His research
interests include data systems and data security. He
is the fellow of CCF and the member of ACM.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 27,2026 at 00:30:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

