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Abstract—For interactive data exploration, approximate query
processing (AQP) is a useful approach that usually uses samples
to provide a timely response for queries by trading query
accuracy. Existing AQP systems often materialize samples in
the memory for reuse to speed up query processing. How to
tune the samples according to the workload is one of the key
problems in AQP. However, since the data exploration workload
is so complex that it cannot be accurately predicted, existing
sample tuning approaches cannot adapt to the changing workload
very well. To address this problem, this paper proposes a deep
reinforcement learning-based sample tuner, RL-STuner. When
tuning samples, RL-STuner considers the workload changes from
a global perspective and uses a Deep Q-learning Network (DQN)
model to select an optimal sample set that has the maximum
utility for the current workload. In addition, this paper proposes
a set of optimization mechanisms to reduce the sample tuning
cost. Experimental results on both real-world and synthetic
datasets show that RL-STuner outperforms the existing sample
tuning approaches and achieves 1.6×-5.2× improvements on
query accuracy with a low tuning cost.

Index Terms—Approximate query processing, Interactive data
exploration, Data analysis.

I. INTRODUCTION

TODAY, Interactive Data Exploration (IDE) is widely
used to help users get insights and inspirations from

a large volume of data. IDE is a typical “human-in-the-
loop” application, where users incrementally refine filters and
visualize subsets of data using multiple plots for different
attributes and aggregate functions [1], [2]. The workload in
IDE is typically composed of sessional queries and ad-hoc
queries. Sessional queries are usually several sequential and
iterative queries that are inter-dependent [2]. When the user’s
interest changes, an ad-hoc query that is independent with pre-
vious sessional queries will be posed to explore data through
different attributes, such as independent browsing defined
in [2]. These two types of queries are usually interwoven
together in the workload of IDE. Hence, the workload in IDE
is much more complex than the static reporting-style analytical
workload and is continuously changing along with the changes
of the user’s interests.

In IDE tasks, answering queries in a short response time is
very important to user experience, because high query latency
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will adversely inhibit users’ productivity and creativity [3], [4].
Approximate query processing (AQP) is one of the promising
techniques to meet the requirements of timely response in
data exploration by trading query accuracy for query response
time [5]. Since data exploration usually relies just on a “big
picture”, approximate results with an accuracy guarantee are
acceptable. The sampling-based AQP techniques [6]–[12] use
small samples instead of the whole underlying dataset to
answer queries. There are two ways to generate samples for
AQP. One is online sampling that generates samples at runtime
for a specific query. For example, the online AQP engine
Quickr [9] optimizes the query execution by incorporating
sampler operators into a cost-based query optimizer and
generating samples for a given query at runtime. However,
online sampling is usually expensive and benefits only one
specific query. If we can reuse these samples generated online,
the sampling cost can be amortized in the future queries.
Another is offline sampling that pre-computes samples from
the underlying data according to the query workload that is
known a priori. For example, the well-known offline AQP
engine BlinkDB [7] pre-computes stratified samples on the
most frequently used columns that appeared in the query
workload while keeping the total storage costs below the given
storage budget. Compared with the expensive online sampling,
offline sampling can help AQP systems significantly reduce
the query latency by leveraging on the pre-computed samples.
However, the need for a priori knowledge of the workload
makes that offline sampling cannot adapt to the workload
changes in IDE.

Taster [13] combines the benefits of both online and offline
sampling. It materializes samples generated online for reuse
in future queries and continuously tunes the samples from
a local perspective to adapt to the workload changes. When
tuning samples, Taster assumes the recently appeared queries
are a good representation of future queries and uses a greedy
algorithm [13], [14] to approximate the optimal sample set
which has the maximum utility for these recent queries. To
the best of our knowledge, this is the state-of-the-art sample
tuning approach in AQP systems. However, the assumption in
Taster cannot always hold for all future queries in IDE, and the
greedy algorithm in Taster cannot select the optimal sample
set. Therefore, Taster might fail to select appropriate samples
that can bring the maximum utility for the current workload
to materialize. Furthermore, since there may be an overlap
between the samples in the AQP systems, the existing page
replacement algorithms for operating system (e.g., FIFO and
LRU) are difficult to use to solve the sample tuning problem. In
summary, for AQP systems, how to tune samples to materialize
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Fig. 1: An example of interactive data exploration to show how Taster and RL-STuner tune samples to adapt to the workload
changes. qi represents a query in data exploration. The queries with the similar color are inter-dependent with each other.
Assume the memory fits three samples and Sj is a sample. Marks  and  illustrate whether the current query can be
answered by existing samples. The sample with ✓ represents it is used to answer the current query.

according to the changing workload in IDE is a challenging
and fundamental problem.

In this paper, to address the sample tuning problem in AQP,
we propose a learning-based sample tuner, called RL-STuner,
which tunes samples from a global perspective by using a
deep reinforcement learning model. When tuning samples, RL-
STuner learns from all appeared queries and leverages this
global knowledge to guide sample tuning. To avoid the heavy
overhead for computing the optimal sample set from a large
number of possible combinations of samples, RL-STuner uses
a Deep Q-learning Network (DQN) model [15] to get an
approximate optimal solution, which stores the feedback of
tuning samples in different episodes and uses them to guide
the sample selection in one sample tuning. For example1,
Figure 1 shows an interactive data exploration and how Taster
and RL-STuner tune samples to adapt to the workload changes.
As shown in Figure 1, the workload is composed of several
sessional queries and ad-hoc queries. To demonstrate the inter-
dependent feature of queries in the same session, we use
the circles filled with similar colors to represent a session
of queries. For simplicity, we assume the memory fits three
samples. If one of the existing samples can be used to answer
the current query, we mark . Otherwise, we mark  and it
will trigger a round of sample tuning. As shown in Figure 1,
overall, RL-STuner outperforms Taster, since RL-STuner tunes
the samples from a global perspective, while Taster only
leverages the recent w (assuming w = 3) queries to guide
tuning. For instance, RL-STuner can support q8 because it
learns knowledge from all previous queries (q1 ∼ q7) and
recommends S7 that can be used to answer q8, while Taster
just consider the recent 3 queries (q5 ∼ q7). As for q20 and
q28, they also benefit from the global perspective tuning of RL-
STuner. As for q27, although it is an ad-hoc query, RL-STuner
still can support this query because it can learn knowledge
from previous simialr ad-hoc queries {q6, q7, q19}.

Furthermore, since the workload in IDE is changed dy-
namically, it is best to tune the samples as soon as possible.

1The workload used in this example can be retrieved from
https://github.com/DogeWang/RL-STuner.

Otherwise, the stale samples cannot support the AQP system
to return the query result with high accuracy for the changing
workload. However, tuning the samples by recomputation
from scratch will incur a heavy overhead once the workload
changes. The expensive sample tuning cost will adversely
inhibit the performance of AQP systems. To mitigate this
problem, we propose three optimization mechanisms to reduce
the sample tuning cost in RL-STuner. First, we propose a lazy
sample tuning strategy to reduce the sample selection and
tuning operations during tuning. Second, we use a parameter
transfer approach to initialize the DQN model in the sample
tuning task with a suitable solution to reduce the training
cost. Third, we propose a utility estimator to avoid accessing
the underlying data when calculating the utility of samples to
reduce the calculation cost. By taking these three optimization
mechanisms, RL-STuner can quickly tune the samples to adapt
to the changing workload.

To sum up, this paper makes the following contributions:
• We propose a deep reinforcement learning-based sample

tuner, RL-STuner, which tunes samples from a global
perspective by using a DQN model, to make the AQP
system be able to adapt to the changing workload in IDE.

• We propose a set of optimization mechanisms to system-
atically reduce the sample tuning cost in RL-STuner: a
lazy sample tuning strategy to avoid unnecessary sample
selection and tuning operations, a parameter transfer
approach to reduce the training cost of the DQN model,
and a utility estimator to reduce the computational cost
of sample utility.

• We intensively evaluate RL-STuner under various work-
loads with the state-of-the-art IDE benchmark [2]. Exper-
imental results on both real-world and synthetic datasets
show that RL-STuner outperforms the existing sample
tuning approaches and achieves 1.6×-5.2× improvements
on query accuracy of AQP queries in IDE.

II. FRAMEWORK AND PRELIMINARIES

A. Framework
Figure 2 shows an AQP system framework, into which

we incorporate a sample tuner. The system is composed of
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Fig. 2: An AQP system with a sample tuner

three parts: Query Processing, Sample Generation and Sample
Tuning.
Query Processing: This part is responsible for answering
AQP queries by using samples. At first, a query will be
rewritten as an AQP query on samples. When executing this
query, the system will try to find a suitable sample from the
sample buffer that is a memory buffer for storing samples.
Specifically, if the selection conditions of a new query are
covered by the selection conditions of a previous query, we
can reuse the sample generated according to the previous
query to answer the new query since the sampling range of
this sample can cover the new query. Note that if more than
one sample in the sample buffer can satisfy the query, we will
choose the sample with the largest sampling ratio to answer
this query because such a sample can usually provide a higher
query accuracy. Finally, the system will return an approximate
result to the user.
Sample Generation: The sample generator is responsible for
generating samples from the underlying data according to the
incoming queries. Note that the sample generation does
not require prior knowledge about the workload. Initially,
when no query arrives, the sample generator first generates
a uniform sample from the underlying data. Then, when
a query is posed, the sample generator generates samples
according to the characteristics of that query. Specifically,
if there are GROUP BY clauses in the posed query, the
sample generator will generate stratified samples based on
the attributes in the GROUP BY clauses. Otherwise, the
sample generator will generate uniform samples for this
query. If there are WHERE clauses in the posed query, the
sample generator will generate one or multiple samples
from data subsets according to the selection conditions
in the WHERE clauses. For the stratified sampling, the
size of the sample in each stratum is |S|/Ns, where |S|
is the sample size (i.e., sampling ratio multiplied by the
total size of underlying data) and Ns is the number of
strata. Note that if a specific sample has been generated
according to the previous queries, the sample generator
will not generate the same sample again. The metadata of
each sample is stored in the memory. Thanks to the cheap disk
price, the sample pool can usually maintain all the samples that

have been generated.
Sample Tuning: In order to reduce the cost of accessing
samples and speed up query processing, we use a sample
buffer in memory to maintain the frequent-used samples. Due
to the limited memory space, obviously, the sample buffer
cannot store all samples. Therefore, we need to select a subset
of samples from the sample pool to maximize the utility of
samples. In our system, the sample tuner is responsible for this
task. Once the system cannot find a suitable sample from the
sample buffer to answer the query or the accuracy of the result
cannot satisfy the user’s accuracy requirement, the offline
sample tuning will be triggered. In this paper, to adapt to the
changing workload in IDE, we propose a deep reinforcement
learning-based sample tuner (RL-STuner). When a sample
tuning is triggered, RL-STuner tunes the sample buffer by
using a DQN model to select an optimal sample set with
the maximum utility according to the queries that users
have posed. Note that the DQN model in RL-STuner will
only learn historical queries that have appeared before this
tuning and will not learn anything about future queries.
During the tuning, if a sample is obsoleted from the sample
buffer by the sample tuner, it will be moved back to the sample
pool to avoid repeated sample generation.

B. Preliminaries
Sample and Active sample. In this paper, we denote all the
generated samples as S = {S1, S2, · · ·, Sn}, which are stored
in the sample pool. Since the samples in the sample buffer can
be used directly to answer the query, we call these samples
stored in the sample buffer as active samples, denoted as S̃
(S̃ ⊆ S), which are selected from S according to a specific
sample tuning strategy by the sample tuner.
Benefit of an active sample. For each active sample S̃
(S̃ ∈ S̃), if it can be used to answer a specific query q (denoted
as S̃ → q), the benefit of using S̃ to answer q is the weighted
summation of the improvements on query latency and query
accuracy. The improvement on query latency RL(q|S̃) is
calculated by RL(q|S̃) = (L(q|D)−L(q|S̃))/L(q|D) , where
L(q|D) is the query latency of using D to answer q, and
L(q|S̃) is the query latency by using S̃ to answer q. For the
improvement on query accuracy, we use the negative value of
the relative error (RE) to evaluate it because using samples to
answer a query will bring a loss on the query accuracy. The
relative error is calculated by Formula (1)

RE(q|S̃) = |θ(D)− θ̂(S̃)|
θ(D)

(1)

, where θ(D) is the exact query result based on the underlying
data D and θ̂(S̃) is the approximate query result based on the
active sample S̃. For group-by queries, the relative error is the
average error upon each group. Therefore, the benefit of using
an active sample S̃ to answer query q is defined as follows.

Definition II.1 (Benefit). Given a query q and an active
sample S̃, the benefit of using S̃ to answer q is defined as

B(q|S̃) =

{
α ·RL(q|S̃) + (1− α) · −RE(q|S̃), if S̃ → q

− 1, otherwise
(2)
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, where the first part is the improvement on query latency,
the second part is the improvement on query accuracy, and α
is set by users according to their requirements for the query
accuracy. If S̃ cannot support q, the benefit is set to be −1.

Cost of an active sample. The cost of an active sample S̃
is C(S̃) = Cg(S̃) + Cl(S̃), where Cg(S̃) is the time cost
of generating S̃ from the underlying data and Cl(S̃) is the
time cost of loading S̃ from the sample pool to the sample
buffer. Note that we consider Cg(S̃) in the calculation of
C(S̃) because the more chance the active samples can be
selected to reuse, the more the cost of sample generation can
be amortized.
Benefit of an active sample set. Suppose we have an active
sample set S̃. To evaluate the benefit brought by this set of
active samples for a specific query q, we define B(q|S̃). Note
that we use only one active sample to answer the query, even
if there are multiple active samples that can be used to answer
q. This strategy is also widely used in existing AQP systems
[7], [16]. Hence, we define B(q|S̃) as the maximum benefit
brought by samples in S̃, i.e., B(q|S̃) = maxS̃∈S̃ B(q|S̃).
Utility of an active sample. Suppose we have an active sample
S̃ ∈ S̃. For a workload Q, the queries that can be answered
by S̃ to get the maximum benefit is denoted as QS̃ = {q|q ∈
Q∧S̃ = S̃q}, where S̃q is the active sample in S̃ that can bring
the maximum benefit for q. If none of the active samples in S̃
can be used to answer the query q, we will set S̃q as null. The
utility of the active sample S̃ is calculated by the total benefit
of using S̃ for Q minus the cost of S̃. To use the same metric
as the definition of benefit, we use the relative cost instead of
the actual cost of S̃ in the following definition.

Definition II.2 (Utility). Given a workload Q and an active
sample S̃, the utility of using an active sample S̃ is defined
as follows:

U(S̃|Q) =
∑
q∈QS̃

B(q|S̃)− C(S̃)∑
q∈QS̃

(L(q|D)− L(q|S̃)) + 1
(3)

, where the first part is the total benefit of using S̃ and the
second part is the relative cost between the cost of S̃ and
the query latency improvement of using S̃. To avoid the zero
division error when QS̃ is empty, we add 1 to the denominator
of the second part.

Utility of an active sample set. Suppose we have an active
sample set S̃. For each query q in the workload Q, we select
an active sample S̃q ∈ S̃ that can bring the maximum benefit
for q. The S̃q is set as null if none of the active samples in
S̃ can be used to answer the query q. To evaluate the utility
of using S̃ for the workload Q, we define U(S̃|Q), which is
calculated by Formula (4).

U(S̃|Q) =
∑
q∈Q

B(q|S̃q)−
∑

S̃∈S̃ C(S̃)∑
q∈Q(L(q|D)− L(q|S̃q)) + 1

(4)
In Formula (4), the first part is the total benefit obtained from
all queries by using S̃ and the second part is the relative cost
between the total cost of S̃ and the query latency improvement

achieved by all queries in the workload Q. Note that we ignore
the queries whose S̃q is null when calculating the utility of an
active sample set by Formula (4).
Sample tuning. Given a query q, sample tuning will be
triggered if none of the active samples in the sample buffer
can be used to answer q or the accuracy of the approximate
query result cannot meet the user’s requirement about query
accuracy. When tuning the sample buffer, we aim to select
an optimal active sample set to maximize the utility for the
current workload Q, meanwhile keeping the storage size of the
active sample set below the given storage budget. In this paper,
we define this problem as an Active Sample Selection problem,
which can be reduced to the NP-hard knapsack constraint
problem because each sample can be used for answering more
than one query, and some queries can be answered by more
than one sample [13].

Definition II.3 (Active Sample Selection problem). Suppose
we have a sample set S. Given a storage budget Mmax of
the sample buffer, the problem is to select an optimal active
sample set S̃ that has the maximum utility according to the
given workload Q. The problem can be formulated as follows:

argmax
S̃⊆S

U(S̃|Q)

s.t. MS̃ =
∑
S̃∈S̃

mS̃ ≤ Mmax

(5)

, where mS̃ is the storage size of an active sample S̃ and MS̃
is the total storage size of S̃. Specifically, the sample set S is
generated based on Q by the sample generator.

III. DEEP REINFORCEMENT LEARNING-BASED SAMPLE
TUNER

A. DQN-based Sample Selection Approach

To avoid the heavy overhead of selecting the actual optimal
active sample set for the given workload, RL-STuner uses a
Deep Q-learning Network (DQN) model [15] to solve the
Active Sample Selection problem. When selecting samples, we
use a sample state zS to indicate whether a sample S in the
sample set S is selected into the sample buffer. If S is selected
into the sample buffer, let zS = 1. Otherwise, let zS = 0. We
can easily get the selected samples that will be stored in the
sample buffer in terms of the sample state zS of each sample.
During the sample selection, we regard a selected sample S
with zS = 1 as an active sample S̃ = S|S ∈ S ∧ zS = 1
and a set of selected samples as an active sample set, i.e.,
S̃ = {S̃} = {S|S ∈ S ∧ zS = 1}.

The process of solving the Active Sample Selection problem
can be transformed as a Markov Decision Process (MDP),
since the new sample state set only depends on the current
sample state set and the samples whose state will be flipped.
As shown in Figure 3, we map the process of active sample
selection into MDP as follows.

• Environment. Environment is the AQP system with the
workload. In the environment, the AQP system uses the
active samples in the sample buffer to answer all the
queries in the workload.
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Fig. 3: The Markov Decision Process framework of the Active
Sample Selection problem

• Agent. Agent is the RL-STuner. By receiving rewards
and states from the environment, RL-STuner updates the
policy to guide the sample selection for an optimal sample
set.

• State. State e is a set of sample state that represents
whether a sample S ∈ S is selected to store in the sample
buffer, i.e., e = {zS}. In addition, we denote the utility
of using active samples at state e as U(e) = U(S̃|Q),
where S̃ is the set of samples with sample state zS = 1
in e.

• Action. Action a is to flip the state of a given sample S,
i.e., flip zS from 0/1 to 1/0.

• Policy. Policy defines which sample will be flipped in a
specific state and environment. In other words, given a
state e, the policy will select a sample S from S.

• Reward. Reward is the utility change received after
transitioning from the state e to the new state e′ due
to the action a, calculated by the formula Ra(e, e

′) =
U(e′)− U(e).

Therefore, the Active Sample Selection problem becomes a
reinforcement learning problem, whose goal is to learn an
optimal policy to select the active samples, which is defined
as follows:

π∗ = argmax
π

Eπ[

T−1∑
t=0

γtRat
(et, et+1)] (6)

, where π represents a policy function that selects an action
according to a given state, Eπ[·] represents the expected total
discounted reward of the policy π for a given state, γ ∈ [0, 1)
represents the discount rate, t is the time step, et is the state
at time t, and at is the action selected by policy π at time t.

Since both the state space and the action space in the Active
Sample Selection problem have an exponential relationship
with the number of samples in the sample pool, we use the
DQN model to guide the sample selection in RL-STuner. DQN
is a value-based reinforcement learning algorithm that trains
a deep neural network to approximate the state-action value
Q-value of each state and action. For a given state e and action
a, Q-value is the cumulative reward of performing action a at
state e, which is denoted as Q(e, a). The higher the Q(e, a),
the better the action a is for the state e. Hence, we can get
the best policy to select samples based on the Q-values. By
using the neural network, DQN can deal efficiently with the
curse of dimensionality, unlike Q-learning [17].

Figure 4 shows the overview of the DQN-based sample
selection approach (abrr. DQN-SS) in RL-STuner. The in-
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Fig. 4: An overview of the DQN-based sample selection
approach in RL-STuner

put of the DQN-based sample selection approach includes
a workload Q, a sample set S that is generated based on
the queries in Q as described in Section II-A, and a storage
budget Mmax of sample buffer. With these inputs, we first
initialize a state e0 = {zS0

, ..., zSn
}. According to the state

e0, we get the current active sample set S̃0 and calculate the
utility and storage overhead of S̃0. Then, we use the ϵ-greedy
policy to select an action a0 according to the state et = e0.
The ϵ-greedy policy is an action selection method to balance
exploration and exploitation. If the value of ϵ is less than a
random value, we randomly select an action from the action
space, i.e., randomly select a sample S from the sample set
S to flip its state. Otherwise, we select the action that has
the maximum Q-value for state e0 by using the deep neural
network, i.e., a0 = argmaxa Q(e0, a). Next, according to the
selected action, we update the state et = e1, the active sample
set S̃t = S̃1, the utility of the active sample set, and the storage
overhead of the active sample set. We also calculate the reward
between the state e0 and the new state e1. After that, we store
the state, the selected action, the reward, and the new state
in the replay memory and use these experiences to update
the deep neural network. These processes will be repeated in
an episode until the time step of this episode is larger than
the given threshold or the storage size of the active sample
set is larger than the given storage budget. Finally, when the
maximum allowed number of episodes is reached, we return
the last active sample set S̃t as the selected active sample set
to store in the sample buffer. The time complexity of DQN-SS
is about O(E ·T · |Q| · |S̃|), where E is the number of episodes
in DQN, T is the number of time steps in DQN, and |Q| · |S̃|
is the time complexity of calculating the utility U(S̃|Q). Note
that we ignore the time complexity of the deep neural network
in DQN-SS because of its concise structure that has four fully
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connected layers.
Since the DQN-based sample selection approach in RL-

STuner has the memory ability to store the sample selection
experiences in different episodes, it can use these experiences
to guide sample selection to approximate the global optimal re-
sult. By sharing the sample selection experiences in episodes,
RL-STuner knows which action is a good choice for the given
state even if it has not performed this action in the current
episode. Furthermore, RL-STunecr can also utilize the prior
knowledge of workload to improve the AQP performance.
According to the given prior knowledge of the query workload,
RL-STuner can select a set of active samples into the sample
buffer in advance offline and reuse them across future queries.

B. Optimization Mechanisms for Tuning Cost

1) Lazy Sample Tuning: To adapt to the changing workload
in IDE, we will tune the sample buffer if none of the active
samples in the sample buffer can be used to answer the new
query q or the accuracy of the approximate query result cannot
meet the user’s requirement about query accuracy. The natural
sample tuning strategy is full sample tuning strategy, which re-
selects a new active sample set S̃′ to replace all active samples
in the sample buffer when the workload changes. However, the
cost of the full sample tuning strategy is expensive because the
calculation cost of sample selection increases as the workload
size increases and the I/O cost of replacing all active samples
in the sample buffer is large. Fortunately, we find that some
sample selection and tuning operations in the full sample
tuning strategy are unnecessary since there is often an overlap
between the current active sample set S̃ and the new active
sample set S̃′. The difference between S̃ and S̃′ is that some
active samples in S̃′ is used to answer the queries which
trigger the sample tuning for the current active sample set
S̃. Therefore, to reduce the sample tuning cost, we propose a
lazy sample tuning strategy (abbr. LAZY) to avoid unnecessary
sample selection and tuning operations.

The lazy sample tuning strategy works as Algorithm 1
shown. The input of this algorithm includes a workload Q,
a sample set S, an active sample set S̃, a storage budget
Mmax of sample buffer, and a relative error threshold β that
represents the user’s requirement about query accuracy. With
these inputs, we first find out which active samples will be
saved in the sample buffer (line 2-5). For each active sample
S̃ in S̃, we remove it from S̃ if it has the minimum utility or it
can only be used to answer one query in Q. The removed
active sample set and saved active sample set are denoted
as S̃r and S̃s, respectively. Then, we find out the queries
Qt which will trigger the sample tuning for S̃s (line 6-8).
Next, by using the DQN-based sample selection approach in
Section III-A, we select an optimal active sample set S̃t for
Qt (line 9-11). Finally, we store S̃t in sample buffer and get
the tuned active sample set S̃′ = S̃s ∪ S̃t (line 12-13). The
time complexity of the lazy sample tuning strategy is about
O(|S̃|+|Q|·|S̃s|+E·T ·|Qt|·|S̃t|). Obviously, the sample tuning
cost of the lazy strategy is much lower than that of the full
sample tuning strategy because |Qt| is much less than |Q| and
we only need to select a few active samples S̃t when tuning

Algorithm 1: Lazy sample tuning (LAZY)

Input: workload Q, sample set S, active sample set S̃,
storage budget Mmax of sample buffer, relative
error threshold β.

Output: tuned active sample set S̃′.
1 S̃r = ∅,Qt = ∅;
2 foreach S̃ ∈ S̃ do
3 if S̃ == argmin

S̃∈S̃
U(S̃|Q) or |QS̃ | == 1 then

4 S̃r.add(S̃);

5 S̃s = S̃− S̃r;
6 foreach q ∈ Q do
7 if min

S̃∈S̃s
RE(q|S̃) > β then

8 Qt.add(q);

9 Sc = S− S̃s;
10 Mf = Mmax −MS̃s ;
11 S̃t = call the DQN-based sample selection approach to

select an optimal active sample set with Qt,Sc,Mf ;
12 S̃′ = S̃s ∪ S̃t;
13 return S̃′;
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Fig. 5: An example of the same Q-value in two consecutive
sample tuning tasks

samples. The lazy strategy needs additional space to store the
utility of each active sample and the number of times the active
sample was used. However, the space cost can be ignored
because the number of active samples in the sample buffer is
limited. Since both S̃s and S̃t have a good performance for the
corresponding queries in Q, S̃′ also has a good performance
for Q even if it is not the optimal active sample set for Q. In
fact, the lazy sample tuning strategy makes a trade-off between
the query accuracy and the sample tuning cost.

2) Parameter Transfer: To obtain a strategy with high
utilities, we often need to use a large number of episodes
to train the DQN model. However, the larger number of
episodes, the higher cost of the model training. Fortunately,
when tuning samples, we find that some state-action pairs in
the DQN model have the similar Q-values across two con-
secutive sample tuning tasks, because the workloads between
these tasks are very similar in RL-STuner. Figure 5 shows
an example of the same Q-value in two consecutive sample
tuning tasks. Given two consecutive sample tuning tasks ti and
ti+1, the workloads in these tasks are Qti = {q1, q2, q3, q4}
and Qti+1

= {q1, q2, ..., q7}, and the sample sets in these
tasks are Sti = Sti+1

= {S1, S2, S3}. For simplicity, we set
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the utility of using an active sample set S̃ for a workload
Q as U(S̃|Q) = |{qi|qi ∈ Q ∧ S̃qi ̸= null}|. As shown in
Figure 5, for the state-action pair (e, a) which has appeared
in both ti and ti+1, since the sample S3 cannot be used to
answer any queries in Qti − Qti+1

= {q5, q6, q7}, the state-
action value Q(e, a) is same across the two sample tuning
tasks, i.e., Qti(e, a) = Qti+1(e, a). Therefore, inspired by
the parameter transfer in transfer learning [18], we propose
a parameter transfer (abbr. TRAN) approach to initialize the
DQN model for the subsequent sample tuning task by the
DQN model for the previous sample tuning task to speed-up
the learning process.

However, since the state-action space in the DQN-based
sample selection approach is set based on the sample set in the
sample pool when sample tuning, the DQN models may have
different state-action spaces in two sample tuning tasks. Hence,
the knowledge in the historical sample tuning task cannot be
directly used by the DQN model to learn on the new sample
tuning task. To solve this problem, we define a mapping
between the state-action spaces of DQN models in the different
sample tuning tasks to transfer knowledge effectively. For each
sample tuning task, we set the state-action space in the DQN
model according to a given parameter rather than the number
of samples in the sample pool. Therefore, the DQN models in
the different sample tuning tasks have the same state-action
space even if they have different inputs. Moreover, to avoid
generating a wrong action on the non-existent samples, we
set the search space of the ϵ-greedy algorithm in each sample
tuning task according to the sample set in the sample pool. The
parameter transfer approach also supports sample updates. For
sample updates, we only need to recalculate the Q-values in
the state-action pairs which are related to the updated samples.

3) Utility Estimation: To calculate the utility of using an
active sample set S̃ for the workload Q, we need to get the
exact result and latency of each query q in Q when tuning
samples. However, the time cost of executing queries on the
underlying dataset is expensive. Therefore, to reduce the time
cost of calculating sample utility, we propose a utility estimator
(abbr. EST), which calculates an approximate value of the
utility without executing queries on the underlying dataset.

In the utility estimator, we use the confidence interval of the
approximate query result to get an approximate value of the
relative error. For an active sample S̃ and a query q that can
be answered by S̃, the approximate relative error is calculated
as R̂E(q|S̃) = |CIup(S̃)− θ̂(S̃)|/θ̂(S̃), where CIup(S̃) is the
upper bound of the confidence interval. Since the confidence
interval of the approximate query result usually covers the
exact query result, the approximate relative error usually is
an upper bound of the true relative error. Specifically, we
use the standard closed-form formulas [19] to estimate the
confidence interval for aggregate functions because the time
cost of the closed-form estimate method is much lower than
that of the bootstrap method [20]. For the query latency on the
underlying dataset, the utility estimator uses the optimizer in
the database management system to estimate the query latency.
In this paper, we use the EXPLAIN command in PostgreSQL.

C. Support for Data Updates

For a data warehouse, data updates are usually data ap-
pending operations. Hence, in this paper, we only consider
the data update form of data appending. For data updates, RL-
STuner does not need to modify its tuning functionality, but
need to update the samples in the sample buffer and sample
pool. When new data arrives, we have three sample update
strategies: 1) Timely, which will update all samples timely in
both sample buffer and sample pool; 2) Delayed, which will
update the samples in the sample buffer timely and delay the
sample updates on the sample pool, until the size of new data
exceeds a given threshold; 3) Batch, which will update all
samples in batch when the size of new data exceeds a given
threshold. Although the timely sample update strategy can
keep the samples fresh so that it can provide query accuracy
guarantee to some extent, it will cause a heavy overhead
for each sample update. For the batch update strategy, it
reduces the number of sample updates while it causes a loss
of query accuracy due to the stale samples. The delayed
update strategy tries to find a balance between the timely
and the batch strategies. Hence, in this paper, we take the
delayed sample update strategy to support data updates. When
updating samples, we can use the R* algorithm [21] if the
sample size is fixed. If the user gives a requirement about
query accuracy, we will use the timely update strategy and
the adaptive sample update approach [22] to update samples to
provide a priori query accuracy guarantee for the user as much
as possible. Furthermore, the three update strategies can also
be used to update samples when deleting or updating tuples
in the underlying dataset. For the data deleting operation,
since the R* algorithm just marks the deleted tuples in a
sample as invalid rather than removing these tuples from
this sample, we need to update the sampling ratio of this
updated sample accordingly to guarantee query accuracy.
For the data updating operation, we implement it through
a combination of the deleting operation and the appending
operation.

IV. EXPERIMENTS

A. Experiment Setup

Experimental Settings. We implement an AQP system on
top of PostgreSQL 11.2 to support AQP queries. The AQP
system is responsible for query rewriting, answer rewriting,
and sample tuning. PostgreSQL is used to get the query results
on samples. For the active samples in the sample buffer,
we store them in the memory by using the “pg_prewarm”
module2. The underlying data and the samples in the sample
pool are stored in the disk. All experiments are conducted on a
Linux machine with Intel Xeon Gold 5215 CPU, Nvidia Titan
RTX GPU, 64GB RAM, and 3.3TB HDD disk. Note that the
GPU is only used to train the DQN model in RL-STuner.
Approaches. We implement four sample tuning approaches in
the AQP system and compare them by the experiments.

• Taster: a sample tuning approach that uses a sliding
window of the previous w queries as an approximation of

2https://www.postgresql.org/docs/current/pgprewarm.html
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Fig. 6: Workload patterns on Flighs dataset

future queries to guide sample tuning [13]. When tuning
samples, Taster uses a greedy algorithm [14] to calculate
the sample set which has the maximum utility for the w
recent queries. The default value of w is set at 10.

• Taster-AW: an extension of Taster that uses an adaptive
window (abbr. AW) instead of a fixed-size window by
dynamically changing w according to the workload [13].

• Taster-FW: an extension of Taster that uses a full-size
window (abbr. FW) instead of a fixed-size window by
considering all the queries that have appeared in the
workload, i.e., w is set at the number of queries in the
workload. Therefore, when tuning samples, Taster-FW
can leverage all the queries in the workload that have been
input into the AQP system to guide the sample tuning.

• RL-STuner: a sample tuning approach that integrates a
DQN-based sample selection approach with optimization
mechanisms proposed in this paper. The number of
episodes in the DQN model is set at 500.

Datasets. We conduct experiments on two datasets. 1) Flights
(real dataset): a real-world dataset [23] that has 12 attributes
and contains information about on-arrival statistics for the last
few years. By default, we use the data generator from [2]
to scale the dataset up to 100 million tuples while ensuring
that the relationships between attributes are still maintained. 2)
TPC-H (synthetic dataset): to demonstrate the effectiveness of
our approach for complex queries with join clauses and group-
by clauses. We conduct experiments on a TPC-H dataset [24]
with a fact table and 7 dimension tables. By default, the fact
table has 100 million tuples.
Workloads. We use the state-of-the-art IDE benchmark,
IDEBench [2], to generate workloads on the above two
datasets for interactive data exploration. Each workload in-
cludes 150 queries.

1) Workload on Flights: we use IDEBench [2] to generate an
exploratory workload, which is composed of 15 different size
of sessions and 15 ad-hoc queries. The queries in the workload
have different predicates on different attributes and the session
size distribution is shown in Figure 6(a)3. Furthermore, to
evaluate the effect of session size on the performance, we
generate three workloads with different session sizes: short
session workload, medium session workload, and long session
workload. To avoid the interference from ad-hoc queries, we
exclude the ad-hoc queries from these workloads. Figure 6(a)
shows the session size distribution of these three workloads.

3Let an ad-hoc query equivalent to a session whose size is 1.

Note that to compare the performance fairly, we keep the
queries in these three workloads staying the same, while
distributing these queries into different sessions. As shown
in Figure 6(b), the queries in the workload covers various
selectivities that is closer to the real application scenario.
By default, our experiments are conducted on the exploratory
workload.

2) Workload on TPC-H: we use IDEBench [2] to generate
an exploratory workload for TPC-H, which is also composed
of 15 different size of sessions and 15 ad-hoc queries. Since
IDEBench [2] cannot generate complex queries with join
condition, in order to evaluate the performance of complex
queries, we use the join clauses in the typical complex queries
Q12 and Q14 from the TPC-H benchmark to extend twelve
queries in the exploratory workload.
Performance Metrics. We use two metrics to evaluate the
performance. 1) Relative Error (RE): which is calculated
by Formula (1) to evaluate the query accuracy. 2) Query
Latency: which is the query response time. Futhermore, we
also evaluate the performance improvement of these methods
by using the Speedup metric that is calculated by Speedup =
LEXACT /LAQP , where LEXACT is the query latency of
getting the exact query result on the underlying dataset by
using PostgreSQL and LAQP is the query latency of getting
the approximate query result by using AQP. Note that for the
query that cannot be answered by the active samples in the
sample buffer, we set LAQP = LEXACT .

In the following experiments, the relative error, the query
latency, and the speedup is the average value of 10 separate
experiments with the same experimental settings. By default,
the sampling ratio is set at 10%, the storage budget of the
sample buffer is set at 50% of the underlying data size, the
relative error threshold above which sample tuning will be
triggered is set at 2%, the tuning time budget of the sample
tuning approaches is set at 60 seconds, and no prior knowledge
of the workloads is provided.

B. Comparison of Sample Tuning Approaches

Performance on Flights and TPC-H datasets. We compare
the performance of Taster, Taster-AW, Taster-FW, and RL-
STuner on both a real dataset (Flights) and a synthetic dataset
(TPC-H) with different data sizes. We vary the data size
from 100 million tuples to 1 billion tuples and set the tuning
time budget according to the data size. Figure 7(a) and
Figure 7(b) show the average relative error of 150 queries
in the exploratory workload by using four different sample
tuning approaches. We find that the data size has a little
effect on the query accuracy of the four approaches, and RL-
STuner outperforms other approaches. For Flights, RL-STuner
achieves about 4×-5.2 ×improvements over Taster, Taster-AW,
and Taster-FW on the query accuracy. For TPC-H, RL-STuner
achieves about 1.6×-2.7× improvements over Taster, Taster-
AW, and Taster-FW on the query accuracy. RL-STuner has a
higher query accuracy than Taster and Taster-AW because its
tuning strategy from a global perspective makes it can select
appropriate samples to answer the queries with high accuracy.
Furthermore, RL-STuner outperforms Taster-FW even though
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Fig. 7: Performance on Flights and TPC-H datasets

Taster-FW also tunes samples from the global perspective.
This is because RL-STuner can get a global optimal solution
by using the DQN model, while Taster-FW just performs a
local optimization by using the greedy algorithm. Note that the
local optimization in Taster-FW means it cannot get a global
optimal solution for the given problem.

Figure 7(c) and Figure 7(d) show the average query latency
and speedup of 150 queries in the exploratory workload by
using four different sample tuning approaches. Overall, RL-
STuner has a lower query latency and a higher speedup than
Taster, Taster-AW, and Taster-FW since the active samples
tuned by RL-STuner can be used to answer new queries when
the workload changes. The average query latency of Taster,
Taster-AW, and Taster-FW increases significantly as the data
size increases. This is because the AQP system needs more
time cost to access the underlying dataset to get the results for
the queries that cannot be answered by the active samples. The
query latency of RL-STuner is also affected by the data size,
but the effect is much less because there are more chances that
the active samples in the memory selected by RL-STuner can
cover more queries. The query latency of Taster-FW on TPC-
H is less than that on Flights because the data distribution in
Flights is very skewed, which makes the active samples tuned
by Taster-FW unable to adapt to the changes in workload well.
As for the sample tuning cost, as the data size grows, so does
the sample tuning cost, as shown in Table I. However, the
sample tuning cost of RL-STuner is still much lower than
that of Taster, Taster-AW, and Taster-FW. The results shown
in the above experiments demonstrate that RL-STuner can not
only achieve better performance on query accuracy and latency
when facing workload changes but also has a lower tuning cost
than other sample tuning approaches.

Moreover, we evaluate the gap between RL-STuner and the
theoretical optimal solution. Since the time cost of getting the
optimal solution is expensive, we limit the maximum size of
the sample pool to 40 samples and compare the performance
of the optimal solution and RL-STuner on Flights (100 million

TABLE I: The average time cost of sample tuning on Flights
and TPC-H datasets

Data Size Taster Taster-AW Taster-FW RL-STuner

Flights
100 million 48s 52s 55s 21s
500 million 158s 127s 164s 47s

1 billion 295s 316s 360s 78s

TPC-H
100 million 50s 55s 68s 20s
500 million 156s 160s 171s 51s

1 billion 340s 341s 363s 82s

Short Medium Long
Session size

0

5

10

15

20

25

Re
la

tiv
e 

er
ro

r /
 R

E 
(%

)

Taster
Taster-AW

Taster-FW
RL-STuner

(a) Query accuracy

Short Medium Long
Session size

0

500

1000

1500

2000

Qu
er

y 
la

te
nc

y 
(m

s)

7.
3x

5.
5x

7.
1x

4.
9x

5x

4x

10
.6

x

5.
9x

7.
2x

11
.2

x

11
x

11
x

:Speedup

Taster
Taster-AW

Taster-FW
RL-STuner

(b) Query latency

Fig. 8: Performance for workloads with various session sizes
on Flights dataset

tuples). The sample tuning cost of getting the optimal solution
is too high (about 2 hours) to apply to the real AQP system.
In contrast, the sample tuning cost of RL-STuner is only
about 20 seconds, while it only degrades the utility of active
samples by about 13.6% of the optimal solution and the
query accuracy by about 10% of the optimal solution.
Effect of workload changes. To evaluate the effect of
workload changes, we conduct experiments by using multiple
workloads with different characteristics on the Flights dataset.
We first use three workloads (the short session workload, the
medium session workload, and the long session workload) that
have different session sizes to evaluate the effect of session
size on the performance. The detailed session size distribution
of the three workloads is shown in Figure 6(a).

Figure 8(a) shows the average relative error of the queries in
the three workloads. Overall, RL-STuner has a lower relative
error than Taster, Taster-AW, and Taster-FW. The session size
has a limited effect on the relative error of RL-STuner since it
tunes samples from a global perspective and obtains the global
optimal solution by using the DQN model, which keeps it from
the predicament of optimization for a specific session. On the
contrary, the session size has a large effect on the relative error
of Taster, Taster-AW, and Taster-FW. For Taster and Taster-
AW, the relative error of them on the medium session workload
(14.2%/16.7%) and long session workload (11.5%/21.2%) is
larger than that on the short session workload (10.5%/15.3%),
because they are easily stuck in the optimization for a specific
session when the session size is close to the window size w.
Specifically, the relative error of Taster on the long session
workload is less than that on the medium session workload
because the assumption in Taster is easier to hold in the
long session workload. The relative error of Taster-AW on
the long session workload does not benefit from this because
the adaptive window size is tuned too small in the process of
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Fig. 9: Performance for workloads with various ratios of ad-
hoc queries on Flights dataset

auto-tuning. The increased session size also decays the query
accuracy of Taster-FW even though it tunes samples from a
global perspective, since it cannot converge into the global
optimal solution by using the greedy algorithm. As shown
in Figure 8(b), the same reason causes the session size to
have a limited effect on the query latency of RL-STuner, but
Taster, Taster-AW, and Taster-FW cannot ignore the effect of
the session size.

During the data exploration, except for sessional queries,
users often issue ad hoc queries aperiodically. Hence, to
evaluate the effect of ad-hoc queries on performance, we vary
the ratio of ad-hoc queries in the exploratory workload from
10% to 50%. Specifically, to compare the performance fairly,
we shuffle some sessional queries in the exploratory workload
as ad-hoc queries. Thus, in this experiment, although the ratios
of ad-hoc queries in these workloads are different, they have
the same set of queries. Figure 9(a) shows the average relative
error of the queries by using the four different sample tuning
approaches. Overall, RL-STuner has a lower relative error than
Taster, Taster-AW, and Taster-FW. As shown in Figure 9(a), the
increased ad-hoc queries will not increase the relative error of
RL-STuner. The ratio of ad-hoc queries has a limited effect on
the relative error of RL-STuner since it uses all queries in the
current appeared workload to tune samples, which makes it can
obtain the relationship between the queries even though they
are far apart. On the contrary, the ratio of ad-hoc queries has
a larger effect on the relative error of Taster, Taster-AW, and
Taster-FW. For Taster and Taster-AW, this is because the ratio
of ad-hoc queries will decide whether the new queries depend
on the recent queries. Specifically, Taster and Taster-AW have
a lower relative error on the 50% ratio of ad-hoc queries
because these ad-hoc queries decrease the number of sessional
queries and the session size. Hence, these two approaches are
easily getting out of the predicament that is only optimized
for a long session. For Taster-FW, this is because it uses the
same greedy algorithm as Taster and Taster-AW to select the
active samples when tuning samples. The same reason causes
the ratio of ad-hoc queries to have a limited effect on the
query latency of RL-STuner, but Taster, Taster-AW, and Taster-
FW cannot ignore the effect of the ratio of ad-hoc queries, as
shown in Figure 9(b).

In summary, compared with Taster, Taster-AW, and Taster-
FW, RL-STuner can better adapt to the workload changes in
session size and the ratio of ad-hoc queries.
Effect of sampling ratio. To evaluate the effect of sampling
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Fig. 10: Performance with different sampling ratios on Flights
dataset
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Fig. 11: Performance with different storage budgets on Flights
dataset

ratio on the performance, we vary the sampling ratio from
10% to 0.1% and conduct experiments for the exploratory
workload on the Flights dataset. Note that the size of the
sample buffer is fixed in these experiments. As shown in
Figure 10(a), the average relative error of queries by using
the four sample tuning approaches increases as the sampling
ratio decreases, because as we all know, a smaller sample will
definitely bring a higher error. Specifically, as the sampling
ratio decreases, the relative error of the queries by using
RL-STuner (22.1%) is gradually approaching that of Taster
(34.4%), Taster-AW (35.8%), and Taster-FW (32.4%). This is
because when the sampling ratio is very low, there might be
no sufficient samples to support AQP, so the relative error of
queries by using different sample tuning approaches is similar.
As shown in Figure 10(b), the average latency of queries by
using RL-STuner and Taster-FW decreases as the sampling
ratio decreases. However, Taster and Taster-AW have a larger
query latency on the 0.1% sampling ratio because they are
more focused on the samples which can only be used to answer
recent queries. Hence, the system needs more time to access
the underlying dataset to get the results for other queries.
Effect of storage budget. We vary the storage budget of the
sample buffer and conduct experiments on the Flights dataset
to evaluate the effect of storage budget on the performance. We
configure the storage budget as 30%, 50%, 70%, and 100%
of the underlying data size. As shown in Figure 11(a), the
average relative error of queries by using the four sample
tuning approaches decreases as the storage budget increases,
because the system can store more active samples to answer
queries. The same reason causes the average latency of queries
decreases along with the increase of the storage budget, as
shown in Figure 11(b). Specifically, the average latency of
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Fig. 12: Performance with different time budgets for sample
tuning on Flights dataset
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Fig. 13: Performance with different proportions of prior
knowledge on Flights dataset

queries by using the four sample tuning approaches does not
decrease significantly as the storage budget increases, since
the queries can only be answered by one specific sample.
Effect of tuning time budget. We vary the time budget for
sample tuning and conduct experiments on the Flights dataset
to evaluate the effect of sample tuning cost on the performance.
We configure the tuning time budget as 60 seconds, 30
seconds, and 10 seconds. Fig 12(a) shows the average relative
error of the queries in the exploratory workload with various
tuning time budgets. As the tuning time budget decreases from
60 seconds to 10 seconds, the average relative error of queries
by using Taster, Taster-AW, and Taster-FW increases from
20%/21%/17% to 82%/88%/79%, respectively. This is because
these approaches can easily exceed the given time budget due
to the high tuning cost and fail to tune the samples in time
so that the queries can only be executed on stale samples
resulting in an increase in relative errors. On the contrary, RL-
STuner can agilely adapt to the changing workload because of
its relatively small tuning cost and evaluate queries on tuned
samples at most times rather than on stale samples. As shown
in Figure 12(a), even when the time budget is 10s, RL-STuner
still can achieve a high accuracy. The same reason causes RL-
STuner outperforms other tuning approaches on query latency,
as shown in Figure 12(b). Specifically, the average latency
of queries using RL-STuner on the small tuning time budget
setting (10s) is still less than 1 second.
Effect of utilizing prior knowledge. In the above experi-
ments, we demonstrate and discuss the results without any
prior knowledge of the workload. However, in some appli-
cation scenarios, users might be able to provide some prior
knowledge about their workload. To evaluate the effect of prior
knowledge on performance, we conduct a set of experiments

by providing different amounts of prior knowledge. Further-
more, since prior knowledge can also be used for the well-
known offline AQP engine BlinkDB [7], we add BlinkDB
as one of the baselines in these experiments. Note that the
sample tuning in BlinkDB is also triggered when the relative
error is larger than the given threshold. We randomly select
a proportion of queries from the exploratory workload on the
Flights dataset and provide them to BlinkDB, Taster, Tastwer-
AW, Taster-FW, and RL-STuner as a priori knowledge of the
workload.

Figure 13(a) shows the average relative error of the queries
given different proportions of prior knowledge. Since BlinkDB
needs a prior knowledge to pre-compute stratified samples,
BlinkDB cannot answer the queries when the proportion
of prior knowledge is 0% (denoted as N/A). As shown in
Figure 13(a), the more prior knowledge given, the higher query
accuracy the five approaches can achieve. Obviously, these
sample tuning approaches can leverage the prior knowledge
to facilitate their performance. There are two reasons for this
phenomenon. The first one is that these approaches can learn
more knowledge from the prior knowledge than before, thus
they can get a better tuning result by “foreseeing” future
queries. The second one is that this prior knowledge can make
the five approaches select a better active sample set to support
the queries in the early stage of exploration. We also find
that BlinkDB has a larger relative error than Taster, Taster-
AW, Taster-FW, and RL-STuner when the proportion of prior
knowledge is high. According to the design of BlinkDB, it
will generate samples in terms of the given storage budget
and the prior knowledge of the workload [7]. However, due to
the constrained storage budget of the sample buffer, BlinkDB
might select a sub-optimal sample set in some cases. The same
reason causes the average latency of queries to decrease along
with the increase of the proportion of prior knowledge, as
shown in Figure 13(b).

C. Evaluation of Optimization Mechanisms
In this paper, we propose a lazy sample tuning strategy, a

parameter transfer approach and a utility estimator to reduce
the sample tuning cost. To evaluate the effectiveness of the
three optimization mechanisms, we conduct a set of ablation
experiments on the Flights dataset to compare the performance
on query accuracy, query latency, speedup, and time cost
of sample tuning. We can combine the DQN-based sample
selection approach (DQN-SS) with the lazy sample tuning
strategy (LAZY), the parameter transfer approach (TRAN)
and the utility estimator (EST). To evaluate the effectiveness,
we compare five combinations: DQN-SS, DQN-SS + LAZY,
DQN-SS + TRAN, DQN-SS + EST, and RL-STuner (DQN-SS
+ LAZY + TRAN + EST). Specifically, for the combinations
with TRAN, the number of episodes in the DQN model is
set at 500. Otherwise, it is set at 1000. Moreover, we also
implement a new approach DDQN-SS with the double DQN
model [25] to evaluate the performance using different deep
reinforcement learning models.

Table II shows the comparison results of these combina-
tions. As shown in Table II, the performance of DDQN-
SS on different metrics is similar to that of DQN-SS since
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TABLE II: Performance of our sample tuning approach with different deep reinforcement learning models and optimization
mechanisms (LAZY: the lazy sample tuning strategy, TRAN: the parameter transfer approach, EST: the utility estimator)

Approaches
Online Query Processing Offline Sample Tuning

Relative error (%) Query latency (ms) Speedup Tuning cost (s)

DDQN-SS 4.18 686 9.9x 152

DQN-SS 4.17 688 9.9x 150

DQN-SS + LAZY 4.87 699 9.7x 67

DQN-SS + TRAN 4.16 683 9.9x 107

DQN-SS + EST 4.13 695 9.8x 119

RL-STuner (DQN-SS + LAZY + TRAN + EST) 4.14 685 9.9x 21
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Fig. 14: Convergence speed of different sample tuning ap-
proaches and effect of different sample tuning strategies

the overestimation in the sample selection task is not a
serious problem, especially when episodes are few. Therefore,
we select DQN for reinforcement learning in our approach.
Then, we find that taking the optimization mechanisms when
tuning samples can reduce the sample tuning cost by about
86% (from 150s to 21s) while achieving a similar query
accuracy, query latency, and speedup as DQN-SS. For the
LAZY strategy, it reduces the sample tuning cost by about 55%
because unnecessary sample selection and tuning operations
can be avoided. For the TRAN, it reduces the sample tuning
cost by about 29% while guaranteeing the query accuracy,
since the DQN model is initialized with a suitable solution
whose performance is better than the random initialization.
For the EST, it reduces the sample tuning cost by about 21%
because we do not need to access the underlying dataset
when calculating the utility of samples. Figure 14(a) shows
the convergence speed of these approaches. As shown in
Figure 14(a), the convergence speed of DQN-SS is also similar
to that of DDQN-SS. Taking TRAN when tuning samples
can dramatically improve query accuracy’s convergence speed.
The convergence speed of DQN-SS + LAZY is also fast
because the LAZY strategy only tunes a subset of the active
samples in the sample buffer.

Furthermore, to evaluate the negative impact caused by the
LAZY, we implement an approach DQN-SS + LAZY_1 to
simulate the extreme case that it selects only one sample with
the lowest utility for expulsion every once. We compare the
query accuracy of DQN-SS, DQN-SS + LAZY, DQN-SS +
LAZY_1, and RL-STuner on the Flights dataset. In this set
of experiments, we vary the number of queries from 150 to
600. As shown in Figure 14(b), DQN-SS + LAZY_1 has a
larger relative error than other approaches since it only tunes
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Fig. 15: Performance with data updates on Flights dataset

one sample in the sample buffer, but the difference between
DQN-SS + LAZY_1 and DQN-SS is small (less than 2%).
We also find that RL-STuner still achieves good performance
for scenarios with more than 150 queries.

D. Comparison of Sample Update Strategies

We take the Flights dataset with 100 million tuples as the
base data and generate three new datasets with different sizes
as the data to update, which include a dataset with 10 million
tuples (10% of the base data), a dataset with 20 million tuples
(20% of the base data), and a dataset with 50 million tuples
(50% of the base data). To simulate data updates, we divide
each dataset into 100 batches equally and feed a batch of data
to the system every time when a query ends. The data updates
will cause sample updates and further affect the performance
of RL-STuner. For data updates, we compare the performance
of three sample update strategies, i.e., Timely, Delayed, and
Batch, discussed in Section III-C. We set the threshold at
1% of the base data size for the Delayed and Batch update
strategies. Furthermore, we use the R* algorithm to update
samples. As shown in Figure 15(a), the average relative errors
under both the Timely and Delayed sample update strategies
are much lower than that under the Batch strategy since the
active samples in the sample buffer can be updated timely by
taking the Timely and Delayed sample update strategies. For
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the Batch strategy, since the samples are not updated in time,
the accuracy of some queries will drop sharply. As shown in
Figure 15(b), overall, different sample update strategies have
less impact on the query latency. The query latency under the
Timely and Delayed strategies is larger than that under the
Batch strategy because some new samples have a larger size
after the data updates. Figure 15(c) and Figure 15(d) show the
sample update cost by taking three different strategies upon
10% new data and 50% new data, respectively. As shown in
Figure 15(c) and Figure 15(d), the Delayed sample update
strategy can complete the sample update at a relatively small
cost in most cases by postponing sample updates on the sample
pool, and at the same time obtain a similar query accuracy as
the Timely strategy.

V. RELATED WORK

AQP approaches mainly include two categories: online
aggregation and sampling-based AQP. Online aggregation
usually takes samples from the dataset by storing the tuples
in random order and uses these sampled tuples to answer the
queries [26]–[36]. By online aggregation, users can observe the
progress of a query by showing iteratively refined approximate
answers, and stop the query execution once its result achieves
the desired accuracy [31]. Sampling-based AQP has been
extensively studied in the last decades. These approaches
generate samples by two ways. One is online sampling that
generates samples at runtime for the input query, such
as Quickr [9] and index-assisted sampling method [37].
By generating a new specific sample for each query,
the online sampling methods can guarantee the sample
returned for a query is independent of those returned
for all previous queries [38]. However, the cost of online
sampling will increase query latency, and the sample
can only benefit one specific query. The online sampling
methods ignore the possibility of sample reusing. Another
is offline sampling that draws samples from the underlying
data in a pre-processing step according to a priori knowledge
of the workload and leverages these pre-computed samples to
answer queries [7], [8], [10]–[12], [39]–[47]. Compared to the
online sampling approaches, the offline sampling approaches
achieve a significant reduction in query latency by reusing
samples to answer queries. However, the IDE workload can
hardly be predicted since the user usually explores the interest
of data by changing queries continuously.

In the past few years, several machine learning-based
AQP approaches have emerged [48]–[55]. For example, to
achieve higher accuracy for the given query, [55] uses the
reinforcement learning model to decide how much budget
should be allocated to each sampler when generating a sample.
The reinforcement learning model has also been used in
DBMS, such as database tuning [56], [57] and materialized
view selection [58], [59]. Although the materialized view can
provide accurate query results, it requires a large storage space
and depends on a static workload.

VI. CONCLUSION

In this paper, we propose a deep reinforcement learning-
based sample tuner RL-STuner to make an AQP system able

to adapt to the changing workload for IDE. RL-STuner uses a
DQN model to tune samples from a global perspective. In
addition, we propose a set of optimization mechanisms to
systematically reduce the sample tuning cost in RL-STuner.
Extensive experiments on real-world and synthetic datasets
show that RL-STuner can outperform existing sample tuning
approaches on multiple performance metrics.
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