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HIGHLIGHTS

We propose a GPU-centric model for real-time GPU scheduling.

A latency-driven GPU-based framework is designed for networking systems.

A high-performance SRTP reverse proxy is built which utilizes GPU for real-time stream processing.

The sufficient condition for real-time GPU scheduling is studied, and a mechanism is proposed for admission control.
CPU limits system performance even the computation heavy jobs are offloaded to GPU.
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operations. Accelerating such operations with general purpose GPU has drawn a lot of attention from
both academia and industry. However, GPU has not been applied to real-time stream processing due to
its programming paradigm and unpredictable latency.

In this paper, we study the problem of applying GPU to real-time processing and propose a holistic
approach for building real-time stream processing system with GPU. Based on the proposed techniques,

Keywords:

GP};J we build a GPU-accelerated SRTP reverse proxy that achieves more than 10Gbps overall throughput and
High-speed networking guarantees low latency. Our work demonstrates that using GPU in high-speed real-time stream processing
Real-time is both feasible and attractive.

Stream processing © 2015 Elsevier Inc. All rights reserved.
1. Introduction Furthermore, data volume is growing exponentially and market

data feeds can generate hundreds of thousands of messages per

An important class of web applications have emerged across  sécond. Network bandwidth is growing from 10 to 40 Gbps, and
many domains such as Online Transaction Processing (OLTP), mo- th_e upcoming 80 and 100 Gbps NIC hav'e alfeadY been cond'u'cted
bile interactive applications, cloud gaming, and Live interactive with active research. These web applications, which serve millions
IPTV. These applications are required to process huge amount of gf Lése?imalrou(;lq thle world, %er?eiallyl consgme large _ntetwgrk
data with strict deadlines. Specifically, low-latency processing is a dnAWICH and NVoIVe compute-INTEnsIve and Memory-ntensive

L . . : . operations, such as encryption and compression. These operations
critical requirement as it enables swift reaction to human or real- under high input data rate mav exert a sienificant impact to
world events. It is believed that “the future belongs to services 5 P y & b

that di I time to inf i ided either by thei server design and implementation, and lead to unpredictable
at respond in real time fo in ‘(‘)rma 1on provided either by their latency. Therefore, stream processing systems are required to offer
users or by nonhuman sensors” [2,24]. Study [8] has shown that

. o . both highly optimized for performance and real-time guaranteed
unpredictable latency for web applications may impact both mar- latency [28,20,27,11]

ket share and company revenue. Attributed to low cost, easy programming and debugging,

developing high-end network devices with general purpose off-

the-shelf commodity hardware such as multi-core CPU has at-
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inspection), CPU becomes incompetent at handling memory-
intensive and compute-intensive tasks at very high speed. For ex-
ample, RouteBricks [5] figures out that CPU is the performance
bottleneck of a 10 Gbps router built on a general purpose multi-
core server. In recent years, Graphics Processing Unit (GPU) has
found its application in general purpose computing to acceler-
ate memory-intensive and compute-intensive tasks with inher-
ent parallelism [4]. As network applications usually have inherent
packet-level parallelism, much work has been done to accelerate
stream processing in network application using GPU [16,26,30,19].

Previous works always use GPU to improve system throughput,
e.g., PacketShader [9] and SSLShader [13] demonstrate that
GPU is competent to accelerate router and security gateway,
respectively. However, GPU is considered unsuitable to real-time
applications [6,15]. GPU relies on batch processing to take full
advantage of hundreds of GPU cores; moreover, GPU processing
time depends on the slowest thread. These two factors normally
introduce unpredictable and long latency, making well-studied
real-time CPU scheduling algorithms unsuitable to GPU. Therefore,
unpredictable latency is the biggest obstacle to use GPU in real-
time processing.

In this paper, we study the problem of applying GPU to real-
time processing and propose a holistic approach to build GPU-
accelerated stream processing system. To verify the proposed
technique, we take the SRTP (Secure Real-Time Transport Protocol)
reverse proxy as an example, and implement a GPU-accelerated
SRTP reverse proxy that performs encryption and message
authentication on RTP packet streams. The main contributions of
this paper are as follows.

e The problem of using GPU to stream processing is studied, and
sufficient conditions for a feasible GPU scheduling scheme that
meets all the deadline requirement are given.

e A holistic approach to build a GPU accelerated stream
processing system is proposed, including a GPU-centric model
and a high efficient framework which takes high-speed network
I/O into account.

e As a concrete and useful application, a high-performance SRTP
reverse proxy is built, which is capable of encrypting and
authenticating RTP packet streams at 10 Gbps+ speed.

Roadmap of the paper is as follows. Section 2 introduces
background and motivation. Section 3 gives design goals of a
GPU-accelerated stream processing system. Section 4 studies the
problem of real-time GPU scheduling, and Section 5 discusses
the GPU-centric system framework. Section 6 describes a GPU-
accelerated SRTP reverse proxy based on the above techniques.
Section 7 introduces experimental setup, and Section 8 reports
and analyzes the experimental results. Section 9 discusses the
implementation and Section 10 concludes the paper.

2. Motivation and background

2.1. Limitation of CPU

Stream processing generally involves tasks that require in-
tensive memory access and computation, such as packet clas-
sification, encryption/decryption, data compression, and pattern
matching. Over the past decades, due to imbalanced development
of processor and memory technology, gap between CPU speed
and memory access speed continuously enlarges. For example, an
instruction usually takes 0.5 ns to complete in a 2 GHz CPU; how-
ever, one memory access may take 50-100 ns. Therefore, memory
access has become the main bottleneck in modern computer archi-
tectures.

In the last decade, network speed grows from 1 to 10 Gbps.
It is believed that 40 and 100 Gbps network will come in the

near future. High-speed network combined with relatively slow
memory access poses great challenge on CPUs. Taking 10 Gbps
network as an example, a minimal Ethernet packet (64 bytes) must
be processed in 67 ns, however one memory access would take
50-100 ns to complete.

Previous work claims to have achieved 20 Gbps+ RX speed and
10 Gbps forwarding speed with a single core [9,22]. However, the
above performance is achieved with no extra processing overhead
and the forwarded packets are just received and are still in cache.
Situation is different for stream processing, where packets must
pass through TCP/IP stack and usually need to be copied one or
more times among different memory spaces. mTCP [14] develops
a lightweight TCP/IP stack on I/O engine [12]. With an 8-core Intel
Xeon E5-2690 CPU, mTCP achieves 10 Gbps throughput with 1-KB
packets, and only 6 Gbps with 64-byte packets.

We measured the CPU usage in a lightweight network system
that is built on a hexa-core Intel Xeon E5-2620 CPU and equipped
with a 10 Gbps Ethernet port and I/O engine. Incoming packets are
copied and batched in a buffer, and output packets are constructed
from memory. Without any further processing, CPU usage is as high
as 45%. This test shows that packet I/O, data copy, and operating
system may consume a large portion of CPU cycles; therefore
offloading compute-intensive tasks from CPU is necessary for high-
speed network system.

2.2. Power of GPU

With CPU showing its limitations in such compute and memory
intensive processing, GPU is considered to be the ideal candidate.
First, different with CPU, GPU devotes most of its die area to a
large array of Arithmetic Logic Units (ALUs), and executes code
in SIMD (Single Instruction, Multiple Data) fashion, i.e., multiple
threads share the same code path and work on multiple data
simultaneously. In this way, GPU offers much higher throughput
(4.5 Teraflops of single precision, Nvidia GTX TITAN) than CPU
(156 Gflops, Intel Core i7-4960X).

In the aspect of hiding memory access latency, GPU performs
better than CPU. Limited by resources like instruction window size
and number of Miss Status Holding Registers (MSHRs), CPU can
handle only a small quantity of memory misses. For example, Intel
X5550 CPU is reported to handle only 4-6 memory misses [9].
However, GPU can effectively hide memory access latency with
hundreds of threads; with this ability, memory stalls can be
minimized or even eliminated. Moreover, GPU has much larger
memory bandwidth than CPU. For example, Nvidia GTX TITAN has
288.4 GB/s memory bandwidth, while Intel Core i7-4960X only has
59.7 GB/s memory bandwidth.

Benefited from high computation power and memory band-
width, GPU has great advantages over CPU. However, not all ap-
plications are suitable to run on GPU. Applications that can take
advantage of GPU should have massive data parallelism, as appli-
cation data must be divided among hundreds of cores with little
or no data dependency. Fortunately, network applications usually
have packet level parallelism that can be utilized. All in all, GPU is
an ideal candidate to offload compute-intensive tasks from CPU in
high-speed network systems.

2.3. Preliminary understanding of GPU latency

General purpose computing with GPU is divided into three
stages. Firstly, input data is transferred to GPU device memory.
Secondly, GPU code segment called kernel is launched to execute
the computation. Thirdly, computation results are copied back
to host memory for further use. Some important architectural
features of GPU are as follows. (1) GPU’s massive computing power
comes from executing hundreds or thousands of lightweight (a
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Table 1
GPU latency performance evaluation.
P/S 1 stream 2 streams 4 streams 8 streams
Thr. Lat. Thr. Lat. Thr. Lat. Thr. Lat.
1K 5.0 21 5.6 3.7 6.0 7.0 5.9 14.3
2K 8.2 2.6 10.0 4.2 113 7.5 12.0 14.2
3K 10.5 3.0 134 47 15.6 8.1 171 14.9

4K 10.9 3.9 135 6.3 154 11.0 16.5 20.5
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Fig. 1. Two ways to use GPU.

synonym for low performance) threads in SIMD fashion. (2) Due
to the SIMD fashion, execution time of a task depends on the
slowest thread. (3) Input and output data should be transferred
between CPU and GPU via PCle interface. (4) GPU kernel is non-
interruptible and non-preemptible. The above four characteristics
are the root cause of unpredictable and long execution latency of
GPU processing.

Modern GPUs show great power in performing symmetric-key
algorithms, such as AES and DES [10,33,17]. To have a preliminary
understanding of GPU’s processing latency, we did AES encryption
and HMAC-SHA1 message authentication on RTP packets, and
measured the throughput and latency with varying workloads and
CUDA stream numbers. Experimental results are shown in Table 1.
Column P/S represents workload that is the number of RTP packets
processed by each CUDA stream. Column Thr. and Lat. represent
throughput (in Gbps) and latency (in millisecond), respectively.

As shown in the table, both throughput and latency rise with
the increasing number of CUDA number due to enlarged batching
size. On the other hand, when CUDA stream number is fixed, both
throughput and latency rise with the increasing workload of each
CUDA stream, also due to the enlarged batching size. However, due
to complex interactions among data batching, memory transfer,
and kernel scheduling, it is difficult to predict throughput and
latency when different workloads and configurations are used.
Therefore, to have predictable latency and optimal throughput,
GPU must be used in a controllable way.

2.4. How GPU is used

In a multi-threading networking system, GPU is generally used
in two ways, as shown in Fig. 1. In Fig. 1(A), CPU threads com-
pete to access GPU, causing unpredictable throughput and latency.
Fig. 1(B) is a typical N-1-N pipeline, where two buffers (input,
output) are shared among all CPU threads, and a specific CPU
thread (Launching Thread) takes charge of launching GPU kernels
to process packets in input buffer. However, this model has poor
scalability and the two shared buffers may cause unpredictable
queuing latency. Furthermore, to amortize synchronization over-
head on shared buffer, receiving threads usually batch packets be-
fore inserting them into the buffer, which further introduces the
unpredictability.

2.5. Related works

SSLShader [13] is the first work to use GPU as a SSL accelerator.
The authors claim to achieve 9 K transactions per second for
small files and 13 Gbps throughput for large files on a commodity
server machine. They also measure the distribution of processing
latency of SSLShader: for 1 K concurrent connections, the 50th and
99th percentiles are 39 ms and 64 ms, respectively; and for 4 K

concurrent connections, the 50th and 99th percentiles are 74 ms
and 518 ms, respectively. There is no mention in the paper that
packets can be processed with guaranteed latency.

[32] proposes an algorithm to accelerate real-time data process-
ing with GPU and CPU, which assigns incoming streams to CPU or
GPU according to their rates and deadlines. This work is further im-
proved with multiple GPUs in [31]. There are two major differences
between our systems. On one hand, network processing overhead
is huge in high-speed networking systems. For example, 70% of
processing time is taken by network processing in [18], a high-
speed key-value store system with optimized network processing,
and MemC3 [7] suffers 7X performance degradation with network
processing overhead. However, their work did not take network-
ing overhead into consideration in system design and implemen-
tation. Consequently, the performance numbers in their paper are
obtained without network processing. On the other hand, accord-
ing to total stream rate, data may be processed not on time in their
work. There is a mechanism in our system to reject new streams
when the total rate exceeds our system capability, guaranteeing
that established streams are served in real-time. By applying the
admission control, our system guarantees that each packet is pro-
cessed with predictable latency.

3. Design goals

Generally speaking, functions of a network device include
packet receiving, application specific processing, and packet/result
sending. To provide high-throughput, real-time services, every
part of the device including packet I/O, data transfer, CPU and
GPU processing should be considered systematically. Our goal
is to study the problem of using GPU in high-throughput real-
time streaming applications and propose a CPU-GPU collaboration
framework that can make optimal use of CPU and GPU to achieve
both high throughput and low latency. Specifically, our design
goals are as follows:

1. Hard real-time guarantee: Packets are processed before their
deadlines.

2. High performance: System is capable of handling multi-Gbps
network traffic.

3. Generality: The CPU-GPU collaboration framework can be
generalized to a class of stream processing applications.

4, Scalability: System throughput scales with the number of CPUs
and GPUs.

To achieve these goals, we develop a holistic approach for
building real-time stream processing systems with GPU, which
includes a real-time GPU scheduling algorithm and a high-
performance system framework. To overcome the limitations of
GPU, we (1) adopt a GPU-centric model and a periodical GPU
launching scheme to guarantee that each packet is processed
before its deadline; (2) propose a zero-copy pipelining approach
for efficient data movement; and (3) utilize CUDA streams to
overlap computation and data transfer between CPU and GPU. The
overall design is described in the following two sections.

4. Real-time GPU scheduling

4.1. Application model

We define the application model as follows. A periodic data
stream S is described by a three-tuple (w, d, v), where w is the
packet size, d is the maximum processing time of a packet, and v is
the maximum speed of the stream. The deadline for a packet that
arrives at t is t +d, and it should be processed to completion before
t+d.
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Fig. 2. Life cycle of a packet in a periodically scheduled system.

We denote a set of concurrent data streams in an application
asS = {51,5,,...,S,}, whose characteristics are described by
a three-tuple (ws, s, Bs), where ws = max{w;|S; € S}, s =
min{d;|S; € S}, Bs = Z?:l v, S; € S. ws is the maximum packet
size of the data stream set. 65 is the maximum packet processing
time of all the streams. Making each packet be processed within 65
can guarantee that all packets of the streams meet their deadlines.
Bs is the total throughput of all streams in the stream set.

4.2. Periodic kernel launch

There are basically two factors that lead to the unpredictable
GPU processing time, one is the GPU kernel launch time, the other
is the GPU kernel execution time. To guarantee hard real-time
deadlines, we launch GPU kernels periodically to get predictable
launch time. The fixed periodic launch time is called scheduling
cycle in our scheduling policy.

We denote the scheduling cycle as I, and a sequence of
scheduling time points as P = {Py, Py, ... |Vk > 1, Pyy1 — P, = I}.
At each time point Py, packets that are accumulated in the previous
cycle [Py_1, Py) are handled to GPU for processing.

All packets arrived during the previous scheduling cycle must
be processed to completion within current cycle to get predictable
execution time. The key problem here is to guarantee the second
requirement, i.e., the workloads collected in the previous cycle
must be processed to completion within current cycle. Apparently,
a scheduling cycle should be longer than the worst case GPU
processing time in a cycle; however, GPU processing time in a
cycle depends on the workloads collected in previous cycle, which
in turn depends on the scheduling cycle length and traffic speed.
Obviously, the scheduling cycle is the most important parameter
that must be chosen properly to meet the hard real-time deadlines.

Given a stream set S and a scheduling cycle I, GPU processing
time in a cycle is defined as the sum of data transfer time and kernel
execution time. Data transfer time includes transferring input data
from main memory to GPU memory, and transferring output data
back from GPU memory to main memory. The worst case GPU
processing time (denoted as Ts) is defined as the maximum time
for data transfer and kernel execution. Ts can be measured through
experiments by launching N = >[I x vi/w;], Si € S threads, with
each thread processing a sequence of packets with the maximum
packet size ws. For most operations, such as AES in CBC mode
and CRC, the processing of each byte in a packet depends on
the results of previous data. Therefore, each packet is suitable to
be processed only by one GPU thread, and the thread with the
maximum packet size may be the slowest one. Considering that
the GPU kernel execution time depends on the slowest thread, the
maximum packet size ws is reasonable to be used here.

Fig. 2 shows the lifecycle of a packet in the system, which is
roughly divided into three stages: pre-processing, GPU processing,
and post-processing. Pre-processing is performed when packet

is received, which parses packets, extracts data to be processed,
batches data in the buffer, and records stream information for
forwarding. Post-processing constructs packets from GPU results
and forwards the packets. Pre-processing and post-processing are
performed by CPU. As we mainly concern GPU scheduling, we
assume that any packet arrives during [Py_1, P) is processed to
completion before P, + Ts (Ts < I), and post-processing finishes
within I.

Many factors influence the GPU processing time, such as hard-
ware architecture, driver implementation, and thread scheduling
policy. Currently we find it difficult to model the relationship be-
tween | and S with a closed formulation; therefore, we choose
proper value of I via experiments (Section 7.3).

4.3. Schedulability conditions

We define a stream set S = {S;|li = 1, ..., n} is schedulable, if
and only if all packets of S; (S; € S) can be processed before their
deadlines.

Theorem 1. Given a stream set S characterized by (ws, s, Bs) and
a GPU scheduling cycle I, all packets belonging to S can be processed
before their deadlines if 3 x I + u < 6s and Ts < I, where Ts is the
worst GPU processing time for the jobs accumulated in I, and . is the
pre-processing time for one packet.

Proof. Let j be a packet that belongs to stream S;(wj, d;, v;) and
arrives at | € [Py_1, Pr). Depending on the time that its pre-
processing completes, j/ may be handed to GPU processing in
different scheduling cycles, i.e., P, or Py,4. Both of the cases are
proved in the following, and Fig. 2 is used as a reference that
illustrates the most common case (case 1).

(1) If j/ completes pre-processing before Py, it will be handed to
GPU at Py. After GPU processing, it is then handed to CPU
for post-processing before Py + Ts, and finally processed to
completion before P, + Ts + 1. Therefore, the overall processing
time t’ of packetj ist’ < Py—I+Ts+1.Given3xI+u < 65 and
Ts < I,wehavet’ < Py—I+Ts+I < I+Ts+I < 3xI < 05 < d;,
which means that j* will be processed before its deadline.

(2) If j/ arrives just before P, and cannot finish pre-processing
before Py, then it will be batched with the jobs that arrive
between [Py, Py+1) and handled to GPU at Py.4. Its total
processing timeist’ < u+I1+Ts+1 <3 x 1+ u < 0s < d;.
Therefore, j' can also be processed before its deadline. O

The pre-processing time of a single packet u is only tens or
hundreds of nanoseconds, while the scheduling cycle in our system
is 10-50 ws, which is 10° higher. For instance, if the scheduling
cycle is 30 ms, the overall processing time for a packet will be less
than (3 x 30 4 w). Since we have measured in our system that the
pre-processing time u for a packet is only about 10™* ms, it can
be negligible. As both the GPU processing time Ts and the post-
processing time are less than I, even a packet is postponed to the
next cycle, its overall processing time can have a great possibility
to be less than 3 x I.

With this scheduling policy, if we can find a value I that satisfies
the conditions in Theorem 1, all packets are guaranteed to be
processed to completion before their deadlines.

4.4. Maintain schedulability in runtime

In real world networks, the stream set S changes with new
streams established or old streams terminated. Once the accumu-
lated workload is too large to be processed within current cycle
(i.e., Ts > I), the next batch of workload will miss its launch time,
then more batches will miss their launch time, and quickly system
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crashes. Therefore, system workload should be controlled not to
overload the system.

In order to guarantee all packets’ deadlines, according to
Theorem 1 the following conditions must be satisfied: Ts < I, and
3 x I+ u < 0Os. As T varies with system workload, for a given I,
we define the maximum traffic not to overload the system as B,
which is estimated through experiments.

To monitor system workload, we maintain two variables: fs
and 6s. When a stream S;(wj, d;, v;) terminates, Bs is updated as
Bs = Bs — v, and 6s is updated only when 6s = d;, and the
stream set S is still schedulable. When a new stream S;(w;, d;, v;)
arrives, this stream is accepted only when the following conditions
are satisfied:

Bs +vi < B
min(95, d,) >3 xI+ M.

If stream S; is accepted, Bs is updated as Bs = Bs + v;, and 6s is
updated as 85 = min(6s, d;).

5. System framework for GPU real-time scheduling

Fig. 1 shows two usage modes of GPU in a networking system in
previous works. In usage mode A, each thread accumulates packets
in its buffer, and competes to use GPU after a batch of packets
has been collected. In usage mode B, each thread inserts packets
in a shared buffer (actually inserts a batch of packets each time
to amortize the synchronization overhead), and a separate thread
launches the GPU to process the packets in shared buffer. In both
modes, the overall processing time of a packet in the system is
unpredictable. The uncertainty comes from two aspects: packet
buffering, and competition for the GPU (in usage mode A) or the
shared buffer (in usage mode B).

We collectively call the two usage modes in Fig. 1 as CPU-
centric model or throughput-centric model, as GPU is only used as
a co-processor to maximize the system throughput. However, this
model cannot be applied to latency-sensitive applications due to
the uncertainty of packet processing time.

5.1. GPU-centric model

According to the analysis in Section 4, we propose a GPU-centric
model or a latency-centric model, where GPU is used as a real-time
processing engine rather than a co-processor, to provide deadline
guarantees to latency-sensitive applications.

According to the life cycle definition of a packet in Fig. 2, packet
processing tasks are partitioned into three stages: pre-processing,
GPU processing, and post-processing. Each stage is assigned to one
or more CPU threads. The GPU-centric model is shown in Fig. 3.

Collector threads do packet I/O and packet pre-processing, then
batch the pre-processed packets in their buffers. GPU worker
thread is the central of the model that acts as a GPU scheduler.

At every launch time point, it gets packets from all the Collector
threads, launches the GPU kernels to do computation, and then
outputs the results to corresponding forwarders. Each Forwarder
thread gets data from its buffer, and does the post-processing work,
such as encapsulating packets and sending them out.

In GPU-centric model, there is no resource competition among
Collectors or Forwarders, and GPU is launched periodically
regardless of the workload accumulated in the previous cycle.

5.2. Zero-copy pipelining

In GPU-centric model, multiple pipelines exist, and each
pipeline consists of a Collector, the shared GPU worker, and a
Forwarder. To allow the pipelines to work in parallel, we assign
each pipeline three buffers, each buffer to a stage, as shown in
Fig. 3. In this way, memory competition is completely avoided.
As the maximum workload processed in each launch is B x I, the
maximum buffer size allocated in the system is 3 x B x I, where B
is the link bandwidth.

Data copy is considered to be expensive in high-speed
networking systems, therefore we do not copy packets between
neighboring stages in the pipeline. Instead, buffer swapping is used
to transfer data between two stages. Suppose there are N pipelines
in the system, the working flow of GPU-centric model is as follows.
At any time, each Collector works on its buffer to batch incoming
packets. When the launch time arrives, GPU worker swaps buffer
with all the N Collectors. After finishing the computation, GPU
worker swaps buffers with all the N forwarders. Finally, after
finishing the post-processing work, each Forwarder immediately
marks its buffer as available. Since both the worst case GPU
processing time Ts and the worst case post-processing time are less
thanI in the model, there are always buffers available to Collectors.

The buffer swapping process of a pipeline is shown in Table 2.
(1) In the beginning, Collector, GPU Worker, and Forwarder are
working independently on buffers a, b, and c. (2) When Forwarder
finishes forwarding all packets of buffer c, it immediately marks
it as available. (3) GPU worker will handle the buffer b to
Forwarder after it finishes processing. If GPU finish processing
before Forwarder, it will wait until Forwarder becomes available.
Then the GPU worker waits until the scheduling time point arrives,
and it gets buffer a from Collector and assigns the available buffer
c to Collector. Now the three workers are all working on their new
jobs in the buffers where no data copying is needed.

Collector does not know when time arrives and GPU Worker
swaps its buffer, therefore, it has to guarantee that each query
is successfully batched in the buffer. Lock is a general solution,
however, this leads to locking on the critical path of each
query, which violates our design principle. Instead, we adopt an
opportunistic way for batching query. Before query is added into
the buffer, we record the current buffer ID, and check if buffer
has been swapped after completing query processing. If buffer is
swapped during the procedure, Collector is not sure whether the
query has been inserted successfully. Therefore, the query is added
into the new buffer again. If we find the buffer is swapped, the
total number of jobs in the buffer is not “+1” so that the new job,
whether or not it has been processed by GPU, will not be sent by
Forwarder in that batch.

5.3. Asynchronous concurrent execution

Newer CUDA devices with Computer Capability 2.0 or above
provide concurrent operations for better utilization of GPU,
including concurrent GPU Kkernel execution (execute multiple
kernels concurrently), concurrent data transfer (concurrently copy
from host to GPU and GPU to host), and overlapping data transfer
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Table 2
Buffer swapping process.

Buf. used by Collector

Buf. used by GPU worker

Buf. used by forwarder Available buffer pool

1 a b c
2 a b c
3 a b c
4 c a b

with kernel execution. The Fermi-based Tesla M2090 supports up Table 3

to 16 concurrent kernels within a single GPU. MPEG-embedded RTP packet.

We make good use of these features in our design. For Ethernet header 14 bytes
N-1-N pipelines, GPU worker launches N kernels, with each IP header 20 bytes
kernel corresponding to one pipeline. Accompanied with dedicated g?;’g‘::;g ?zbﬁtetse S
buffers assigned to each pipeline, all the N pipelines can be Payload N XY]SS bytes
executed in parallel. This design not only improves performance, Total 54 bytes overhead +N x 188 bytes

but also eases programming as resource competition is eliminated.

6. SRTP reverse proxy

Data transferred between client and server generally contains
personal privacy or business secrets, and it is the responsibility
of service providers to prevent it from being eavesdropped. Pro-
tocols such as SRTP [29], RTMPS [1] and RTMPE [1] have been
proposed and standardized to provide encryption and message
authentication for transmitting streaming data on network. Unfor-
tunately, encryption protection has not been widely adopted due
to the heavy overhead of cryptographic computation. Nowadays
with the popularization of multi-core processors, even a smart
phone is powered by an 8-core processor, not to speak of PC. There-
fore, today’s end-user devices have had enough computing power
to carry out tasks like on-line decryption and decompression. Chal-
lenges are on the server side, as servers have to handle thousands
or millions of clients simultaneously. In this situation, compute-
intensive operations pose unaffordable burden on servers, and nor-
mally high-cost specialized hardware has to be used.

To verify the effectiveness of our GPU-centric system model
on latency-sensitive applications, we build a SRTP reverse proxy
that provides secure streaming delivery services based on the
framework described in Section 5.

6.1. Real-time network protocols

Real-time network applications usually use RTP (Real-time
Transport Protocol) [23] over UDP (User Datagram Protocol) to
stream data (e.g. video and audio) over IP networks. RTCP (RTP
Control Protocol) is a sister protocol of RTP that does not transport
any media streams itself, but provides out-of-band statistics and
control information for an RTP flow. RTSP (Real Time Streaming
Protocol) [21] is used to control streaming media servers, such as
establishing and controlling media sessions between end points.

RTP does not provide flow encryption or authentication servers,
such servers can be provided by SRTP (Secure Real-time Transport
Protocol) [29,25] if needed. SRTP also has a sister protocol called
SRTCP (Secure RTCP), which provides the same security-related
features to RTCP. For encryption and decryption of the data flow,
SRTP (together with SRTCP) utilizes AES (Advanced Encryption
Standard) as the default cipher. To authenticate message and
protect their integrity, HMAC-SHAT1 algorithm is used.

For VoIP applications, data are encapsulated in MPEG packets.
Each MPEG packets is 188 bytes, and one IP packet may contain
one or several MPEG packets. Since the ethernet MTU is 1500 bytes,
there can be up to 7 MPEG packets in one IP packet, which is 1370
bytes in total. With more MPEG packets, less transfer overhead
(the headers). Therefore, 7 MPEG packets are generally adopted in
systems with high encapsulation efficiency [3]. Table 3 shows the
general structure of a MPEG-embedded RTP packet.

Fig. 4. Execution framework.

6.2. Role of SRTP reverse proxy

A reverse proxy generally deceives the clients as if it were the
server, so that it is transparent to the clients. To this end, reverse
proxy must maintain separate connections with clients and server,
and record mappings between client-side connections and server-
side connections in a stream table. When there are numerous
active streams, maintaining large number of connections and their
mappings are extremely expensive; therefore, this mechanism is
poorly scalable. In order to avoid the high overhead, we make
the SRTP reverse proxy work as a transparent relay. It relays
client requests to server and server responses to clients without
changing the network addresses of the packets. The only change
is that it replaces the plaintext payload of data packets with
encrypted payload, or vice versa. In this way, SRTP reverse proxy is
transparent to both clients and server.

We identify the tasks of a SRTP reverse proxy as follows.

1. Performing AES decryption and HMAC-SHA1 authentication on
SRTP requests from clients, and forwarding them to server.

2. Performing AES encryption and HMAC-SHAT1 authentication on
RTP messages from server, and forwarding them to clients.

3. Managing encryption keys for SRTP.

In streaming delivery applications, size of client requests is
relatively small, while size of server responses is very large.
Therefore, in our implementation we only use GPU to accelerate
AES encryption and HMAC-SHA1 authentication on RTP messages,
which are sent from server, and make CPU do all the other work.

6.3. Working threads in the system

The execution framework of our SRTP reverse proxy is shown
in Fig. 4, which has four types of working threads. In addition to
Collector, GPU worker and Forwarder that have been described in
Section 5.1, Disguiser handles application-specific tasks.
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Table 4

GPU processing time under different configurations.
1 Stream

1 2 4 6 8 10

10 ms 10.5 54 75 113 14.1 17.2
15 ms 17.9 15.4 8.7 11.0 14.0 17.9
25 ms 30.3 254 20.2 142 14.7 17.7
35 ms 427 37.0 34.8 275 19.8 18.7
45 ms 55.3 452 44.5 392 342 254

GPU 10G NIC

Fig. 5. System architecture and thread bonding.

Collector. Collector receives a packet from server, identifies its
type, and proceeds as follows.

1. If the packet is a RTSP SETUP message, records the port number
the server uses in its Global Port List, sets the transport profile
to “RTP/SAVP”, and forwards the message to client.

2. If the packet is a RTP message (its source port is in the Global
Port List), copies the packet payload and relevant parameters
like AES key and packet length into its batch buffer, and copies
the packet header (IP/UDP header) into a header buffer.

3. If the packet is a RTSP DESCRIBE message, changes the
“RTP/AVP” to “RTP/SAVP” in SDP media line (“m="), and adds
“crypto” line in SDP protocol.

4. For other packets, directly forwards them to client.

Forwarder. Forwarder gets encrypted payloads from GPU
worker or gets packets from Collector, assembles the packets if
necessary, and forwards them to client.

GPU worker. GPU worker periodically launches GPU kernels
to do computation on collected payloads, and delivers encrypted
payloads to Forwarders.

Disguiser. Except for the above GPU-related work, Disguiser
performs all the other work as follows.

1. Takes charge of key management for Collectors.

2. When receiving a RTSP SETUP message from a client, sets the
transport profile to “RTP’AVP”, and sends it to server.

3. When receiving a SRTP/SRTCP message from a client, decrypts
the message and sends it to server.

4, For all other packets from clients, forwards them to server.

6.4. Selection of I

Many factors influence the GPU processing time, including GPU
architecture, kernel scheduling policy, configurations, computa-
tion tasks, and traffic speed, etc. It is difficult to build a theoretical
model to describe the relationship between scheduling cycle I and
all the influencing factors (Section 2.3). Therefore, we get value |
through experiments that will be laborated in Section 7.3.

7. Experimental setup

7.1. Hardware platform

We build the runtime system on a Dell R720 server, which
is equipped with two Intel Xeon E5-2620 hexa-core processors
running at 2.0 GHz. Each processor has a 15 MB L3 cache and an
integrated memory controller installed with 8 GB memory. The
two processors are connected via QuickPath Interconnect (QPI) at
7.2 GT/s. There is an NVIDIA Tesla M2090 GPU in the server, which
has 512 processing cores running at 1.3 and 6 GB GDDR5 device
memory. The operating system is 64-bit Ubuntu Server 11.10 with

Linux kernel version 3.0.0-12. We also use another two servers in
the experiments to simulate clients and server.

Each machine installs an Intel 82599 dual port 10GbE card,
and we use the open source packet I/O Engine [12] as the driver
for high-speed I/O. To maximize the degree of parallelism, each
Collector and Forwarder is assigned a dedicated hardware queue
for packet receiving and packet transmitting.

7.2. NUMA-aware thread bonding

Intel Sandy Bridge architecture has incorporated I/O hub (IOH)
on the die, so each CPU has its own IOH that can connect to one
or more PCle buses. In this architecture, each I/O device has a local
CPU and one or more remote CPUs. Data transferring between 1/O
device and remote CPUs takes longer time. Fig. 5 shows the system
architecture of our Dell R720 server, where CPUOQ is GPU’s local CPU,
and CPU1 is NIC'’s local CPU.

By experiments we find that random thread bonding may lead
to severe system performance degradation. The optimal thread
bonding scheme is shown in Fig. 5, where GPU worker is bonded
to CPUO, and each Collector-Forwarder pair must be bonded to the
same CPU to avoid NUMA access to packet header buffer. When
hyper-threading is turned on, each physical core works as two logic
cores. Therefore, there can be at most 10 Collector-Forwarder pairs
in our server, with one core reserved to GPU worker thread.

7.3. Get I through experiments

In this section, we illustrate how to get I through preliminary
experiments. Stream set S{ws, s, Bs) is used as an example, where
ws = 1370 bytes, 5 = 80 ms, and s = 10 Gbps. To simulate
multi-client situation, 1000 RTP flows are used, and the rate of each
flow is 10 Mbps. Maximum packet size 1370 bytes is used as the
packet size, and the workload of GPU is performing AES-CBC and
HMAC-SHA1 operations.

For a given I, run the proxy with different number of CUDA
streams, and measure the maximum GPU processing time Ts in
each scheduling cycle. If Ts < I in all cases, a feasible configuration
(i.e., the scheduling cycle I and the number of CUDA streams)
is found. As for the setting of I, values less than 10 ms are not
suggested. This is because that PCl-e data transfer throughput
may become very low with small batch of data, which makes
data transfer become bottleneck and make a significant impact
to system performance. The maximum value and granularity of
changing of value in the measurement experiment are determined
by specific application requirement.

Part of the experimental data is shown in Table 4, where in
the first column are I values, and in other columns are Ts values
measured when different numbers of CUDA streams are used.
Given a fixed I, the total number of packets received during a
scheduling cycle is known to be N; = 10 Gbps x1/(8 x 1370 bytes).
If M CUDA streams are used, each CUDA stream processes N;/M
packets.

In Table 4, boldface numbers denote schedulable configura-
tions. With this table, when a processing deadline 65 is given, I
is chosen from [10 ms, 6s/3], and Table 4 is looked up to find a
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(d) GPU throughput for 242 (54 4 1 % 188) bytes packets with various
batch size.
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Fig. 6. GPU performance with various batch size.

schedulable configuration. For example, if processing deadline is
46 ms, I can be chosen from [10 ms, 15.3 ms]. If = 15 ms is cho-
sen, then three schedulable configurations are found in Table 4, in
which 4, 6, or 8 CUDA streams are needed, respectively.

8. Experimental evaluations

In this section, we evaluate GPU performance and the overall
system performance. We identify that system performance may
be influenced by the number of pipelines and scheduling cycle.
The major bottleneck in current system is studied with three
experiment modes.

8.1. GPU performance

8.1.1. GPU throughput evaluation

Fig. 6 illustrates GPU performance for different size of RTP
packets with different batch size. We use 213, 214, 215 216 and
217 batch size to measure GPU performance. As is shown in the
figure, the maximum throughput that can be achieved by GPU is
14.2 Gbps. With 23, 24, and 2'° batch size, GPU performance first
increases to a peak and then drops. We conclude that single stream
reaches maximum performance with 2'> (4096) jobs, and drops
with smaller batching size. Therefore, more streams will not lead
to higher performance when batch size is small, and this is because
that small batch size will result in low PCl-e data transfer rate and
low GPU utilization, which leads to low performance. If batch size

is large enough, as 2'® and 2'7, GPU performance becomes stable
at 8-10 Gbps. Therefore, it is critical in controlling batch size.

We also evaluate GPU performance with different packet size.
Typical MPEG embedded RTP size 1370 bytes, 994 bytes, 618 bytes,
and 242 bytes are used in our evaluation. All of them exhibit the
same performance pattern. Therefore, the above conclusions can
be applied to different size of input. Furthermore, we found that
packet size has limited impact to GPU throughput.

8.1.2. GPU execution time evaluation

Fig. 7 evaluates GPU processing time with different batching
time under 10 Gbps network input speed. As can be clearly seen
from the figures, GPU processing increases correspondingly with
the batching time.

Small batching time for large packets leads to much higher
processing time. This is because that the number of jobs is small,
and GPU computational resources cannot be fully utilized, while
smaller size packets have more jobs and can use more GPU threads
in processing. That is why GPU performance for small size packets
stays stable with different number of streams.

To conclude, both pipeline number (stream number) and
batch size (scheduling cycle) exert a significant impact to system
performance, which should given serious consideration in system
setup configuration. Since the performance is determined by the
number of batched jobs and number of pipeline, given fixed input
speed and number of pipeline, scheduling cycle I can be adjusted
to achieve the maximum performance.
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(d) GPU execution time for packet size 242 (54 4 1 % 188) bytes with
different batching time under 10 Gbps.

Fig. 7. GPU execution time with various batch size.

8.2. Experimental method

To evaluate system performance and have a deep understand-
ing of the GPU-centric pipelining, we run the system in three
modes in each experiment: Collector-only mode, Zero-load mode,
and Full-load mode.

e Collector-only mode evaluates the processing speed of Collec-
tors, whose tasks include receiving packets, doing IP/UDP pro-
cessing, and copying packet payloads to a specific memory
buffer. Note that the destination of memory copy has been kept
in CPU cache. This mode is used for evaluating the maximum
I/O throughput, and checking whether system performance is
blocked by I/O.

e Zero-load mode evaluates the pipeline throughput excluding
GPU processing. In this mode, GPU worker swaps buffers with
Collectors and Forwards every scheduling cycle I, but does not
hand the workload to GPU. Different from Collector-only mode,
the destination of memory copy is not in cache. Without GPU
workload, this mode aims at evaluating our system framework
and the efficiency of buffer swapping mechanism.

e Full-load mode evaluates the system performance as a whole.
With a comparison with Zero-load mode, impact from GPU can
be evaluated and analyzed.

We get two stream sets

e Stream set S, (ws, Os, Bs), where ws = 1370 bytes, s = 80 ms,
and Bs = 10 Gbps. For the streams in the stream set S,, all

attributes are the same. Packet size w is fixed to 1370 bytes,
d > 80 ms, and v = 6 Mbps.

e Stream set Sg(ws, Os, Bs), where ws = 1370 bytes, 85 = 80 ms,
and Bs = 10 Gbps. For the streams in the stream set S,, the
attributes are not the same. Packet size w is evenly distributed
among the 7 MPEG embedded RTP packet sizes, i.e., 242, 430,
618, 806, 994, 1182, and 1370 bytes. d > 80 ms, and v follows
normal distribution v ~ & (1, 62), where i = 6 Mbps, o = 1.

Stream set Sg is generated in random, and the average packet
length varies each time, since streams may be set with various
packet sizes and speed. For the experiments that running with
stream set Sg, the numbers are average results with 10 runs. In
the following experiments, we use the two stream sets to evaluate
system throughput, and use stream set S, in measuring system
latency.

8.3. Throughput evaluation

In this section, we evaluate and analysis system throughput
with 10 Gbps and 20 Gbps input, respectively. With the three
modes mentioned above, we are trying to identify the bottleneck in
our system. To measure the impact from input stream character-
istics and I configurations, different I (15 and 25 ms), and differ-
ent stream set (S, and Sg) are used in evaluation. Less than 30 ms
scheduling cycle are adopted in all experiments, because we found
the overall processing latency would be too high with I > 30 ms,
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Fig. 8. Test network with 10 Gbps input.

which will be over 90 ms. Furthermore, as shown in previous sec-
tion, larger batch size will not lead to higher performance.

8.3.1. Experiment in 10 Gbps environment

Fig. 8 shows the experiment environment that consists of three
machines. One acts as SRTP reverse proxy, another two act as server
and client, respectively. Server and client are connected to the SRTP
reverse proxy through separate 10 Gbps links. Server sends original
RTP packets to SRTP reverse proxy, which performs encryption and
message authentication on the payloads, and then forwards the
encrypted packets to client.

Experiments are conducted by running the system in three
modes, each with different number of pipelines. Fig. 9 shows
system’s throughput with stream set S, and Sg, respectively. The
horizontal axis denotes the number of pipelines used, and the
vertical axis shows the processing speed in Gbps.

As shown in the figure, system throughput (in Full-load mode)
rises with the increasing number of pipelines, and almost reaches
10 Gbps when six or more pipelines are used. When fewer
pipelines are used, the processing speed of Zero-load mode is
significantly lower than that of Collector-only mode, indicating that
CPU are not capable of processing that high speed when data
copying buffer is not in cache. However, with more cores/pipelines,
system performance becomes the same with Zero-load mode,
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(c) Input stream set Sy, I = 15 ms.

which means the overhead from CPU memory copy has been
alleviated. In Full-load mode, performance is almost the same with
Zero-load mode, indicating that system performance is mainly
blocked by CPU, while GPU is competent in handling 10 Gbps
throughput.

The performance with stream set S, and Sg are almost the same
with all the three modes, showing that our system is free of impact
from the workload variations. Since CPU, not GPU, blocks our
system performance, different scheduling cycles 15 and 25 ms also
show same performance. If processing speed of CPU not exceeds
that of GPU, these configurations will have limited influence on our
system’s performance.

According to this experiment and Fig. 6, we conclude that GPU
is competent in handling 10 Gbps traffic, especially when there are
enough CPU cores and CUDA streams.

8.3.2. Maximum system throughput

To explore the maximum system throughput, we build the
testing network as shown in Fig. 10. Two machines are connected
to the SRTP reverse proxy through separate 10 Gbps links, but each
machine acts as both server and its client. For example, server-
A sends RTP packets to SRTP reverse proxy, which after doing
the encryption and message authentication, sends the encrypted
packets to client-A through the same NIC port. Therefore, the SRTP
reverse proxy receives 2 x 10 Gbps traffic.

Like the experiments in Section 8.3.1, system runs in three
modes, each with different number of pipelines. Fig. 11 shows the
processing speed in each scenario. The horizontal axis denotes the
number of pipelines, and the vertical axis shows the processing
speed in Gbps.
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Fig.9. System performance with 10 Gbps input.
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As expected, system throughput (in Full-load mode) rises with
the increasing number of pipelines, and same with the 10 Gbps
case, performance for both stream sets are almost the same.
In Zero-load mode, input speed may reach 16.8 Gbps with 10
Collectors. With 8 or 10 pipelines, system throughput reaches
13.3 Gbps, which is the maximum speed in our experiments. In
all the circumstances, network I/O (Collector-only mode) is much
faster than the processing speed of Zero-load mode and Full-load
mode, and the later two modes have similar processing speeds.
This result indicates that, same with the 10 Gbps experiments, the
memory copy operations in CPU is the major overhead that limits
our system’s performance.

It is worth noting that with 6 pipelines, GPU becomes the
bottleneck and lots of deadline misses have been reported in
our system if our admission control technique is not used.
After applying the admission control technique as described in
Section 4.4, system becomes capable of handling such situations.

In summary, we find that neither NIC I/O nor GPU is system
bottleneck, but memory copy operation in CPU slows down the
framework. Again, as in most cases CPU is the bottleneck that limits
system performance (Zero-load), system configurations such as I
and input stream characteristics have limited influence on system
performance.
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Fig. 11.

8.4. Evaluation of system latency

This section evaluates the system latency of SRTP reverse proxy,
which is measured as the elapsed time between the server sending
a message and the client receiving the message. In fact, this
time is larger than the actual system latency of SRTP reverse
proxy. However, to ease the programming and avoid measurement
overhead on SRTP reverse proxy, we use the testing network
shown in Fig. 10, and measure the latency at the server/client
machine. The server program keeps sending a sequence of RTP
packets to the SRTP reverse proxy; each RTP packet carries a unique
RTP sequence number and a timestamp. Once the client program
receives a packet, it records the packet arriving time, as well as the
RTP sequence number and timestamp in the packet header. After
the test program stops, a separate program calculates the latency
of each packet. Since server and client reside on the same machine,
no system clock synchronization is needed.

Intuitively, scheduling cycle and system workload have signif-
icant influence on system latency. We first evaluate the impact
of scheduling cycle on system latency. We fix the traffic speed to
2 Gbps, 6 Gbps and 10 Gbps, respectively; With each traffic speed,
we change the scheduling cycle I, and measure the system latency.
Fig. 12 shows the cumulative distribution function (CDF) on system
latency. Roughly speaking, system latency rises with the increase of
scheduling cycle, just as we expected. However, there is an excep-
tion in Fig. 12(c), where system latency with I = 20 ms is greater
than that with I = 25 and I = 30 ms. We guess this is caused by
some unpredictable interactions with, for example, architectural
factors.
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System performance with 2 x 10 Gbps input.
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Fig. 15. GPU kernel execution time.

Fig. 14. Decomposition of GPU processing time.

We then evaluate the impact of system workload on latency. We
fix the scheduling cycle I to 10 ms, 15 ms, and 25 ms, respectively;
then with each scheduling cycle, we change the traffic speed,
and measure the system latency. Fig. 13 shows the experimental
results. Out of our expectation, system latency does not rise
monotonically with the increase of traffic speed. This validates
our conjecture that it is difficult to build a theoretical model to
deduce a proper I from given conditions. It is also shown that the
maximum system latency is relatively stable even with dramatic
traffic fluctuation, indicating that our system can work stably in
real world networks.

8.5. Decomposition of GPU processing time

GPU processing time includes data input, kernel execution, and
data output. We measure the average time of each stage in a single
stream with different scheduling cycles and traffic speeds. In the
experiment, stream set S, is used as the input, and system is

configured with 10 pipelines. The numbers measured in the figure
are single stream processing latency, which are the average of 10
CUDA streams.

The decomposition of GPU processing time is shown in Fig. 14.
As expected, data transfer time (both input and output) grows
with the increasing data size. However, the kernel execution time,
shown in Fig. 15, stays relatively stable at around 1.6-1.7 ms. Lene;
takes the largest portion of the GPU processing time and remains
relatively stable This is because the worst case single thread
throughput is limited by the memory access latency. Although
GPU schedules dynamically to hide single thread memory access
latency, each thread’s worst case processing time remains stable
before reaching GPU’s maximum computation throughput.

With 10 pipelines, as data transfer is overlapped with kernel
execution, the overall GPU processing time is calculated as Lippye +
10 X Lyernel + Lougput- It also explains the stability of system latency
when traffic speed fluctuates as shown in Fig. 13.
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9. Experiences and discussion

In this section, we summarize and discuss the pros and cons of
applying GPU in real-time stream processing.

The GPU-centric model. In GPU-centric model, system is
organized around a GPU that is used as a real-time processing
engine rather than just a co-processor. In this model, CPU only
receives and forwards packets, and does preparation jobs for GPU.
GPU is scheduled periodically to process batched workload with
the scheduling cycle chosen carefully to guarantee all packets’
processing deadlines.

Selecting a proper scheduling cycle seems to be the most
ambiguous part in our system implementation. With given con-
ditions, one must first do a trial run to find a feasible configura-
tion that includes the scheduling cycle and number of pipelines
(Section 7). However, as it is difficult to build a theoretical model
to get such a schedulable scheme, currently we find this step
inevitable.

Applicable to other GPU-accelerated stream processing
systems. There are many compute-intensive or memory-intensive
operations in stream processing system that are extremely
suitable for GPU, such as pattern matching [16,26,30] and packet
classification [19,9]. GPU is even used to accelerate data base
queries [34]. From the point of view of GPU, stream processing
tasks can be divided into three stages: pre-GPU stage, GPU
stage, and post-GPU stage. To design a GPU-accelerated stream
processing system, one first figures out the system work, then
partitions it into three stages, and finally applies the GPU-centric
model to the system. For complicated functions, extra worker
threads can be added to the system, such as the Disguiser thread
in SRTP reverse proxy.

Easily scales up with more CPU cores or more GPUs. GPU-
centric model organizes the system into pipelines, which makes
the system easily scale up with more CPU cores (or CPUs) or more
GPUs. For example, if pre-GPU stage or post-GPU stage becomes
bottleneck, more CPU cores (CPUs) can be used to enlarge the
number of pipelines. If GPU becomes bottleneck, more GPUs can be
added into the system. By assigning the CPU workers to different
GPUs, their jobs can be naturally partitioned and dispatched among
GPUs. This can be simply implemented by launching different
CUDA streams on different GPUs.

10. Conclusions

In this paper, applying GPU to real-time stream processing is
studied. A holistic approach to build a GPU-accelerated stream
processing system is proposed, which includes a real-time GPU
scheduling scheme, a GPU-centric model, and a pipelined system
framework. To verify our techniques, a GPU-accelerated SRTP
reverse proxy is built on the proposed approach with commodity
general-purpose CPU and GPU hardwares. It achieves more than
10 Gbps encryption and message authentication throughput, and
meanwhile still offers predictable processing latency. Our work
demonstrates that using GPU in high-speed real-time stream
processing is feasible and attractive.

In the future, we will port our platform to APU architectures.
The newly released APU platform allows zero-copy between CPU
and the integrated GPU, which significantly mitigates data transfer
overhead in current GPU systems. Furthermore, a programming
API is planned to be provided on our real-time processing
framework which is designed for facilitating building more real-
time applications. Aiming at building an open platform for

GPU-accelerated real-time stream processing, multi-GPU support
will also be studied in the future.
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