
Building High-performance Application Protocol Parsers on Multi-core
Architectures

Kai Zhang1, Junchang Wang2, Bei Hua3, Xinan Tang4

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Hefei, Anhui, 230027, China
Multi-core Computing and Communication Lab

Suzhou Institute for Advanced Study, USTC
Suzhou, Jiangsu, 215123, China

{1kay21s, 2wangjc}@mail.ustc.edu.cn
3bhua@ustc.edu.cn

4xinan.tang@sbcglobal.net

Abstract—Parsing packet payloads according to the
syntax and semantics of an application protocol is a key
step in analyzing network traffic. However, it is still a
challenge to fulfill this task with high speed(10Gbps+)
because parsing packets through deep-content analysis to
build a corresponding syntax tree requires tremendous
computing resources. Multi-core architectures provide a
viable solution for building high-performance parsers for
application protocols.

Existing sequential application protocol parsers are
hard to be reused, and building a new protocol parser from
scratch is error-prone and time-consuming. This paper
proposes a general and efficient approach to building
high-performance parallel application protocol parsers
on multi-core platforms. First, the open-source lexical
analyzer FLEX is used to describe a protocol and generate
a sequential parser. Then a source-to-source translation
is performed to transform the sequential parser into a
parallel one. Finally, an efficient parallel run-time system
is built by employing lock-free design principles from
top to bottom to support multi-threaded execution on
multi-core processors. Experimental results show that our
parsers achieve nearly 20Gbps for average HTTP packets
and 5Gbps for the challenging smaller FIX packets.

Keywords-Multi-core; Protocol Parser; High-
performance Network Processing;

I. INTRODUCTION

Application protocol parsers, which translate raw
packet streams into high-level representations of the
traffic, form important components of network measure-
ments, network monitoring tools(Tcpdump [4], Ethere-
al [1]), real-time network intrusion detection systems
(Snort [3]), smart firewalls, and application proxies.
Unfortunately, existing application protocol parsers are
usually tightly coupled with their specific application
environments which usually have different interfaces,

4This work was done when he was a honorary professor in USTC.
This paper is supported by the Fundamental Research Funds for

the Central Universities under Grant No.WK0110000007.

data structures and hard-coded implementations, and
thus are difficult to be reused. On the other hand,
building application protocol parsers from scratch is a
tedious, error-prone and sometimes prohibitively time-
consuming task due to the complexity.

Recent works mainly focus on designing new declar-
ative languages and compilers to simplify the construc-
tion of application protocol analyzers. For instance, bin-
pac [15] proposes a declarative protocol language and
implements a compiler to translate the declaration into a
C++ parser. GAPA [5] proposes a self-contained system
that handles both protocol parsing and traffic analysis,
in which GAPAL, a protocol specification language, is
designed to describe both ASCII and binary protocols.
However, both systems run at very low speeds, e.g., tens
to hundreds of Mbps for HTTP workload, which are far
from the 1Gbps line rate of a typical enterprise network,
let alone the upcoming 10Gbps speed.

Internet traffic approximately doubles every year,
which is faster than what Moore’s Law predicts for
the semi-conduct industry. In addition, avalanche of
new application protocols has emerged with increasing
complexity. All of these factors make network equip-
ment become the bottleneck of the Internet. As multi-
core architecture becomes mainstream in the computer
industry, more and more CPU cores are built into
a general-purpose CPU, and therefore powerful PC
becomes a promising candidate for high-performance
network equipments. Recent progress in this area is
very inspiring. For example, by exploiting the massively
parallel processing power of GPU and highly optimized
packet I/O engine, PacketShader [17] implements a PC-
based software router that achieves nearly 40Gbps IPv4
forwarding on an 8-core PC. RouteBricks [14] imple-
ments a software router architecture that parallelizes
router functionality across both multiple servers and
multiple cores within a single server, demonstrating a

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.37

188

35Gbps parallel router prototype whose capacity can be
linearly scaled through the use of additional servers.

Both PacketShader and RouteBricks run on network
layer to do stateless IP forwarding, where packets are
treated independently and thus massive parallelism can
be easily exploited on the individual packet level. On
the contrary, application protocol parsers work on top of
the TCP layer and deal with stateful packet processing
where individual packets must be grouped into flows
and pass through more processing steps, such as IP
defragmentation, TCP reassembly and stateful analysis,
message reconstruction, and message parsing. Further-
more, they must handle incremental input and maintain
partial information across packets, messages, and two
directions of a connection. Consequently, application
protocol parsers require intensive computing and mem-
ory accesses, and thus are very difficult to achieve high
performance.

In this paper, we investigate a viable approach to
building high-performance application protocol parsers,
which is (1) general enough to be applied to any
application protocol, (2) easy to be constructed, and
(3) efficient enough to meet 10Gbps throughput. The
main idea is to use open source lexical analyzer FLEX
to specify protocols and generate a sequential protocol
parser, then parallelize the sequential code on multi-
core architectures to achieve high speed. This solution
is general since FLEX can be used to describe any
application protocols, and easy to be developed since
it avoids introducing a new language.

We develop high-efficient parallel protocol parser in
two parts. First, we build a parallel run-time system
on Intel multi-core architectures by exploiting lock-free
design principle from top to bottom to eliminate unnec-
essary synchronization among CPU cores, as well as
locks implicitly used in libc calls. Second, we perform
a source-to-source translation to transform a sequential
parser into a parallel one.

To evaluate the effectiveness of this parallelizing
method, we implement a HTTP parser and a FIX
(Financial Information eXchange protocol) parser on
Intel multi-core processors. Experimental results show
that the HTTP parser achieves almost 20Gbps on aver-
age HTTP packets and more than 5Gbps for the FIX
parser with very small packet size. To the best of our
knowledge, no literature has ever reported such a high
speed for HTTP and FIX parser.

The rest of the paper is organized as follows. In
section II, we present FLEX as a protocol description
language and parser generation tool. In section III we
discuss general design principles and implementation
strategies of protocol parsers. To evaluate the protocol
parsers, a system which parallelizes a complete L2 to L7
network processing system is presented in section IV.

In section V, we report experimental results and analyze
system performance. Section VI discusses related work,
and section VII concludes.

II. FLEX AS A PARSER GENERATION TOOL

In terms of syntax and grammar, application protocols
are roughly classified into binary protocols and text-
based protocols. Our application protocol parsers focus
on the more complex text-based protocols which use
ASCII text to encode both the structure and the content
of messages.

1: ˆ"GET" | ˆ"PUT" | ˆ"COPY" | ˆ"HEAD" |
2: ˆ"POST" | ˆ"MOVE" | ˆ"TRACE" | ˆ"MKCOL" |
3: ˆ"UNLOCK"| ˆ"CONNECT"| ˆ"OPTIONS" | ˆ"PROPFIND"|
4: ˆ"LOCK" | ˆ"DELETE" | ˆ"PROPPATCH"
4: {BEGIN(ML); return REQUEST;}
5:
6: ˆ"HTTP"\/(0\.9|1\.0|1\.1){space}[1-5][0-1][0-9]
7: {BEGIN(ML); return RESPONSE;}
8: . {return NON_HTTP;}
9:

10: <ML>"Transfer-Encoding: " {BEGIN(TE);}
11: <ML>"Content-Length: " {BEGIN(LEN);}
12: <ML>({alphanum}|-|:)+ {return SKIP_METHOD;}
13: <ML>{CRLF} {BEGIN(INITIAL); return COMPLETE;}
14:
15: <TE>"chunked" {BEGIN(ML); return CHUNKED;}
16: <TE>"identity" {BEGIN(ML); return IDENTITY;}
17: <LEN>{digit}+ {BEGIN(ML); return LENGTH;}
18: <<EOF>> {return -1;}

Figure 1. HTTP Parser Skeleton

Application protocol parsers involve parsing protocol
message headers to extract information such as mes-
sage type, message length and semantically meaningful
data fields. Text-based protocols usually have a char-
acter string called header field in each line, therefore
searching predefined strings (also called patterns) is
an essential task of a protocol parser. FLEX is an
open source tool for generating scanners that recognize
lexical patterns in text. A scanner to be generated is
described in the form of pairs of regular expressions
and actions, which are called rules.

FLEX also provides a mechanism for conditionally
activating rules. For example, Any pattern with the
prefix <sc>is active only when the scanner is in the
start condition named <sc>. Rules activated by a start
condition keep active until the next BEGIN action is
executed.

Figure 1 is a simplified HTTP parser skeleton de-
scribed with FLEX-style rules. It identifies the overall
structure and essential fields of HTTP messages from
packet streams. The first rule (line 1-5) identifies HTTP
requests, the second rule (line 6-7) identifies HTTP
responses, and the third rule (line 8) ignores other
unrecognizable packets. The transfer-length of an HTTP
message can be determined by one of the following
two methods depending on how the message-body is

189

encoded. If a Transfer-Encoding header field is present
and has the value ”identity”, the message length is indi-
cated in the Content-Length header field. If the Transfer-
Encoding header field has the value ”chunked”, the
message body is made up of a series of chunks whose
size is given at the first line of each chunk. After a
request/response message is detected, scanner activates
the start condition ML which activates four rules in line
10-13 for searching the lines of Transfer-Encoding and
Content-Length, skipping any other header lines (line
12), and identifying the end of message header(line 13).

This example shows that FLEX has the capability
to describe any text-based application protocols by
combining rules with start conditions. Furthermore,
parsers generated by FLEX can be easily extended. For
example, if Cookie field needs to be analyzed, we can
just add a rule as follows and write its processing code
in main program.

<ML>"Cookie: " { return ML_Cookie; }

Since what we require is (1) a streaming-based parser
and (2) a parallel parser, two issues must be addressed
before the code generated by FLEX can be used in
network traffic analysis.

First, FLEX-generated parser processes input in a
”pull” mode, i.e., when an input buffer is exhausted
the parser blocks to wait for further input. However,
the network input is a steam of packets, and a protocol
parser has to cope with potentially a large number
of concurrent connections, which makes it impossible
to spawn a thread for each connection. To solve this
problem, a control block is allocated for each flow to
save its parsing states, and the parsing process resumes
whenever a new packet of the same flow arrives. Using
one thread to handle a number of streams simplifies the
streaming-based processing and can retain the control
flow of the original code for further parallelization.

Second, protocol parsers generated by FLEX are
sequential programs and cannot take advantage of multi-
core architectures to achieve high performance. The
following sections solve the problem by parallelizing
the sequential parsers on multi-core processors.

III. DESIGN SPACE EXPLORATION

Two aspects of work should be done to parallelize
sequential protocol parsers on multi-core processors,
one is a parallel run-time system, and the other is
a source-to-source transformation tool. This section
presents design space explorations related to the two
aspects.

A. Run-time System Built with Lock-free Design Prin-
ciple

Previous experiences [10] [9] [6] have shown that
lock-based schemes are not suitable for fine-grained

network applications, and domain specific connection-
affinity must be exploited to utilize the inherent paral-
lelism in network applications. In general, connection-
affinity has two properties: 1)packets belonging to the
same connection must be processed in order; 2)packets
belonging to different connections can be processed in
parallel.

To enforce the first property and exploit the second
one, we adopt a pipelined Run-To-Completion (RTC)
parallel model to completely eliminate locks. In addi-
tion, we apply lock-free principle to entire paralleliza-
tion framework to take advantage of the multi-core
architecture.

We will review the basic and most important design
principles for parallelizing L7 network applications on
multi-core platforms, based on which we build a high-
efficient parallel run-time system for the protocol parser.

Figure 2. Pipeline Organization

1) Pipelined RTC Model : We build the run-time
system with a pipelined approach. Each pipeline is
divided into three stages named Input (IP), Application
(AP), and Output (OP), respectively. Fig. 2 shows a
6-pipeline organization where IP stage and OP stage
each uses one core, and AP stage uses six cores. IP
core is in charge of packet receiving and dispatching,
AP core runs in RTC model to process a packet from
beginning to end without serving other packets, and OP
core collects and records analysis results and sends them
out. To guarantee the connection-affinity property, IP
core uses a symmetric packet-classifying-hash function
to dispatch packets so that packets belonging to the
same connection are distributed to the same AP core.

The RTC model greatly simplifies the paralleliz-
ing work and the corresponding source-to-source code
transformation. With only one packet processed on each
AP core at a time, the sequential control flow of an
application remains the same, and only global tables
need to be split among all AP cores so that each core
just accesses its own private sub-tables. In this case, the
focus of the source-to-source transformation is simply
to replace all global accesses with local ones in each
AP core.

2) Lock-free FIFO: We use a single-producer/single-
consumer FIFO to connect two neighboring cores in
a pipelined fashion. To prevent core-to-core communi-
cation from being a bottleneck, we develop a cache-

190

friendly concurrent lock-free FIFO by aggregating read-
/write operations based on cache line access [10] [13].
The main idea is to separate the head and tail pointers
of a FIFO in different cache lines so that cache line
thrashing can be avoided as much as possible. When the
FIFO is nearly empty or full, a spin-loop is used on both
sides to synchronize the enqueue/dequeue operation.

3) Pre-allocated and Lock-free Control Blocks: Pro-
tocol implementations usually use some fixed-sized data
structures called control blocks to record states. For ex-
ample, TCP control blocks are used to track the states of
TCP connections. In existing implementations, control
blocks are dynamically allocated and de-allocated by
calling libc functions – malloc() and free(). However,
hidden locks are found in the two functions which
seriously degrade application’s performance in multi-
core environments when they are frequently invoked.

To remove the hidden-locks, memory pre-allocation
is adopted in our design. A bulk of memory space is
pre-allocated for each type of control blocks on each
CPU core. The allocation of a control block includes
locating the corresponding free list via CPU ID and
List ID, and getting a free block from the list; the de-
allocation of a control block simply returns the block
to its corresponding free list. Since each CPU core
operates on its own lists, no lock/unlock operation is
needed as it would be in malloc() and free().

Table I
CPU CYCLES USED FOR MEMORY ALLOCATION

Allocated Block Size(Bytes)
(CPU Cycles) 32 64 128 256 512
Our malloc 52 53 54 58 75
Libc malloc 170 202 271 410 695
Improv.(%) 69 74 80 86 89

Table I compares the CPU cycles taken to allocate
different size of blocks on a single core by our lock-
free malloc() and the libc malloc(). As shown in the
table, lock-free malloc() outperforms libc malloc() by
nearly 90% for 512-byte blocks. As the number of CPU
cores increases, higher improvements are expected since
hidden-locks are completely eliminated in our lock-free
malloc().

B. Source-to-Source Transformation

FLEX-generated C code cannot run in parallel due to
the use of global variables. A set of global variables are
used by FLEX to track the parsing states, e.g., variable
yytext is used to point to the current pattern identified.

Since protocol parser works on the basis of connec-
tion, and all packets belonging to the same connection
are distributed to the same AP core in our parallel run-

struct yy_buffer_state
{

char * yytext; char * yytext;
int yyleng; => int yyleng;
char * yy_c_buf_p; char * yy_c_buf_p;
char yy_hold_char; char yy_hold_char;
... ...

}

Figure 3. Mapping from Global Variables to Local Variables

time system, global variables can be converted to local
ones by performing the following two passes:

1) In the first pass, all functions that use those global
variables are found out. This can be done in
a bottom-up fashion. If a global is referenced
by a pointer, we require an annotation to that
variable; otherwise an accurate alias analysis must
be used [19].

2) In the second pass, for each function found out
in 1) we add an extra pointer parameter such as
∗yy ptr that will receive a pointer to the struct
yy buffer state; for the function body, a vari-
able reference is replaced by a pointer dereference
as shown below:

yy_hold_char --> yy_ptr->yy_hold_char

At runtime, whenever a connection is established, a
yy buffer state instance is allocated from heap and
its pointer is recorded in the connection control block.
During the life time of a message, this structure is
associated with the connection and the parser only visits
the assigned structure so that it can process millions
of connections in parallel. With the above techniques,
any FLEX-generated application protocol parsers can be
easily and effectively parallelized.

IV. RUN-TIME SYSTEM SETUP

To build a parallel run-time system customized for
network processing, we parallelize a TCP/IP stack
and a port independent protocol identification engine
from Libnids [2] on Intel multi-core processors. In
this section, we introduce the hardware platform and
discuss design decisions in pipeline mapping and run-
time system implementation.

A. Hardware Platform

We build our run-time system on commercial multi-
core architectures. Our server is equipped with an
Intel Xeon L5640 Westmere CPU(Hexa-core processor,
2.26Ghz) and 8GB memory. The L1 and L2 cache are
built within each core, which are 64KB and 256KB,
respectively. The L3 cache is 12MB and is shared
among all cores. It also has a built-in memory controller
which offers lower memory access latency. Our system

191

runs on a 64-bit Linux 2.6.36 kernel and is compiled
by GCC 4.1.2 with -O2 option.

B. Pipeline Mapping

Our parallel run-time system is built on a pipelined
RTC model illustrated in Fig. 2 where pipeline parti-
tion is the first decision to make. Roughly a packet
processing pipeline can be divided into 6 stages: (1)
packet input and checksum verification; (2) IP defrag-
mentation; (3) TCP processing; (4) port independent
protocol identification; (5) L7 processing such as HTTP
protocol parsing; (6) post-processing on the analyzed
results. Since no hardware FIFO support is present in
commodity multi-core processor so far, we implement
efficient software lock-free FIFO to connect neighboring
stages.

Table II
EXECUTION TIME OF PIPELINE STAGES INCLUDING FIFO AND LB

Pcap LB FIFO L3 TCP Iden. HTTP
160 120 150 170 1300 80 400

To make a sensible decision on pipeline partition-
ing, the execution time of each pipeline needs to be
measured. Table II shows the average execution time
of each stage including FIFO and Load Balance(LB)
when running the HTTP parser with trace File-1(See
Section V-A) as the input. The trace file is read into
memory in advance, and then packets are fed into the
system for processing. It’s worth noting that execution
time of TCP stage varies significantly with the number
of concurrent TCP connections and the number of cores
serving in this stage, therefore its cost cannot be taken
as a fixed one.

Assume TIP , TFIFO, and TAP are the execution
time of IP stage, FIFO operation and AP stage,
respectively. In a balanced pipeline execution model
with N pipelines, the following equation is satisfied.

TIP + TFIFO = (TAP + TFIFO)/N (1)

Using the data in Table II, TIP and TAP can be
calculated as follows:

TIP = TPcap + TLB = 280(cycles)

TAP = TL3 + TTCP + TIden. + THTTP

= 1950(cycles)

The optimal value of N is 5 (pipelines), since (280+
150 = 430) ≈ ((1950 + 150)/5 = 420).

Considering the total number of available cores is 6
in our server, we use 4 pipelines to build the HTTP
parser(one core is reserved for OP and OS scheduler).

Figure 4. Pipeline Mapping

V. EXPERIMENTS AND ANALYSIS

This section evaluates the performance of our sys-
tem and analyzes the factors that may have impacts
on system performance. Experimental environment is
described in Section IV-A. Although 10Gbps I/O engine
has been reported in [7] [17] [14] [16], we choose to
read the trace file from memory instead of real NIC so
that higher input speed is allowed and the maximum
throughput of our protocol parsers can be tested.

A. Trace File Characteristics

Three trace files are used in the experiments, whose
characteristics are described in Table III. Column
Packets counts the number of packets in each trace
file, and Pkt. Len. is the average size of these packets.
TCP Conn. is the average number of concurrent TCP
connections observed in the trace files, and Conn. Rate
indicates the average arrival rate of new TCP connec-
tions measured in the number of new connections per
1000 packets. When a header line strides two packets, a
new buffer is allocated and the constituent pieces of the
header line are copied from their original buffers to the
new buffer for concatenation. We call this the A/B buffer
problem. Column A/B is the percentage of packets that
arouse A/B buffer problem. A chunked-encoding mes-
sage takes more CPU cycles than a transfer-encoding
message, as the length of each chunk is unknown in
advance and the parser has to inspect the packet payload

192

to skip them. Column Chunk denotes the percentage
of packets that are encoded in chunks.

Table III
CHARACTERISTICS OF TRACE FILES

File Packets Pkt. TCP. Conn. Per.(%)
Len. Conn. Rate A/B Chunk

1 2,472,221 764 31,768 49.8 0.2 3.0
2 5,697,000 319 8,721 84.5 21.9 32.4
3 1,000,000 92 77,709 94.8 0.0 0.0

File-1 was collected from a university gateway in
January 2011, and features large packet size and large
number of concurrent TCP connections. File-2 was gen-
erated by an HTTP protocol generator, and features high
TCP connection rate, high percentage of A/B buffer
packets and chunked-encoding packets. The version of
HTTP in the two trace files is HTTP 1.1. To apply the
method to other application protocols, we build a FIX
protocol parser and use File-3 as its input. FIX is a TCP-
based application protocol for real-time information
exchange in securities transaction and market. File-3
was generated by a FIX protocol generator, and features
small packet size, large number of concurrent TCP
connections and high TCP connection rate. In addition
to that, FIX parser has to inspect each byte of the FIX
packet, and therefore the workload is very heavy.

B. Performance Evaluation and Workload Analysis

This section evaluates the throughput of the two
parallel protocol parsers. The two parsers run on the
hardware platform described in IV-A. Of the six cores,
one core is reserved for OP stage and OS scheduler, and
therefore at most five cores, i.e., four pipelines, are used
in the experiments. The throughput of the two parsers
tested with different number of cores are reported in
Table IV, where the first two rows correspond to the
HTTP parser with File-1 and File-2 as its input, and the
last row corresponds to the FIX parser with File-3 as
its input. To analyze the cause of performance variance,
execution time of each pipeline stage is measured and
listed in Table V.

Table IV
PERFORMANCE ON HEXA-CORE SERVER

(Gbps) Number of Cores Used
File 1 2 3 4 5

1 7.4 7.3 12.0 15.3 19.0
2 2.1 2.1 4.1 5.9 7.8
3 1.4 1.4 2.6 3.9 5.3

Table V lists the average cost of each pipeline stage
of the three trace files, and the last column shows the
total costs of AP stage. Since the cost of Pcap stage and

FIFO stay the same, they are not listed in the table. The
identification stage takes less cycles because its time is
averaged among multiple packets per connection.

Table V
PIPELINE STAGE COSTS PER PACKET

(Cycles) Pipeline Stage AP
File LB L3 TCP Iden. L7 Total

1 120 170 1300 80 400 1950
2 90 167 500 77 2200 2944
3 65 172 2040 50 3100 5362

Since File-1 has the largest average packet size
and the least percentage of A/B buffer and chunked-
encoding packets, it is the best-case input for HTTP
parser and the throughput reaches almost 20Gbps. The
large number of concurrent TCP connections leads to a
heavy load on the TCP stage.

File-2 has larger percentage of A/B buffer and
chunked-encoding packets and thus it requires more
processing resources. In this trace file, each generated
packet has a long header field in the HTTP payload,
which requires byte-by-byte skipping in parsing(1800+
cycles more than File-1).

File-3 is the worst case input and gets the lowest
throughput of 5.3Gbps. It contains very small pack-
ets (less than 100 bytes), huge number of concurrent
TCP connections and high TCP connection rate which
increases the workload of TCP stage(2040 cycles).
Moreover, since each field of a FIX packet needs to be
parsed, almost each byte has to be loaded into cache.

When one core is used, the parser degenerates to
a sequential one, therefore no FIFO is needed and
the communication cost is zero. When two cores are
used, FIFO is used to connect IP core with AP core,
which introduced a communication cost of 150 cycles,
and that’s why performance drops from column 1 to
column 2 in Table IV. From the last column, we can
deduce that the huge cost in AP stage results in an
imbalanced pipeline, which is the root cause for the
low performance of File-2 and File-3. However, as the
number of cores increases, the overhead of AP stage
can be amortized and the overall performance can be
improved continuously. As shown that our HTTP parser
can run much faster than 10Gbps in average cases and
approach 80% of 10Gbps in extreme cases, we believe
our system can handle real HTTP traffic at 10Gbps in
practice.

When one core is used, the parser degenerates to a
sequential parser, where no FIFO is needed and the
communication cost is zero. When two cores are used,
FIFO is used to connect IP core with AP core, and
a 150 cycles of communication cost is introduced as
well. Thats why performance drops from column 1

193

to column 2 in Table IV. Although the AP stages
workload imposed by File-2 and File-3 is amortized
among four pipelines, it is still much higher than the
workload of IP stage, and thats why these two cases
have lower performance. However, if more cores are
available, system performance will improve.

C. System Speedup

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

S
pe

ed
up

Number of Pipelines

File-1
File-2

File-3
Linear Speedup

Figure 5. System Speedup

Figure 5 plots the speedup curves of the three cases
in Table V. The two curves corresponding to File-2 and
File-3 are close to linear speedup, whereas the curve
corresponding to File-1 increases a little slower.

According to Amdahls law, speedup of a parallel
system is limited by the sequential portion of the
workload. In the three cases, the sequential portion
of the workload (i.e., the workload of IP stage) is
the same, 430 cycles; but the parallel portion of the
workload (i.e., the workload of AP stage) varies greatly,
from 1950 cycles in case 1 to 5362 cycles in case
3. Case 1 has the highest percentage of sequential
workload, so the system speedup is the lowest. When
four pipelines are used in case 1, the workload of IP
stage and AP stage on each pipeline almost balance,
reaching the optimum configuration. On the contrary,
case 3 has the lowest percentage of sequential workload
(only 8%), so the system speedup is remarkable. Even
four pipelines are used in case 3, the workload of AP
stage on each pipeline is still much higher than that of
IP stage; thats why case 3 has the lowest throughput.
To improve the performance of FIX parser, either more
pipelines are employed when extra cores are available,
or try to reduce the workload of AP stage by further
optimization.

D. Memory Pre-allocation

This section evaluates the impact of memory man-
agement strategy on system performance. Two memory
management strategies are compared, dynamic memory

allocation with libc malloc() and free(), and memory
pre-allocation with our lock-free malloc() and free(),
and the throughput of HTTP parser running on different
number of cores with File-1 as its input are reported
in Table VI. In the table, row Libc lists the system
performance when libc malloc() and free() are used
to allocate memory dynamically, and row Ours is the
system performance when memory pre-allocation policy
is used with lock-free malloc() and free().

Table VI
PERFORMANCE WITH DIFFERENT MEMORY MANAGEMENT

STRATEGIES

(Gbps) Number of Cores Used
1 2 3 4 5

Libc 7.4 7.1 11.7 14.7 15.9
Ours 7.4 7.3 12.0 15.3 19.0
Imp.(%) 0 2.8 2.7 4.0 19.5

By replacing dynamic memory allocation with mem-
ory pre-allocation, the overhead of kernel context
switching in allocating and freeing memory is elim-
inated. Moreover, by avoiding the use of the locks
embedded in libc malloc() and free(), the contention
in multi-core environments is eliminated. Therefore,
the system performance improves. In Table VI, nearly
20% improvement is achieved with four pipelines. As
more cores are used, even higher improvement can be
expected.

E. Scalability to Number of Patterns

So far, our HTTP parser skeleton only includes basic
rules that are necessary to recognize HTTP request
and response messages from network traffic. In a real
application, more header lines need to be inspected.
We add more rules to the parser skeleton to allow
more header lines to be parsed, and Table VII lists the
system performance of HTTP parser on File-1 when
10 and 20 more rules are added to the parser skeleton.
Each column also gives the performance degradation
compared with the basic one.

Table VII
PERFORMANCE WITH DIFFERENT NUMBER OF PATTERNS

Number of Patterns
Basic +10 +20

Speed(Gbps) 19.0 18.9 18.6
Deg.(%) – -0.5 -1.5

As shown in the table, when twenty more rules are
added into the parser, performance degradation is only
1.5%. This demonstrates that the scalability of our pars-
er to support more complicated DPI-based applications.

194

VI. RELATED WORK

Existing work on application protocol parsers mainly
focuses on designing new declarative languages and
compilers to facilitate the construction of application
protocol analyzers [15] [5], however the speed of these
parsers is very low. We rely on open source lexical
analyzer FLEX to specify protocols and generate se-
quential protocol parsers without introducing new lan-
guages. And this work mainly focuses on parallelizing
sequential protocol parsers on multi-cores to achieve
high speed.

Snort [3] is an open source NIDS that has tract great
interests from both industry and the academia to port it
on the multi-core architectures [9] [18] [12]. Although
Snort has embedded protocol parsers, they cannot be
reused as general application protocol parsers to build
other other DPI (Deep Packet Inspection)-based traffic
monitoring systems.

RouterBricks [14] and PacketShader [17] implement
high-speed software routers on multi-cores to do state-
less IP forwarding. Our work deals with stateful packet
processing that usually requires intensive computation
and memory access, and therefore high performance
is very difficult to achieve. The work of paralleliza-
tion of port-independent protocol identifier is report-
ed in [8] [10], where [8] proposes a highly scalable
parallelized L7-filter system architecture with affinity-
based scheduling on a multi-core server. However, its
maximum performance is below 1.5Gbps even with
eight cores.

VII. CONCLUSION

This paper proposes a general approach to building
high-performance parallel application protocol parsers
on multi-core platforms. The use of FLEX facilitates the
protocol description and parser generation, and source-
to-source translation transforms the FLEX-generated
code into a parallel one. By exploiting lock-free design
principles in building parallel run-time system, unnec-
essary data sharing is eliminated and high-performance
is achieved.

Experimental results show that the approach is com-
petent and efficient in building high-performance appli-
cation protocol parsers. Our parallelized HTTP parser
achieves almost 20Gbps line rate on average HTTP
packets, and the FIX parser achieves more than 5Gbps
for small-sized packets.

REFERENCES

[1] Ethereal. ”http://www.ethereal.com/”.

[2] Libnids. ”http://libnids.sourceforge.net/”.

[3] Snort. ”http://www.snort.org/”.

[4] Tcpdump. ”http://www.tcpdump.org/”.

[5] N. Borisov, D. Brumley, H. J. Wang, and C. Guo. Gener-
ic application-level protocol analyzer and its language.
In Network and Distributed System Security Symposium,
2007.

[6] L. Foschini, A. Thapliyal, L. Cavallaro, C. Kruegel, and
G. Vigna. A parallel architecture for stateful, high-speed
intrusion detection. In Proc. of ICISS, 2008.

[7] G. Liao and X. Zhu and L. N. Bhuyan. A new server
i/o architecture for high speed networks. In HPCA’11,
2011.

[8] D. Guo, G. Liao, L. N. Bhuyan, B. Liu, and J. J. Ding.
A scalable multithreaded l7-filter design for multi-core
servers. In ANCS’08.

[9] Intel Corporation. Supra-linear packet processing per-
formance with intel multi-core processors white pa-
per, 2006. ”http://www.intel.com/technology/advanced
comm/311566.htm”.

[10] J. Wang and H. Cheng and B. Hua and X. Tang.
Practice of parallelizing network applications on multi-
core architectures. In ICS’09, 2009.

[11] M. Kulkarni, P. Carribault, and E. K. Pingali. Scheduling
strategies for optimistic parallel execution of irregular
programs. In SPAA’08, 2008.

[12] A. Kunze, S. Goglin, and E. Johnson. Symerton -
using virtualization to accelerate packet processing. In
ANCS’06, 2006.

[13] P. P. C. Lee, T. Bu, and G. Chandranmenon. A lock-free,
cache-efficient multi-core synchronization mechanism
for line-rate network traffic monitoring. In IPDPS, 2010.

[14] M. Dobrescu and N. Egi and K. Argyraki and B. Chun
and K. Fall and G. Iannaccone and A. Knies and M.
Manesh and S. Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In SOSP’09, 2009.

[15] R. Pang, V. Paxson, R. Sommer, and L. Peterson. A
yacc for writing application protocol parsers. In IMC’06,
2006.

[16] QUALCOMM. UIO-IXGBE. ”https://opensource.
qualcomm.com/wiki/UIO-IXGBE”.

[17] S. Han and K. Jang and K. Park and S. Moon. Packet-
shader: A gpu-accelerated software router. In SIGCOM-
M’10, 2010.

[18] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative
vs. optimistic parallelization of stateful network intrusion
detection. In the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2007.

[19] X. Tang, R. Ghiya, L. J. Hendren, and G. R. Gao. Heap
analysis and optimizations for threaded programs. In
Proc. of PACT, 1997.

[20] J. Verdu, M. Nemirovsky, and M. Valero. Multilayer
processing - an execution model for parallel stetful
packet procesing. In ANCS’08.

195

