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A persistent Regular Path Query (RPQ) on a streaming graph is to continuously find every pair of vertices that

are connected by a path in the graph within a sliding window, such that the edge label sequence of this path

matches a given regular expression. The existing RPQ evaluation algorithm in the literature incrementally

maintains a set of spanning-tree-like data structures to quickly form query results and to avoid reprocessing

edges that are shared by multiple sliding windows. This approach allows parallel processing of the graph

edges within a sliding window but requires a blocking expiration phase between sliding windows to remove

the old edges. This blocking phase can significantly degrade the query performance, especially when the edges

arrive quickly and the sliding windows overlap significantly.

This paper presents a new RPQ evaluation strategy called Multi-Window Parallel (MWP) method leveraging

a new data structure called Timestamped Rooted Digraph (TRD). The novel idea is to incrementally maintain

TRDs for the quick formulation of query results, like the aforementioned spanning trees, but simultaneously

contain needed information for multiple sliding windows. MWP eliminates the forced blocking expiration

phase. Only when memory runs low, a quick “dirty garbage collection” (DGC) process is done to remove

some unneeded edges and nodes on TRDs, without incurring large costs. Extensive experiments on real graph

datasets show that MWP significantly outperforms the existing algorithm in terms of throughput, tail latency,

and scalability, and that DGC provides an effective solution for releasing memory with minimum impact.
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1 INTRODUCTION
A streaming graph takes the form of a sequence of edges that arrive over time, representing

relationships between entities in various fields. It is widely applied in real-time analysis applications
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such as recommendation systems [16, 21, 40], social network analysis [11, 22, 34], and financial risk

monitoring [39]. For example, merchant fraud detection in e-commerce may have buyers and sellers

represented as vertices and payment activities represented as edges. In the context of streaming

graphs, the persistent Regular Path Query (RPQ) evaluation is to continuously find pairs of different

vertices connected by paths whose label sequences match a user-given regular expression [38]. The

RPQ evaluation on the streaming graph usually adopts a time-based sliding window model [12] to
only consider the edges belonging to the same sliding window.
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Fig. 1. The snapshots of a streaming graph in two neighboring windows. The thicker edges are shared edges
between the two snapshots.

Consider the RPQ with query regular expression 𝑅 = (own◦fri◦tra) on a streaming graph. Fig-

ure 1 shows two snapshots of the streaming graph with edges in two neighboring sliding windows.

Note that the two snapshots share some edges shown as thicker arrows. For the “snapshot graph 1”

(the left graph in Figure 1), the label sequence of the path 𝑎 → 𝑏 → 𝑑 → 𝑒 is “own, fri, tra”
and matches 𝑅. Thus, the vertex pair (𝑎, 𝑒) is a query result in this window. Similarly, we get the

result (𝑎, 𝑒) from the graph in the next window shown as “snapshot graph 2.”

To enable efficient RPQ evaluation on streaming graphs, Pacaci et al. [38] proposed an algorithm

(we call it the PBO algorithm in this paper and described in more detail in Section 2). PBO incre-

mentally maintains a set of query-spanning trees to construct query results as the edges arrive.

The key idea is to allow the reuse of the data elements (such as those for the edges marked as

thicker arrows in Figure 1) from the previous window to avoid repeated processing of edges across

multiple windows. At the end of a sliding window, the query results can be collected from the

query-spanning tree, and the edges that are not in the next sliding window are removed from the

query-spanning trees (we call this removal process “expiration”).

The PBO algorithm is generally quite efficient but has a significant bottleneck with its expiration

process. Indeed, while edges that arrive before the end of a sliding window may be processed in

parallel, all edges belonging to the next sliding window (but not in the current window) must

wait until the expiration process ends. This is a blocking phase of the algorithm, which greatly

degrades the performance, especially when the edges arrive quickly and the sliding windows

overlap significantly. The experiments in Section 5 confirm this observation.

In this paper, we propose a new streaming query strategy named Multi-Window Parallel (MWP)

method inspired by the concept of Multi-Version Concurrency Control [30] in databases. The idea

of MWP is to provide a data structure that contains multiple versions corresponding to multiple

windows, eliminating the blocking phase between sliding windows. The new query data structure

is called Timestamped Rooted Digraph (TRD). Each TRD records all the paths in the streaming

graph whose label sequence (partially) matches the regular expression. This is similar to that of the

query spanning tree in [38], but each node in TRDs follows the MWP strategy to record the paths

from the root to itself in multiple sliding windows. Although TRDs record multiple versions, the

data structure is quite efficient in avoiding repeated processing of edges. Indeed, the amortized

time complexity of insertion for each edge in MWP is the same as that of PBO. By eliminating the
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blocking phase, MWP provides more opportunities for parallel processing and outperforms PBO

significantly, as will be shown in Section 5.

Though the MWP strategy eliminates the forced blocking expiration phases, memory consump-

tion still needs to be managed. We do it with a form of “garbage collection” (GC) that prunes out

the edges in TRDs that are surely no longer involved in all future query results. This GC may be

executed less frequently than the expiration process in PBO. Furthermore, we propose a “dirty GC”

(DGC) method. The novel idea is to only prune edges based on a simple sufficient condition and

leave the TRDs in a bit of “dirty” but correct state. The theoretical worst-time complexity of DGC

is shown to be lower than that of the expiration process in PBO. In practice, along with the fact

that DGC only needs to be sporadically executed rather than must be done between every two

neighboring sliding windows as in PBO, DGC can significantly free up memory without overly

impacting query efficiency, as shown in Section 5.

To the best of our knowledge, MWP is the first window-based streaming query strategy that

leverages multi-versioning to address the blocking phase between sliding windows. It enables

a non-blocking, highly parallel implementation for maintaining query structures for persistent

streaming queries. This strategy may provide a solution for similar streaming query algorithms

based on the sliding window model, such as cycle detection [39], aggregate query [33], triangle

counting [20] and path query [38]. We discuss further extensions of MWP in Section 6.

Our contributions are highlighted as follows:

• We propose a novel strategy called Multi-Window Parallel method that efficiently records

multi-versions of the query structures for multiple sliding windows.

• We propose a “dirty garbage collection” strategy for fast execution of garbage collection to

limit the memory usage.

• We implement our proposed MWP method and conduct extensive experiments to confirm its

efficiency.

The remainder of this paper is structured as follows. Section 2 presents the problem definition

and briefly describes PBO. Section 3 provides a detailed description of the TRDs and the MWP

strategy. Section 4 gives the process of DGC on TRDs. Experimental results and detailed analysis

are given in Section 5. Section 6 describes the related work. Finally, Section 7 summarizes the paper.

2 PRELIMINARIES
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Fig. 2. (a) a streaming graph 𝑆 (the left part) consisting of two sliding windows𝑊 14 and𝑊 15 (marked in the
graph) with window size |𝑊 | = 10. The right part in (a) is its graph representation by connecting the same
vertices of tuples in 𝑆 , (b) the snapshot graph of 𝑆 in sliding window𝑊 14 marked in (a), note that𝑊 14 with
|𝑊 | = 10 only contains the tuples whose timestamp is in (4, 14], (c) the snapshot graph of 𝑆 in sliding window
𝑊 15, (d) a DFA for query expression 𝑅 = (𝑓 𝑜𝑙 ◦𝑚𝑒𝑚 ◦ 𝑡𝑟𝑎)+, (e) & (f) the spanning trees generated by the
snapshot graphs in (b) & (c) respectively.
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In this section, we provide a formal definition of the streaming graph and the RPQ evaluation

task. We also introduce the PBO algorithm with its query-spanning trees [38]. For simplicity, we

focus here on an append-only input stream where tuples are added to the graph without explicit

deletion. Explicit deletion on streaming graphs will be discussed in Section 4.4.

Definition 1. Steaming Graph: A streaming graph 𝑆 is a sequence of tuples 𝑆 = 𝜏1, 𝜏2, · · · , 𝜏𝑛 ,
where each tuple 𝜏𝑖 = (𝑒𝑖 , 𝑡𝑠 (𝜏𝑖 )) indicates a directed edge 𝑒𝑖 = (𝑣𝑥 , 𝑣𝑦, 𝜙 (𝑒𝑖 )) from the from-vertex 𝑣𝑥
to the to-vertex 𝑣𝑦 with label 𝜙 (𝑒𝑖 ) and timestamp 𝑡𝑠 (𝜏𝑖 ). The domain of the timestamp is the positive
integers. The sequence continuously expands as the new tuples arrive. For each pair of tuples 𝜏𝑖 and 𝜏 𝑗 ,
where 𝑖 ≤ 𝑗 , 𝑡𝑠 (𝜏𝑖 ) ≤ 𝑡𝑠 (𝜏 𝑗 ). Edges between the same pair of vertices 𝑣𝑥 and 𝑣𝑦 with different labels
can co-exist, possibly with different timestamps.

An example of a streaming graph is shown in Figure 2(a). It is worth noting that the edges in the

streaming graph are directed, labeled, and may form multiple paths between the same two vertices.

To provide a precise definition, we introduce the concept of a graph path and path label.

Definition 2. Graph path and Path label: A graph path that connects vertices 𝑣𝑥 and 𝑣𝑦 is a
sequence of edges 𝑝 = 𝑒1, 𝑒2, · · · , 𝑒𝑛 where 𝑣𝑥 is the from-vertex of 𝑒1 and 𝑣𝑦 is the to-vertex of 𝑒𝑛 , and
for each two adjacent edges 𝑒𝑘−1 and 𝑒𝑘 in 𝑝 , the to-vertex of 𝑒𝑘−1 is the same as the from-vertex of 𝑒𝑘 .
The corresponding label sequence 𝜙 (𝑒1), 𝜙 (𝑒2), · · · , 𝜙 (𝑒𝑛) denoted by 𝜙 (𝑝) (by abusing notation) is
the path label of 𝑝 .

The graph representation of streaming graph 𝑆 is shown on the right of Figure 2(a). The labels

and timestamps of the edges are marked next to them. The label sequence of path 𝑝 : 𝑎 → 𝑐 →
𝑏 → 𝑑 → 𝑒 is 𝜙 (𝑝) = fol, mem, mem, tra.

To restrict the valid tuples in a streaming graph when querying, we use a time-based sliding
window (sliding window for brevity in this paper) as in many real-world applications.

Definition 3. Sliding window over Streaming graph: A sliding window𝑊 with window size
|𝑊 | and sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ) at time 𝑡 , denoted𝑊 𝑡 (with |𝑊 | and 𝑆𝑡𝑒𝑝 (𝑊 ) understood), on a
streaming graph 𝑆 consists of the set of tuples 𝜏𝑖 ∈ 𝑆 such that 𝑡𝑠 (𝜏𝑖 ) ∈ (𝑡 − |𝑊 |, 𝑡].

All the edges in a sliding window form a “snapshot graph” for the window. The streaming graph

𝑆 in Figure 2(a) contains two neighboring sliding windows:𝑊 14
and𝑊 15

of window size |𝑊 | = 10

with sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ) = 1. Note that edges 𝑒1 and 𝑒2 that both have the timestamp of

5 are not included in𝑊 15
by definition. The corresponding snapshot graphs are in Figures 2(b)

and 2(c). For simplicity, we assume that the start time of the first sliding window is 1, i.e., the first

sliding window is𝑊 |𝑊 |

Based on this definition of the sliding windows on a streaming graph, we introduce the Streaming

RPQ evaluation task.

Definition 4. (Persistent) RPQ: Let Σ be a finite alphabet set consisting of all the labels in a
streaming graph 𝑆 . A regular expression 𝑅 over Σ and the set 𝐿(𝑅), which consists of all the label
sequences that match 𝑅, are defined in the usual way. A (Persistent) RPQ evaluation on a streaming
graph 𝑆 with regular expression 𝑅 and sliding window𝑊 is to find all the vertex pairs (𝑢, 𝑣), where
𝑢 ≠ 𝑣 , such that there exists a path 𝑝 from vertex 𝑢 to 𝑣 such that 𝜙 (𝑝) matches 𝑅 on the snapshot
graph for the sliding window𝑊 𝑡 for some positive integer 𝑡 ≥ |𝑊 |.

Formally, denote the set of all the above pairs in the sliding window𝑊 𝑡 as 𝑄𝑡
𝑅,𝑊

. Then,

𝑄𝑡
𝑅,𝑊 = {(𝑢, 𝑣) |there exists a path 𝑝 on 𝑆 from vertex 𝑢 to 𝑣 such that

𝜙 (𝑝) matches R and 𝑡 − |𝑊 | < 𝑡𝑠 (𝜏𝑖 ) ≤ 𝑡 for each tuple 𝜏𝑖 in p}
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𝑄𝑡
𝑅,𝑊

may be simplified as𝑄𝑡 since both the regular expression 𝑅 and sliding window𝑊 are determined
in advance.

In the Streaming RPQ evaluation task, the goal is to continuously find 𝑄𝑡
for 𝑡 = |𝑊 |, |𝑊 | +

𝑆𝑡𝑒𝑝 (𝑊 ), |𝑊 | + 2 ∗ 𝑆𝑡𝑒𝑝 (𝑊 ), · · · . We now illustrate the Streaming RPQ evaluation with an example.

Example 1. Consider the RPQ evaluation with regular expression 𝑅 = (fol ◦ mem ◦ tra)+ and
sliding window size |𝑊 | = 10 with sliding step length 1 on the streaming graph 𝑆 in Figure 2(a). For
the “snapshot graph 1” of the streaming graph in sliding window𝑊 14 shown in Figure 2(b), the label
sequence of the graph paths 𝑎 → 𝑐 → 𝑑 → 𝑒 and 𝑎 → 𝑏 → 𝑑 → 𝑒 are both “fol,mem,tra”, which
matches 𝑅. Thus the streaming RPQ evaluation result in 𝑄𝑡=14

𝑅,𝑊
= {(𝑎, 𝑒)}.

The snapshot graph of the next sliding window𝑊 15 is shown in Figure 2(c). The 𝑄𝑡=15
𝑅,𝑊

= {(𝑎, 𝑒)}
holds by the only path 𝑎 → 𝑏 → 𝑑 → 𝑒 . Note that path 𝑒 → 𝑏 → 𝑑 → 𝑒 is excluded in the definition
since the start-vertex and the end-vertex are identical.

Definition 5. Deterministic Finite Automaton: A Deterministic Finite Automaton (DFA) for
𝑅 refers to a 5-tuple 𝐷𝐹𝐴(𝑅) = (𝑄, 𝐿, 𝛿, 𝑞0, 𝐹 ) where (i) 𝑄 is a finite set of states, (ii) 𝐿 is a finite set of
symbols, (iii) mapping function 𝛿 : 𝑄 × 𝐿 → 𝑄 , (iv) 𝑞0 is the initial state of DFA, and 𝐹 is a set of final
states that 𝑞0 ∈ 𝑄 and 𝐹 ⊆ 𝑄 .

For a given regular expression 𝑅, we may construct a Non-Deterministic Finite Automaton that

matches the 𝑅 using Thompson’s construction algorithm [42]. Then, we use Hopcroft’s algorithm

[23] to build its minimal Deterministic Finite Automaton, denoted as 𝐷𝐹𝐴(𝑅). An example 𝐷𝐹𝐴

of 𝑅 = (fol ◦ mem ◦ tra)+ is shown in Figure 2(d). Note that the 𝐷𝐹𝐴 is constructed before RPQ

evaluation starts.

Definition 6. Query Spanning Tree [38]: Given a 𝐷𝐹𝐴(𝑅) = (𝑄, 𝐿, 𝛿, 𝑞0, 𝐹 ) and a snapshot
graph 𝐺 = (𝑉 , 𝐸,𝜓 ), where 𝑉 is a set of vertices, 𝐸 is a set of edges and𝜓 maps each edge to a label, a
query spanning tree (spanning tree for short) generated from 𝐺 with root (𝑥, 𝑞0), denoted 𝑇𝑟𝑒𝑒𝑥 , is a
tree with each tree node being a pair (𝑢, 𝑠𝑢), where 𝑢 ∈ 𝑉 and 𝑠𝑢 ∈ 𝑄 , and each edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣))
in 𝑇𝑟𝑒𝑒𝑥 satisfies 𝑒 = (𝑢, 𝑣) ∈ 𝐸,𝜓 (𝑒) = 𝑙 and 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 . Each node in a spanning tree appears only
once (i.e., no two nodes have the same vertex and state pairs simultaneously), and each node, except
the root, has exactly one parent node.

A spanning tree is constructed from a given snapshot graph of𝑊 𝑡
guided by the 𝐷𝐹𝐴(𝑅) such

that each node in the spanning tree is labeled with a graph vertex and a state in 𝐷𝐹𝐴(𝑅). The root
has the initial state of 𝐷𝐹𝐴(𝑅). A path from the root to each node corresponds to a sequence of

edges in the graph and forms a prefix of a label sequence accepted by the 𝐷𝐹𝐴(𝑅). For each node

(𝑣, 𝑠𝑣), where 𝑥𝑣 ∈ 𝐹 , in 𝑇𝑟𝑒𝑒𝑥 , (𝑥, 𝑣) is a query result in the given sliding window. Here, we briefly

illustrate the process of maintaining spanning trees in PBO and provide an example. For more

details about PBO, please refer to [38].

The maintenance of the query spanning tree is as follows: For an input tuple ((𝑢, 𝑣, 𝑙), 𝑡), it is
labeled with all state pairs (𝑠𝑢, 𝑠𝑣) satisfying 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 . Then, for each such a pair, the edge

((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) is inserted into each query spanning tree 𝑇𝑟𝑒𝑒𝑥 if the node (𝑢, 𝑠𝑢) is in 𝑇𝑟𝑒𝑒𝑥 but

(𝑣, 𝑠𝑣) is not. An exception is that when (𝑢, 𝑠𝑢) is not in any spanning tree and 𝑠𝑢 is 𝑞0 ∈ 𝐷𝐹𝐴(𝑅),
then a new spanning tree 𝑇𝑟𝑒𝑒𝑢 is formed with the only edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)). Subsequently, PBO
extends the newly inserted edge by recursively connecting other tuples available within the current

window that can be linked to it until there are no more tuples that can be further connected.

When the window slides, an expiration phase starts. For each tuple ((𝑢, 𝑣, 𝑙), 𝑡) that is moved out of

the current window, each edge of the form ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) is removed from a spanning tree with

𝑠𝑣 = 𝛿 (𝑠𝑢, 𝑙). If a node is “orphaned” from the deletion, PBO searches for the tuples in the stream in
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the current window to try to connect it back to the spanning tree unless the root node is deleted,

in which case the spanning tree is removed. Explicit tuple deletion within a sliding window is

discussed in Section 4.4.

We now illustrate the above process with an example.

Example 2. Consider the streaming RPQ evaluation in Example 1. The 𝐷𝐹𝐴(𝑅) for regular expres-
sion 𝑅 is shown in Figure 2(d). Here we mark the states in𝑄 of 𝐷𝐹𝐴(𝑅) as numbers 0 to 3, respectively.
For the snapshot graph in window𝑊 14 shown in Figure 2(b), the corresponding spanning tree 𝑇𝑟𝑒𝑒𝑎
is shown in Figure 2(e). Each path in 𝑇𝑟𝑒𝑒𝑎 from the root to a node has its label sequence partially
matching 𝑅. The query result (𝑎, 𝑒) is obtained in 𝑇𝑟𝑒𝑒𝑎 since the vertex 𝑒 is labeled with a final state
of the 𝐷𝐹𝐴(𝑅), which means the label sequence of the path from the root 𝑎 to 𝑒 matches 𝑅.

When the time window slides to𝑊 15, tuple (𝑒7, 15) arrives, tuples (𝑒1, 5) and (𝑒2, 5) are moved out
of the current window.

For 𝑒1 and 𝑒2 in the query spanning tree𝑇𝑟𝑒𝑒𝑎 in𝑊 14, the tree edges ((𝑐, 1), (𝑑, 2)) and ((𝑐, 1), (𝑏, 2))
need to be removed since both edges (𝑐, 𝑏,𝑚𝑒𝑚) and (𝑐, 𝑑,𝑚𝑒𝑚) have moved out of the current sliding
window𝑊 15. Node (𝑑, 2) in 𝑇𝑟𝑒𝑒𝑎 becomes “orphaned”. Then, PBO traverses the tuples in𝑊 15 and
finds another edge (𝑏, 𝑑,𝑚𝑒𝑚) that can connect this node to 𝑇𝑟𝑒𝑒𝑎 . The final spanning trees generated
by the snapshot graph in window𝑊 15 shown in Figure 2(c) is presented in Figure 2(f).
For 𝑒7, edge (𝑒, 𝑏, 𝑓 𝑜𝑙) can be labeled with two state pairs (0, 1) and (3, 1) by 𝐷𝐹𝐴(𝑅). Edge

((𝑒, 3), (𝑏, 1)) is ignored since node (𝑒, 3) is not included in any existing spanning trees. State 0

is the initial state in 𝐷𝐹𝐴(𝑅), and there is no spanning tree 𝑡𝑟𝑒𝑒𝑒 here. Thus, a new spanning tree
𝑇𝑟𝑒𝑒𝑒 is created, and the tree edge ((𝑒, 0), (𝑏, 1)) is inserted into it. The other tuples in this window
that can extend this edge are also traversed and recursively inserted into 𝑇𝑟𝑒𝑒𝑒 . The final spanning
tree 𝑇𝑟𝑒𝑒𝑒 is shown in the right of Figure 2(f).

The amortized time complexity of PBO in inserting a tuple to the spanning trees is 𝑂 (𝑛 · 𝑘2) as
shown in [38], where 𝑛 is the number of distinct vertices in the snapshot graph 𝐺 , and 𝑘 is the

number of states in 𝐷𝐹𝐴(𝑅). We now describe the time complexity of the expiration process in

PBO [38]. In order to accelerate the expiration process, PBO [38] marks each node (except the root)

in the spanning trees with the minimum timestamp among the timestamps of the edges leading

to it from the root. Thus, when PBO executes expiration, it incurs a cost of 𝑂 (𝑙𝑜𝑔2𝑚) to find and

remove expired tuples whose timestamps are not in the next sliding window, assuming the tuples

in the streaming graph are sorted with their timestamps. For each removed tuple, there is a cost of

𝑂 (𝑛 · 𝑘2) to locate and remove the tree edges in all the spanning trees, where𝑚 is the number of

edges in 𝐺 , 𝑛 and 𝑘 are the same as above. Afterwards, there is a need to recursively traverse the

entire snapshot graph to adjust the tree edges’ timestamp. Thus, the overall time complexity of

expiration in PBO is 𝑂 (𝑛 ·𝑚 · 𝑘2) since the above removal process needs to be done for each of

the𝑚 tuples. Note that the expiration in PBO is a blocking phase invoked each time the sliding

window moves, and the time consumption of expiration is high.

Table 1 summarizes the notations used in this paper.

3 MWPWITH TRD
In this section, we introduce the streaming RPQ evaluation method Multiple-Window Parallel

(MWP). We begin by defining the concept of Timestamped Rooted Digraph (TRD). Next, we provide

a detailed description of the MWP method using TRD and a theoretical analysis of our proposed

algorithms. We will introduce the “dirty garbage collection” in the next section.

3.1 TRD
We first provide a formal definition for the TRD.
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Table 1. Notation Table

Notation Meaning

𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝜙 (𝑒)) A directed edge 𝑒 from vertex 𝑣𝑖 to 𝑣 𝑗 with label 𝜙 (𝑒)

𝑆 , 𝑆𝜏𝑛 = 𝜏1, 𝜏2, · · · , 𝜏𝑛
Streaming graph 𝑆 containing a sequence of tuples 𝜏 . 𝑆𝜏𝑛 is the sub-sequence of 𝑆 up to

a specific 𝜏𝑛

𝜏 = (𝑒, 𝑡𝑠 (𝜏)) Tuple 𝜏 of 𝑆 containing an edge 𝑒 and a timestamp 𝑡𝑠 (𝜏)
𝑝 = 𝑒1, 𝑒2, · · · , 𝑒𝑛 A graph path that is a sequence of edges

𝜙 (𝑝) The label sequence of path 𝑝

𝑊 ,𝑊 𝑡 Sliding window𝑊 on 𝑆 with length |𝑊 | and sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ).𝑊 𝑡
is the set of

tuples 𝜏 in 𝑆 where 𝑡𝑠 (𝜏) ∈ (𝑡 − |𝑊 |, 𝑡]
𝑅, 𝐷𝐹𝐴(𝑅) Regular expression 𝑅. 𝐷𝐹𝐴(𝑅) is the Deterministic Finite Automaton of 𝑅

𝑄𝑡
𝑅,𝑊

Set of results in streaming RPQ evaluation with query 𝑅 and sliding window𝑊 at time 𝑡

𝑇𝑟𝑒𝑒𝑥 Spanning Tree rooted at 𝑥

𝑇𝑥 TRD rooted at 𝑥

Δ Set of TRDs

Definition 7. Timestamped Rooted Digraph: For a given regular expression 𝑅 and a streaming
graph 𝑆 , a timestamped rooted digraph for 𝑆 guided by 𝐷𝐹𝐴(𝑅) = (𝑄, 𝐿, 𝛿, 𝑞0, 𝐹 ) is a connected
directed graph with nodes of the form (𝑢, 𝑞), where 𝑢 is a vertex of 𝑆 and 𝑞 is a state of 𝐷𝐹𝐴(𝑅).
Each TRD has a root node (𝑥, 𝑞0), and thus the TRD is denoted 𝑇𝑥 . Each edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) in 𝑇𝑥
satisfies 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 , where 𝑙 is a label of a edge in 𝑆 from 𝑢 to 𝑣 . Each node in 𝑇𝑥 is associated with a
non-empty finite set of positive integers called timestamps. The timestamps of the root contain all the
positive integers by default if not otherwise specified. No two nodes in a TRD have the same vertex and
state.

Note that the root node in a TRD has a path to reach each of the other nodes in the TRD by

definition 7.

We assume that the 𝐷𝐹𝐴(𝑅) is a minimum deterministic finite automaton for 𝑅. By the above

definition, the label sequence of each path in a TRD from the root to any other node forms a prefix

of a sequence that matches the query expression 𝑅. If the state of the last node on the path is a

final state of 𝐷𝐹𝐴(𝑅), the label sequence then matches 𝑅.

As indicated in the definition, each node in a TRD is associated with a set of timestamps. If 𝑡 is a

timestamp of a node, then it means that the node “exists in the window𝑊 𝑡
.” In the sequel, we say

a node “exists at 𝑡” to mean that the node can be used to form a path in the sliding window𝑊 𝑡
. A

node may exist in multiple sliding windows if it is associated with multiple timestamps. We denote

the timestamp set of a node (𝑢, 𝑠𝑢) as (𝑢, 𝑠𝑢).𝑡𝑠 .

Definition 8. Valid TRD: Given a TRD 𝑇𝑥 , and a node (𝑢, 𝑠𝑢) in 𝑇𝑥 , we say that a timestamp 𝑡
on node (𝑢, 𝑠𝑢) is valid if 𝑡 is in the timestamp set of each node in one of its paths from root to (𝑢, 𝑠𝑢).
If all the timestamps on all the nodes in 𝑇𝑥 are valid, then 𝑇𝑥 is valid.

We only need to use valid TRDs in our MWPmethod (except after DGC, see Section 4). Intuitively,

on a valid TRD, if 𝑡 is a timestamp associated with a node (𝑢, 𝑠𝑢), then there is a path in𝑊 𝑡
from

the root to (𝑢, 𝑠𝑢).
An example of valid TRDs is shown in Figure 3. We use Δ to denote the set of valid TRDs.

3.2 MWP method
This section describes the MWP method, which consists of two algorithms, RPQ (Algorithm 1) and

Update (Algorithm 2), for RPQ evaluation. These algorithms incrementally maintain valid TRDs

over the append-only streaming graph.
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Fig. 3. The Δ generated from streaming graph 𝑆𝜏 in Figure 2(a) with window size 10, sliding step length 1
and 𝐷𝐹𝐴(𝑅) in Figure 2(d). The newly added edges are shown with red dashes, and the updated timestamp
sets are highlighted in red and underlined. We use intervals to represent sets of timestamps.

Algorithm RPQ (Algorithm 1) processes all tuples 𝜏 = ((𝑢, 𝑣, 𝑙), 𝑡) from the streaming graph 𝑆𝜏 in

the order they arrive. We use 𝑆𝜏 to include the tuples that have not been removed yet (with garbage

collection in Section 4) and arrived no later than 𝜏 . We also maintain all the TRDs denoted Δ.
For every tuple ((𝑢, 𝑣, 𝑙), 𝑡), Algorithm RPQ first identifies vertex pairs (𝑢, 𝑣) with state pairs

(𝑠𝑢, 𝑠𝑣) that satisfy 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 . Then, for each of these state pairs (𝑠𝑢, 𝑠𝑣):
- If 𝑠𝑢 = 𝑞0 and 𝑇𝑢 does not exist in Δ, which means there needs to be a new TRD rooted in 𝑢,

then add 𝑇𝑢 to Δ (Line 5).

- Algorithm Update is invoked for each edge ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) and each TRD in Δ containing node

(𝑢, 𝑠𝑢) (Line 6 to 8).

Algorithm 1: 𝑅𝑃𝑄

Globally maintained: TRD set Δ, the streaming graph 𝑆𝜏

Input: Tuple 𝜏 = (𝑒, 𝑡) where 𝑒 = (𝑢, 𝑣, 𝑙)
1 begin

2 Add 𝜏 to 𝑆𝜏 ;

3 foreach (𝑠𝑢, 𝑠𝑣) s.t. 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 do

4 if 𝑠𝑢 = 𝑞0 ∧𝑇𝑢 ∉ Δ then

5 Create a new TRD 𝑇𝑢 and add it to Δ;

6 foreach 𝑇𝑥 ∈ Δ do

7 if (𝑢, 𝑠𝑢) ∈ 𝑇𝑥 then

8 Call Update(𝑇𝑥 , ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)), 𝑡);

Algorithm Update (Algorithm 2) inserts an edge 𝑒 = ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) with timestamp 𝑡 into a TRD

𝑇𝑥 and updates the timestamp set of the affected nodes. Recall that 𝑡 is the timestamp of the tuple

((𝑢, 𝑣, 𝑙), 𝑡) processed by Algorithm RPQ. First, it initializes the timestamp set of node (𝑣, 𝑠𝑣) to
empty if (𝑣, 𝑠𝑣) ∉ 𝑇𝑥 (Line 3). Then it identifies the set𝑇 = [𝑡, 𝑡 + |𝑊 |) such that for each 𝑡 ′ ∈ 𝑇 , the

sliding window𝑊 𝑡 ′
contains 𝑡 , and updates (𝑣, 𝑠𝑣) .𝑡𝑠 by adding these new “existing” timestamps,

which is the intersection between the parent node (𝑢, 𝑠𝑢)’s timestamp set and𝑇 (Line 4). Intuitively,

if there is any path from the root to (𝑢, 𝑠𝑢) that exists within a sliding window (𝑊 𝑡 ′
), this path can

also be extended to include node (𝑣, 𝑠𝑣) within that same window (𝑊 𝑡 ′
). It is important to note

here that we assume all TRDs are kept valid. If the new node (𝑣, 𝑠𝑣) has a non-empty timestamp,

it should be inserted into the TRD (Line 6). The insertion of edge 𝑒 triggers an update of TRD 𝑇𝑥
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if there is a change in (𝑣, 𝑠𝑣).𝑡𝑠 (Line 7), which requires recursively invoking Algorithm Update
within 𝑆𝜏 (Line 11) to update 𝑇𝑥 due to the changes caused by the new tuple.

In the algorithm, if (𝑣, 𝑠𝑣).𝑡𝑠 is modified and 𝑠𝑣 ∈ 𝐹 , then it sends the result pair (𝑣, 𝑠𝑣) and
timestamp set (𝑣, 𝑠𝑣).𝑡𝑠 to a thread specifically for collecting results (Line 9). We call the thread

Result Recorder Thread.

Algorithm 2:𝑈𝑝𝑑𝑎𝑡𝑒

Globally maintained: TRD set Δ, the streaming graph 𝑆𝜏

Input: TRD 𝑇𝑥 , Edge 𝑒 = ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)), timestamp 𝑡

1 begin

2 if (𝑣, 𝑠𝑣) ∉ 𝑇𝑥 then

3 Let (𝑣, 𝑠𝑣).𝑡𝑠 = ∅ // Initialize

4 Let (𝑣, 𝑠𝑣).𝑡𝑠 = (𝑣, 𝑠𝑣).𝑡𝑠 ∪ ((𝑢, 𝑠𝑢).𝑡𝑠 ∩ [𝑡, 𝑡 + |𝑊 |));
5 if (𝑣, 𝑠𝑣).𝑡𝑠 ≠ ∅ ∧ (𝑣, 𝑠𝑣) ∉ 𝑇𝑥 then

6 Insert ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) into 𝑇𝑥 ;
7 if (𝑣, 𝑠𝑣).𝑡𝑠 is updated in Line 4 then
8 if 𝑠𝑣 ∈ 𝐹 ∧ 𝑣 ≠ 𝑥 then

9 Send (𝑥, 𝑣) and (𝑣, 𝑠𝑣).𝑡𝑠 to the thread responsible for collecting and reporting
results;

// collect results

10 foreach ((𝑣,𝑤, 𝑙), 𝑡 ′′) ∈ 𝑆𝜏 ∧ 𝛿 (𝑠𝑣, 𝑙) = 𝑠𝑤 do

11 Call Update(𝑇𝑥 , ((𝑣, 𝑠𝑣), (𝑤, 𝑠𝑤)), 𝑡 ′′);
// recursively update

We now illustrate our proposed algorithms with an example.

Example 3. Consider the RPQ evaluation on the streaming graph 𝑆𝜏 shown in Figure 2(a). The
query conditions are the same as in Example 1. The regular expression 𝑅 is (fol ◦ mem ◦ tra)+ and its
corresponding 𝐷𝐹𝐴(𝑅) is shown in Figure 2(d). The window size |𝑊 | is 10, and the sliding step length
is 1. In addition, we label the states 𝑞0, 𝑞1, 𝑞2, and 𝑞3 of 𝐷𝐹𝐴(𝑅) as numbers 0 to 3, respectively.

Before 𝑡 = 9, all tuples won’t cause the creation of TRDs since we need a tuple with the label “fol”
to create a root node with state 0.
At time 𝑡 = 9, edge 𝑒4 arrives and creates the TRD 𝑇𝑎 shown in Figure 3(a) since the vertex 𝑎 in 𝑒4

is labeled with an initial state 0. The time interval [9, 18] indicates that node (𝑏, 1) exists in sliding
window𝑊 𝑡 for all 𝑡 ∈ [9, 18] (In reality,𝑊 𝑡 does not exist if 𝑡 < 10, but this does not effect the
correctness.). The edges marked with red dashes are newly added to this TRD, and the timestamp
sets highlighted in red and underlined indicate that they have been modified. Note that the call to
Algorithm Update with all the tuples that arrived before 𝑡 = 9 does not cause any changes to 𝑇𝑎 since
each tuple will make a new edge on 𝑇𝑎 but does not satisfy the insertion condition (Line 5).

At time 𝑡 = 10, upon the arrival of edge 𝑒5, 𝑇𝑎 has a new edge ((𝑎, 0), (𝑐, 1)). Then edges 𝑒1, 𝑒2, and
𝑒3 are recursively traversed, and additional edges are added to the existing TRD 𝑇𝑎 . As a result, nodes
(𝑏, 2), (𝑑, 2) and (𝑒, 3) are created as the descendants of node (𝑐, 1). The updated TRD after inserting
edge 𝑒5 is shown in Figure 3(b). It should be noted that vertex 𝑏 can have multiple states in this TRD𝑇𝑥 .
At time 𝑡 = 14, edge 𝑒6 is labeled with state pairs (1, 2) and added to 𝑇𝑎 , which creates a new path

(𝑎, 0) → (𝑏, 1) → (𝑑, 2) → (𝑒, 3) in this TRD. The timestamp set of (𝑑, 2) is updated by taking the
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union of the new existing timestamps from the new path, causing the updating of (𝑒, 3).𝑡𝑠 . Any more
calls to Algorithm Update do not cause any changes to the TRD. The corresponding TRD𝑇𝑎 is shown in
Figure 3(c).
When edge 𝑒7 arrives with timestamp 𝑡 = 15, it creates a new TRD 𝑇𝑒 with state pair (0, 1) and is

inserted into the TRD 𝑇𝑎 with state pair (3, 1). The insertion process on 𝑇𝑎 terminates early as none of
the node’s timestamp sets were updated. The final snapshot of Δ is shown in Figure 3(d).

Theorem 1. Algorithm RPQ is complete and correct.

Proof Sketch: To prove this, we need to show that Algorithm RPQ can find all the query results

for the given streaming tuples 𝑆𝜏 . Firstly, all the paths whose label sequence partially matches 𝑅

and exist in a certain timestamp in the streaming graph can be founded in Δ. Besides, Algorithm
Update ensures that when there is a path from node 𝑥 to node 𝑣 in a TRD 𝑇𝑥 whose label sequence

matches 𝑅, and all edges on this path exist at a same sliding window𝑊 𝑡
, then the node (𝑣, 𝑠𝑣)

where 𝑠𝑣 ∈ 𝐹 is added to 𝑇𝑥 and vertex pair (𝑥, 𝑣) is added to 𝑄𝑡
. Additionally, the timestamp set

(𝑣, 𝑠𝑣).𝑡𝑠 calculated by Algorithm Update contains all such 𝑡 . Thus, the Algorithm RPQ is complete

and correct.

Lemma 1. The timestamp set (𝑣, 𝑠𝑣).𝑡𝑠 in a TRD 𝑇𝑥 can be updated at most |𝑊 | times by Algorithm
Update with the same tuple 𝜏 .

Proof: Consider the invocation for Algorithm Update with an edge 𝑒 = ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) and a

timestamp 𝑡 . It is clear that this edge can exist in a sliding window𝑊 𝑡 ′
for all 𝑡 ′ ∈ [𝑡, 𝑡 + |𝑊 |),

which is illustrated earlier. Since there are at most |𝑊 | sliding windows in [𝑡, 𝑡 + |𝑊 |), the (𝑣, 𝑠𝑣).𝑡𝑠
on the edge 𝑒 and timestamp 𝑡 can be updated by line 4 at most |𝑊 | times. Therefore, for a certain

tuple 𝜏 = ((𝑢, 𝑣, 𝑙), 𝑡) that satisfies 𝛿 (𝑠𝑢) = 𝑠𝑣 , (𝑣, 𝑠𝑣).𝑡𝑠 in a TRD can be updated by it at most |𝑊 |
times.

Theorem 2. The amortized time consumption of Algorithm RPQ is 𝑂 (𝑛 · 𝑘2) over𝑚 tuples in 𝑆𝜏 ,
where 𝑛 is the number of distinct vertices in 𝑆𝜏 , 𝑘 is the number of states in 𝐷𝐹𝐴(𝑅).

Proof: Inserting a new edge in Line 3 and sending messages in in Line 4 take a constant time,

which is the same as that in PBO [38]. Thus, the time complexity of Algorithm RPQ is determined

by the number of times Algorithm Update is invoked.
Let’s consider the processing of a tuple 𝜏 with edge 𝑒 = (𝑢, 𝑣, 𝑙) and timestamp 𝑡 . In automaton

𝐷𝐹𝐴(𝑅), there can be at most 𝑘2 state pairs (𝑠𝑢, 𝑠𝑣) that satisfy 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 . Therefore, each tuple

can produce at most 𝑘2 edges in TRDs. Besides, the recursive invocation of Algorithm Update
occurs when (𝑣, 𝑠𝑣).𝑡𝑠 is updated. According to Lemma 1, Algorithm Update with parameters

((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) and 𝑡 takes at most |𝑊 | updates on (𝑣, 𝑠𝑣).𝑡𝑠 in a TRD. Note that there are at most 𝑛

TRDs. The total number of invocations for Algorithm Update is bounded by:

𝑛 ·𝑚 · 𝑘2 · |𝑊 |
Thus, the amortized time complexity of Algorithm RPQ is 𝑂 (𝑛 · 𝑘2). Note that the amortized time

complexity of Algorithm RPQ is the same as the amortized insertion time complexity of PBO.

The timestamp set on each node can be compressed by only recording the timestamps 𝑡 when

𝑊 𝑡
with length |𝑊 | and sliding step length 𝑆𝑡𝑒𝑝 (𝑊 ) exists, that is, 𝑡 satisfies: |𝑊 | ≤ 𝑡 and (𝑡 − |𝑊 |)

mod 𝑆𝑡𝑒𝑝 (𝑊 ) == 0. These are the same timestamps used for Result Recording Thread to update

results 𝑄 in line 9 of Algorithm Update. It means that the number of timestamp updates, as stated

in Lemma 1, can be limited to at most |𝑊 |.
Parallel Strategy: The description of our algorithms is in terms of sequential execution

(single thread). Parallel execution with multithread is feasible for MWP. The parallel strategy for
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Fig. 4. The process of parallel invoking Algorithm RPQ for edges 𝑒5 and 𝑒6 on TRD 𝑇𝑎 is shown in Figure 3(a).
The red dotted arrows are added by processing edge 𝑒5, while the blue dashed arrows are added by processing
edge 𝑒6. The updated timestamp sets of nodes are marked with 𝑒5 and 𝑒6, respectively. Conflicts in updating
the timestamp set for nodes (𝑑, 2) and (𝑒, 3) are highlighted with double circles.

MWP involves parallelly executing Algorithm RPQ (Algorithm 1) for each tuple in the streaming

graph 𝑆𝜏 . No synchronization is needed for Algorithm RPQ with different 𝜏 . The Algorithm Update
(Algorithm 2) can also be invoked in parallel but need careful management on data access by

implementing a Readers-Writer Lock for the timestamp set on each node in all TRDs. We call the

Algorithm RPQ (Algorithm 1) execution (as well as all the subsequent calls to Algorithm Update)
with a single tuple 𝜏 as a RPQ task. The updates from different RPQ tasks to the timestamp set of a

node in line 4 of Algorithm Update must be atomic for correctness, which is guaranteed by the lock

mentioned above.

For example, Figure 4 shows the parallel executing of two RPQ tasks with tuples (𝑒5, 10) and
(𝑒6, 14) on maintaining the same TRD 𝑇𝑎 . The processes of these two invocations in 𝑇𝑎 , which

include inserting edges and updating timestamps, are marked in red and blue, respectively. When

both invocations update the timestamp set of node (𝑑, 2) in Line 4 of Algorithm Update, one is
blocked until another completes. Note that regardless of the order in which the timestamp set is

updated by these two invocations, nodes (𝑑, 2) and (𝑒, 3) always produce consistent timestamps in

𝑇𝑎 . The above “Parallel Strategy” has no effect on the correctness of the results.

4 GARBAGE COLLECTION (GC)
In this section, we turn our attention to the garbage collection (GC) on the TRDs. We first present

the calculation for the cut-off time of garbage collection in Section 4.1. Then we provide a naive

GC approach in Section 4.2, and introduce our proposed DGC algorithm in Section 4.3. Finally, we

provide a brief discussion of MWP on supporting processing explicit deletions in Section 4.4.

4.1 GC Cut-off Time
Given a time 𝑡 , we want to identify the garbage collection cut-off time 𝑡𝑔𝑐 such that if all the tuples

with a timestamp less than 𝑡 have been processed via Algorithm RPQ, then all tuples in 𝑆𝜏 with

timestamp less than 𝑡𝑔𝑐 are no longer relevant to produce any new query result after time 𝑡 . The

value 𝑡𝑔𝑐 , given 𝑡 , is calculated as follows. Among all the tuples with timestamps less than 𝑡 , assume

the tuple with the largest timestamp is 𝜏 ′. Then 𝑡𝑔𝑐 is formally defined as: 𝑡𝑔𝑐 = 𝑡𝑠 (𝜏 ′) − |𝑊 |.
The calculated GC cut-off time 𝑡𝑔𝑐 is correct since the timestamp of a tuple that is less than 𝑡𝑔𝑐

is not going to be in the same sliding window with any tuple with a future timestamp (i.e., after

𝑡𝑠 (𝜏 ′)). Hence, removing tuples before 𝑡𝑔𝑐 will not impact the new results in the windows𝑊 𝜏 ′
for

all 𝑡 ′ > 𝑡𝑠 (𝜏 ′) by Definition 4.
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4.2 Naive GC on TRDs
The naive GC strategy identifies the old tuples in the maintained streaming graph whose timestamp

is less than a given GC cut-off time 𝑡𝑔𝑐 . These identified tuples are then removed from the graph, and

the TRDs in Δ are adjusted accordingly. The pruning process for the streaming graph 𝑆𝜏 involves

simply removing these old tuples. The adjustment on TRDs is based on the fact that each edge

((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) in a TRD 𝑇𝑥 is due to a set of tuples (called the “associated tuples” of the edge)

with the form ((𝑢, 𝑣, 𝑙), 𝑡) in 𝑆𝜏 when building 𝑇𝑥 with Algorithm RPQ. When a particular tuple

((𝑢, 𝑣, 𝑙), 𝑡) is removed from 𝑆𝜏 , it may be necessary to update the timestamp set of node (𝑣, 𝑠𝑣)
by recalculating its existing times using a process similar to one in Algorithm Update. The edge
((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) will be removed if all its associated tuples are removed, and the node (𝑣, 𝑠𝑣) will be
removed if there are no incoming edges or when its timestamp set (𝑣, 𝑠𝑣).𝑡𝑠 , after recalculation,
becomes empty. Additionally, the timestamp set of all the descendants of (𝑣, 𝑠𝑣) in 𝑇𝑥 also needs to

be recursively updated to maintain the validity of the TRD.

Note that the associated set of tuples in 𝑆𝜏 for each edge in TRD can be simply implemented by

recording the tuples when executing Algorithm𝑈𝑝𝑑𝑎𝑡𝑒 . We illustrate the naive GC with a simple

example.
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Fig. 5. (a) a TRD 𝑇𝑎 where each edge in 𝑇𝑎 is marked with the timestamps of its associated tuples. (b) and (c)
the naive GC and DGC processes with GC threshold 𝑡𝑔𝑐 = 7. The removed edges, nodes, and the corresponding
timestamps are marked in dashes or strikethroughs, and the newly updated timestamps are marked in red.

Example 4. Consider the GC process with GC cut-off time 𝑡𝑔𝑐 = 7 on TRD 𝑇𝑎 shown in Figure 5(a).
Each edge in 𝑇𝑎 is labeled with the timestamps of its associated tuples in the streaming graph (in this
example, an edge associates with only one tuple). Hence, edges ((𝑎, 0), (𝑐, 1)) and ((𝑑, 2), (𝑒, 3)) are
removed from 𝑇𝑎 (marked with dashed lines in the figure) since all the associated tuples are removed.
Additionally, nodes (𝑐, 1) and (𝑒, 3) will be removed since all their incoming edges are removed. Edges
((𝑐, 1), (𝑑, 2)) and ((𝑐, 1), (𝑏, 2)), as well as node (𝑏, 2), will also be removed due to the removal of
node (𝑐, 1). These removals cause a recalculation of the timestamp set of node (𝑑, 2). The final snapshot
of 𝑇𝑎 using naive GC is shown in Figure 5(b), where the new timestamp set of (𝑑, 2) is marked in red.

In the above example, if there were additional edges from the nodes (𝑐, 1), (𝑏, 2), (𝑑, 2) and (𝑒, 3)
in 𝑇𝑎 , the same update operations would be applied to all of them. This process can be highly

time-consuming since it may involve updating the timestamp set of every node in the entire TRD,

and each node may be visited many times. Note that the expiration in the PBO method essentially
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employs this naive algorithm with 𝑡𝑔𝑐 = 𝑡 − |𝑊 | when 𝑡 reaches the end of a sliding window, albeit

on their spanning trees.

4.3 DGC on TRDs
We propose a strategy called Dirty Garbage Collection (DGC) to achieve faster garbage collection

on TRDs than the naive one. The novel idea is to avoid the recalculation of timestamp sets for the

affected nodes, as done in the naive GC scheme, but we may leave the TRDs in a bit of “dirty” but

correct state.

We summarize DGC in Algorithm DGC (Algorithm 3). For a given GC cut-off time 𝑡𝑔𝑐 , a DGC

first removes all the tuples in 𝑆𝜏 (see Algorithm RPQ) that have a timestamp less than 𝑡𝑔𝑐 (Line 2

and 3). For each edge in a TRD, if all the associated tuples have a timestamp less than 𝑡𝑔𝑐 , then the

edge is removed from the TRD (Line 7). Next, we remove all nodes (and all the outgoing edges from

them) if there are no incoming edges to them (Line 10). We do this last step repeatedly until no

nodes can be removed.

Here we illustrate the Algorithm DGC with an example.

Example 5. Consider the same GC conditions in Example 4. Figure 5(c) illustrates the GC process
using DGC methods. In TRD𝑇𝑎 , the removal of edges and nodes is the same as in Example 4. Unlike the
naive GC method, however, the DGC method does not update (𝑑, 2).𝑡𝑠 , which is boxed in a dashed line
in this figure, even though it may result in some invalid timestamps like 𝑡 = 12 because 12 ∉ (𝑏, 1).𝑡𝑠 .

Algorithm 3: 𝐷𝐺𝐶

Globally maintained: TRD set Δ, the streaming graph 𝑆𝜏

Input: GC cut-off time 𝑡𝑔𝑐 ∧ 𝑡𝑔𝑐 < 𝑡𝑠 (𝜏)
1 begin

2 Let 𝑃 = {((𝑢, 𝑣, 𝑙), 𝑡) ∈ 𝑆𝜏 |𝑡 < 𝑡𝑔𝑐 };
// candidate removal tuples

3 Remove tuples in 𝑃 from 𝑆𝜏 ;

4 foreach 𝑇𝑥 ∈ Δ do

5 foreach ((𝑢, 𝑣, 𝑙), 𝑡) ∈ 𝑃 ∧ 𝛿 (𝑠𝑢, 𝑙) = 𝑠𝑣 ∧ 𝑒′ = ((𝑢, 𝑠𝑢), (𝑣, 𝑠𝑣)) ∈ 𝑇𝑥 do

6 if all tuple associated with 𝑒′ have a timestamp less than 𝑡𝑔𝑐 then
7 Remove edge 𝑒′ from 𝑇𝑥 ;

8 repeat

9 if there is a node in a TRD in Δ has no incoming edge then
10 Remove the node along with all its outgoing edges;

11 until no change is made to Δ;

Theorem 3. The Algorithm DGC is correct.

Proof: We only need to show that the invalid timestamps in the resulting TRDs have no impact

on the further queries in the RPQ evaluation. Note that though the DGC may break the validity of

TRDs by removing some edges without recalculating timestamps for the affected nodes in TRDs

(as shown in Example 5), each timestamp 𝑡 ′ that is greater or equal to 𝑡𝑔𝑐 + |𝑊 | remains valid on

the TRD. Indeed, the fact that 𝑡 ′ was valid before DGC was because there is a sequence of tuples

in 𝑆𝜏 such that the timestamps of them are all in (𝑡 ′ − |𝑊 |, 𝑡 ′]. Since 𝑡 ′ − |𝑊 | ≥ 𝑡𝑔𝑐 , we know the
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timestamps of these tuples are no less than 𝑡𝑔𝑐 and hence not removed by DGC. Therefore, the path

still exists on TRD after pruning. Additionally, since for the sliding windows to be considered by

RPQ after DGC, say𝑊 𝑡 ′′
, we have 𝑡 ′′ ≥ 𝑡 ≥ 𝑡𝑔𝑐 + |𝑊 |, then the pruned TRDs will yield the same

query results in all subsequent sliding windows𝑊 𝑡 ′
for all 𝑡 ′ ≤ 𝑡 . Thus, Algorithm RPQ performs

well in the TRDs after DGC for the future tuples since those invalid timestamps are ignored in Line

4 of Algorithm Update.

Theorem 4. The worst time complexity of Algorithm DGC is 𝑂 (𝑛 ·𝑚 · 𝑘2), where 𝑛 is the number
of distinct vertices in a streaming graph of 𝑆𝜏 and 𝑘 is the number of states in 𝐷𝐹𝐴(𝑅).
Proof: Firstly, since tuples in the streaming graph are sorted with their timestamps, the main-

tenance of the streaming graph takes 𝑂 (𝑙𝑜𝑔2𝑚), where𝑚 is the number of tuples in 𝑆𝜏 . For each

removed tuple 𝜏 ′, we look for TRD edges that are associated with 𝜏 ′ and test if all its associated

tuples are removed. If so, remove this edge. This part of the algorithm takes 𝑛 ·𝑚 · 𝑘2 time, where 𝑛

is the number of distinct vertices, and 𝑘 is the number of states in 𝐷𝐹𝐴(𝑅). The other part of time

complexity in Algorithm DGC is the number of loops executed in Line 8 to 11. The worst-case

scenario occurs when all nodes in TRDs are removed, as mentioned earlier. Note that each node in

a TRD can be visited only once. Therefore, this loop can be executed 𝑛2 · 𝑘 times in the worst-case,

since there are most 𝑛 TRDs, each with 𝑛 · 𝑘 nodes. The final time complexity of Algorithm DGC is

𝑂 (𝑙𝑜𝑔2𝑚+𝑛 ·𝑚 ·𝑘2 +𝑛2 ·𝑘), which is less than that of PBO (𝑂 (𝑙𝑜𝑔2𝑚+𝑛 ·𝑚 ·𝑘2 +𝑛 ·𝑚 ·𝑘2)). We note

that the Naive GC only differs from DGC in recalculating the timestamp sets of nodes associated

with the removed edges. Thus, the complexity of Naive GC is 𝑂 (𝑙𝑜𝑔2𝑚 + 𝑛 ·𝑚 · 𝑘2 · 𝑛 · 𝑘 + 𝑛2 · 𝑘),
i.e., 𝑛 · 𝑘 multiplied to the middle term in the complexity of DGC. This complexity is even higher

than that of PBO due to the graph structure, instead of the tree structure, used in MWP. Therefore,

we do not consider Naive GC further in this paper.

The DGC is responsible for deleting “garbage” data structures and freeing up memory, and can be

executed when memory runs low. The explicit execution for DGC can improve system performance

during query evaluation, especially when traversing these “garbage” data structures in Algorithm

RPQ is more costly than executing DGC. In such cases, it is recommended to execute DGC. We

have conducted extensive experiments and will provide a detailed discussion in Section 5.4.3.

Parallel Strategy: The DGC can be executed in a highly parallel fashion. Each removal of

nodes and edges on a TRD (Line 10 in Algorithm DGC) can be done in parallel. After removing

the old tuples from the streaming graph and edges from TRDs, the recursive traversal (Line 8 to

10) can be done in parallel with the premise that each node can only be removed once based on

the atomic operation in Line 9 of Algorithm DGC. If multiple DGC processes (for different tuples)

on the same TRD are to remove the same node and all its outgoing edges in Line 10, only the first

thread will succeed, and all others will do nothing. Here, we refer to each such recursively traversal

in TRDs as a GC task, which involves executing Lines 8 to 11 in Algorithm DGC. Note that the
parallel processing of the GC tasks is correct since even when two tasks meet at the same node in

TRDs, only one can continue the traversal from this node.

4.4 Explicit Deletion via GC
A deletion tuple 𝜏 = (𝑒, 𝑡𝑠 (𝜏)) is to explicitly remove all tuples with edge 𝑒 and timestamp less than

𝑡𝑠 (𝜏) in the streaming graph, which needs to adjust the query structures by removing the affected

edges. We now briefly discuss the support for deletion tuples in MWP and compare it with that of

in PBO.

In MWP, the deletion can be treated with Naive GC. When an edge is removed from a TRD, this

TRD is locked from collecting results (Line 9 in Algorithm Update), and all the descendant nodes of

this removed edge will recursively update their timestamp set.
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PBO produces more blocking phases if deletion happens. Indeed, for each deletion tuple, PBO

first sets the timestamp of all candidate removal edges in the query spanning trees to “infinitesimal”

and then explicitly calls an expiration phase to correctly process these edges, which incurs an extra

blocking phase within a sliding window. In contrast, although an explicit deletion in MWP also

needs to lock the affected TRD, block the processing of other tuples on the same TRD, only the

TRDs with deletion are locked, and the other tuples can still be parallelly processed. Note that

PBO may also adopt this locking approach to reduce blocking during deletion, but this may not

provide much relief since the blocking in PBO at each sliding window is necessary and severely

degrades the performance. We hence do not further compare MWP and PBO in terms of explicit

tuple deletion in this paper.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of the proposed methods over two

real-world datasets Yago3 and Stackoverflow. We first introduce the experiment settings in Sections

5.1 and 5.2. The evaluation metrics are presented in Section 5.3. Experimental results and their

analysis are in Section 5.4.

Here we give a brief highlight of our experimental results:

• MWP achieves a throughput up to 15.2 times higher than PBO, with a significantly lower tail

latency (only 0.2% of that of PBO for certain queries).

• The performance of MWP improves as the sliding step length increases, while PBO shows

the opposite trend. When Step(W) = 25 on dataset Stackoverflow with query 𝑄2 and |𝑊 | = 30,

MWP experiences tail latency that is only 2% of that of PBO.

• DGC strategy performs well in the RPQ evaluation system by sufficiently freeing up memory.

• As the streaming speed increases, MWP demonstrates higher and more stable performance

(in terms of throughput and tail latency) compared to PBO.

5.1 System Setup
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Fig. 6. Overview of RPQ evaluation system consisting of four types of threads. The arrows between different
threads are the transmitted messages

Figure 6 provides an overview of the RPQ evaluation system. It consists of a data structure called

the “Cache Queue” (highlighted in blue) and four types of threads (highlighted in bold):

(1) The “Cache Queue” continuously receives tuples from an external source and appends them

to the end of the queue.
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(2) The “RPQ thread” fetches tuples from the front of the “Cache Queue.” For each tuple, it creates

a “RPQ task” and sends it to the “Thread Pool” for processing. For PBO, the RPQ task is to maintain

query spanning trees (Definition 6), while for MWP, it is the task explained in Section 3.

(3) The “Thread Pool” maintains the streaming graph 𝑆𝜏 (i.e., the tuples that have been fetched by

the RPQ thread and not deleted by GC). It consists of multiple threads, with each thread handling

one task at a time. Tasks can be either RPQ tasks or GC tasks and can be executed concurrently

with different threads. When handling RPQ tasks, any newly generated query result (𝑢, 𝑣) along
with its timestamp 𝑡 is sent to another thread known as the “Result Recorder Thread.”

(4) The “GC thread” includes a trigger that determines if GC conditions are met. If so, a synchro-

nization signal (indicated by the red arrow in the figure) is sent to suspend fetching new tuples from

the “Cache Queue.” It then calculates GC cut-off time 𝑡𝑔𝑐 , updates streaming graph 𝑆𝜏 by removing

old tuples, creates a set of “GC tasks,” and sends them to the Thread Pool for processing. For PBO,

the GC is triggered every time the window slides, and the GC tasks are to remove all expired edges

and adjust the structure of the query spanning trees. For MWP, the GC conditions are customized,

and the GC tasks are those described in Section 4. Once GC is completed, a signal is sent to resume

fetching new tuples by the RPQ thread.

(5) The “Result Recorder Thread” receives vertex pairs and timestamps from threads in the

“Thread Pool,” checks the result set 𝑄𝑡
for each timestamp 𝑡 in (𝑣, 𝑠𝑣).𝑡𝑠 and adds (𝑢, 𝑣) to 𝑄𝑡

if not

already in it. It continuously reports new query results and the windows in which they exist.

It is important to note that all four types of threads run simultaneously during RPQ evaluation.

However, GC tasks and RPQ tasks cannot run simultaneously.

5.2 Implementation and Experiment Setup
Implementation: We implemented the whole system in Java 17. For the implementation of the

components of this system: (1) The “Cache Queue” is implemented as a concurrent queue that

supports parallel adding and polling operations. (2) The “Thread Pool” is a fixed-size thread pool

provided by the Java API. (3) The “DGC trigger” in the “DGC Thread” monitors GC conditions

every 10 seconds during RPQ evaluation. Message passing between different threads is achieved

through shared variables. (4) The “Result Recorder Thread” is implemented as described in Section

5.1.

For the implementation of the involved data structures, which are all kept in memory: (i) The

streaming graph 𝑆𝜏 (i.e., the streaming tuples that have been fetched by the RPQ thread and possibly

“chopped” by the GC tasks) is stored both as a digraph and an ordered list of tuples. Vertices with

their associated tuples in 𝑆𝜏 are stored in a hash table to improve traversal and maintenance

efficiency, such as line 10 in Algorithm Update and lines 2 & 3 in Algorithm DGC. Note that the
streaming graph 𝑆𝜏 is shared among all the threads in the system. (ii) All TRDs in Δ are indexed by

their root nodes and recorded in a concurrent hash table. Each node (𝑢, 𝑠𝑢) also has a correlated
hash-based index for efficient lookups. Each TRD maintains two timestamps to mark the maximum

and minimum timestamp of currently included tuples for fast pruning during DGC. (iii) Timestamp

set on each node is recorded as multiple intervals to efficiently calculate the intersections between

different timestamp sets within TRDs and limit memory usage since a timestamp set may contain

many timestamp values.

Datasets: We introduce two widely-used datasets as follows:

• Stackoverflow (SO) is a network of Question & Answer. We form a temporal network

of interactions on the stack exchange website containing 2.6M users (vertices) and 74M

interactions (edges) about 6 years up to now [37]. There are three kinds of interactions (the

labels of the edge) for an edge ((𝑢, 𝑣), 𝑙, 𝑡): (𝑙 = 𝑎) if user u answered user v’s question, (𝑙 = 𝑏)
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u commented v’s answer, or (𝑙 = 𝑐) if u commented v’s question, where t is the time when

the interaction happened. The window size |𝑊 | is set to 1 month, and the sliding step length

𝑆𝑡𝑒𝑝 (1) is set to 1 day unless otherwise specified.

• YAGO3 is a real-world RDF dataset about people, cities, countries, movies, and organizations

from the multilingual Wikipedia [31], which contains more than 17M entities (vertices), 150M

facts (edges between entities) about these entities, and more than 100 labels on these facts.

We select the core facts, with 16M entities, 55M edges, and 36 labels, as the test dataset and

manually mark each edge with a non-decreasing integer as its timestamp after randomly

shuffling these data. Here we set the sliding window size in YAGO3 to 1M (containing 1M -

5M tuples) and the sliding step length to 50k, which is similar to the condition setting in [38].

Queries: The regular expressions used in the experiments are shown in Table 2. These queries,

which are some of the most common recursive queries in real workloads [8], have different com-

plexities [15] and are also used in the PBO evaluation [38]. Note that query 𝑄8 on dataset SO is

represented as 𝑅 = (𝑎 + 𝑏) ◦ 𝑐∗ since the SO dataset only contains three kinds of labels.

Table 2. Some of the most common RPQs in real workloads

Tag Query Tag Query

𝑄1 𝑎∗ 𝑄2 𝑎 ◦ 𝑏∗ ◦ 𝑐∗
𝑄3 𝑎 ◦ (𝑏 ◦ 𝑐)∗ 𝑄4 𝑎∗ ◦ 𝑏∗
𝑄5 𝑎 ◦ 𝑏∗ 𝑄6 𝑎? ◦ 𝑏
𝑄7 (𝑎1 + 𝑎2 + 𝑎3 + · · · + 𝑎𝑘 )∗
𝑄8 (𝑎1 + 𝑎2 + 𝑎3 + · · · + 𝑎𝑘 ) ◦ 𝑏∗

Experiment Settings: All experiments were run on a Linux server with 64 physical cores

Intel(R) Xeon(R) Gold 5318Y CPU@ 2.10GHz, and 512GB (16 x 32GB) DDR4 2933MHz RDIMM ECC

Memory. The experiment results are recorded when the caches are warm and the sliding window

is full, making the metrics more representative of the system when it runs normally.

In our experiments, we use the method of reading files to simulate the arrival of tuples of the

stream and simulate different arrival speeds of tuples by controlling the speed at which files are

read. Besides, we set the trigger for executing DGC in all experiments when an insufficient memory

situation occurs except in Section 5.4.3, in which we evaluate the strategy of triggering DGC.

5.3 Metrics
The metrics we use to evaluate the query performance consist of: throughput, tail latency, waiting
time, and processing time.
Throughput: The throughput of the system can be evaluated by calculating the average number

of processed tuples per second on processing a streaming graph within a fixed time interval. Here

we evaluate the throughput under the premise that the whole streaming graphs are already added to

the “Cache Queue” if not otherwise stated, and record the average throughput during a 10-minute

period in a warm cache, such that the throughput can represent the actual processing ability of the

system.

Tail Latency (99th percentile): The tail latency is a statistic measured using a sliding

window, which captures query conditions in real workloads [39]. It represents the time difference

between when all tuples in a window have arrived and when the results within that window are

produced. The arrival time of sliding window𝑊 𝑡
corresponds to the clock time at which tuples

within window𝑊 𝑡
all have arrived, while the production time of query results refers to the clock

time they are added to𝑄 . Since tuples in window𝑊 𝑡
may not arrive at exactly the same clock time,
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we calculate their average arrival clock time as the arrival time of the tuples in𝑊 𝑡
. It’s important to

note that we only record the earliest production time for identical results within a sliding window.

To calculate statistical tail latency in RPQ evaluation, we follow this formulaic approach: First,

each tuple 𝜏 is assigned a clock time 𝑠𝑡 (𝑡𝑠 (𝜏)), which is added to the cache queue. This allows us to

compute the average of these clock times as an estimate for the arrival time of tuples in window𝑊 𝑡
,

denoted as 𝑠𝑡 (𝑡). Second, when a vertex pair (𝑢, 𝑣) is added to𝑄𝑡
at a specific clock time (𝐶𝑡 ), we add

this value to set 𝑟𝑡 (𝑡) containing all clock times when results are added to𝑄𝑡
. For each query result

(𝑥,𝑦) ∈ 𝑄𝑡
, if it was added at clock time (𝐶𝑡 ), its tail latency can be calculated as𝑚𝑎𝑥 {𝐶𝑡 − 𝑠𝑡 (𝑡), 0},

considering that 𝑠𝑡 (𝑡) might be less than or equal to 𝐶𝑡 . Based on this information, we determine

the tail latency 𝑡𝑙 (𝑡) for each sliding window𝑊 𝑡
using the set:

𝑡𝑙 (𝑡) = {𝑚𝑎𝑥{0,𝐶𝑡 − 𝑠𝑡 (𝑡)}|∀𝐶𝑡 ∈ 𝑟𝑡 (𝑡)}

We collect the tail latency 𝑡𝑙 (𝑡) for all the query results in the sliding windows 𝑊 𝑡
during a

10-minute period in a warm cache and calculate its 99th percentile value.

Waiting Time & Processing Time (99th percentile): We monitor the waiting and process-

ing times on a per-tuple basis. For a tuple 𝜏 , its waiting time is when it has been in the cache queue

(received in the Cache Queue but not fetched by the RPQ Thread yet). The processing time is the

time consumption of executing its RPQ tasks in the Thread Pool. Both waiting time and processing

time are represented by its 99th percentile value during our evaluation.

5.4 Experimental Results
5.4.1 Throughput and Tail Latency: We evaluated the throughput and tail latency of both MWP

and PBO methods for all queries on both datasets. The tuple-arrival speed was set to 200 tuples per

second for dataset SO and 100,000 for Yago3 when monitoring tail latency.

As shown in Figures 7(a) and 7(b), MWP outperforms PBO in terms of both throughput and tail

latency across all queries. MWP achieves a throughput that is 1.55 to 3.53 times higher than that of

PBO on SO, and 2.79 to 15.2 times higher on Yago3. Additionally, its tail latency is only between

94.32% to 2.3% of that achieved by PBO on SO, and between 2.8% to 0.2% on Yago3.

The effectiveness of MWP is more pronounced in Yago3 due to its sparser nature and more labels

compared to SO, which quickens the processing of each tuple and allows more parallel processes.

We plot the waiting and processing time for each tuple on both methods over the SO dataset to

better understand the diverse performance on different queries in Figure 7(c). MWP has a higher

processing time but a significantly lower waiting time compared to PBO due to the non-blocking

nature of MWP. As a result, the cost for MWP to process each tuple (processing time + waiting

time) is much cheaper than PBO. This finding aligns with our previous analysis in Section 3, which

identified the blocking phase during window movement as a major bottleneck that greatly increases

the waiting time in PBO. In Figure 7(c), the waiting time and processing time for queries 𝑄3, 𝑄4,

and 𝑄7 are different from other queries. This is because different queries incur a different number

of TRDs to be inserted and different maintenance costs for each TRD.

5.4.2 Scalability: We evaluated the scalability of two methods for streaming graph queries, specifi-

cally by analyzing the impact of window size, sliding step length, and parallelization on throughput

and tail latency using query 𝑄3 on SO. The other conditions were kept consistent with those in

Section 5.4.1.

Figures 8(a) & 8(b) present the throughput and tail latency results for PBO and MWP as the

window size varies from 7 to 90 (days) (with sliding step length 7), and as the sliding step length

varies from 1 to 25 (days) (with window size 30).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 5. Publication date: February 2024.



MWP: Multi-Window Parallel Evaluation of Regular PathQueries on Streaming Graphs 5:19

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

101

102

103

104

Th
ro
ug

hp
ut
 (t
up

le
s/
s)

PBO
MWP

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

103

104

105

106

Ta
il 
la
te
nc
y 
(m

s)

PBO
MWP

(a) SO

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

105

106

Th
ro
ug

hp
ut
 (t
up

le
s/
s)

PBO
MWP

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

101

102

103

104

105

Ta
il 
la
te
nc
y 
(m

s)

PBO
MWP

(b) Yago3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

101

102

103

104

105

Pr
oc
es
sin

g 
Ti
m
e 
(m

s)

PBO
MWP

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query

102

104

106

W
ai
tin

g 
Ti
m
e 
(m

s)

PBO
MWP

(c) Time consumption on SO

Fig. 7. (a) and (b) the throughput and tail latency of both MWP and PBO on Stackoverflow and Yago3,
respectively. (c) the average waiting time in the cache queue and the processing time of the tuples in
Stackoverflow. Y axis is given in the log-scale.

We have the following observations: (i) For different window sizes, both methods exhibit lower

latency and higher throughput with smaller windows. However, MWP outperforms PBO as the

window size increases. MWP achieves a throughput of 1.3 to 2 times higher than PBO while

maintaining a tail latency of only about 19.1% to 8.7% of those of PBO across all window sizes.

Additionally, although both methods experience an increase in tail latency with larger window size,

MWP’s increase is much slower compared to PBO (note that Y-axis uses log-scale). (ii) For different

sliding step lengths, MWP consistently achieves a throughput that is approximately 1.02 to 2.19

times higher than that of PBO. Notably, even when 𝑆𝑡𝑒𝑝 (𝑊 ) reaches its maximum value of 25 (days),

MWP still maintains a significantly lower tail latency compared to PBO (approximately 27% to 2%).

As sliding step length increases further, MWP continues to demonstrate superior performance in

terms of both throughput and tail latency over PBO.
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Fig. 8. (a) & (b) the throughput and tail latency of RPQ evaluation on SO withQuery 𝑄3 on different window
size (𝑆𝑡𝑒𝑝 (𝑊 ) = 7) and sliding step length (|𝑊 | = 30), (c) & (d) the corresponding processing and waiting time

To gain deeper insights into how throughput and tail latency vary based on window size and

sliding step length for both methods, we monitored the processing and waiting time of each tuple

and conducted a detailed analysis.

Figures 8(c) & 8(d) illustrates the processing time and waiting time of each tuple under different

window sizes. Here is an explanation of the data in this figure: (i) As window size increases,

PBO’s processing time steadily rises, resulting in longer waiting periods for subsequent tuples.

In contrast, our proposed MWP shows minimal fluctuations in processing times as window size

changes. However, its waiting time does increase with larger window size; nevertheless, it remains

significantly lower than that of PBO under similar conditions. This can be attributed to the fact that

enlarging the window size increases the number of query structures (spanning trees and TRDs) to

which new tuples can be added, thereby increasing the cost of processing a tuple. However, MWP

effectively mitigates this rise by managing timestamp sets in TRDs across multiple intervals. (ii)

With the increase of the sliding step length, PBO experiences gradual increases in both processing

time and waiting time. Conversely, MWP exhibits no significant changes in processing time but
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demonstrates rapid reductions in waiting time as the sliding step length increases due to the fact

that tuples need not to wait for the expiration process before being processed.

Based on these experimental results from Figures 8(c) & 8(d), we observe that increasing the

window size leads to an increased tail latency (as shown in Figure 8(b)) due to the rapid increases in

waiting time. The decrease in tail latency for MWP and increase for PBO when sliding step length

is increased can also be explained by their respective trends observed in waiting time.

Overall, these experiments demonstrate that MWP exhibits better scalability compared to PBO.
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Fig. 9. Throughput and tail latency of 𝑄3 on SO and Yago3 with different number of available threads

We now show how MWP scales with parallelization. Figure 9 presents the throughput and tail

latency of MWP under different numbers of available threads in Thread Pool when executing 𝑄3

on SO with |𝑊 | = 30 and 𝑆𝑡𝑒𝑝 (𝑊 ) = 7 and Yago3 with |𝑊 | = 1𝑀 and 𝑆𝑡𝑒𝑝 (𝑊 ) = 50𝑘 , respectively.

For SO in Figure 9(a), the throughput exhibits an upward trend as the number of threads increases

from 1 to 20, and it maintains stability with further increments in thread count after a brief dip.

Notably, as the thread count increases from 1 to 30, there is an initial reduction in tail latency,

followed by sustained stability as the thread count continues to rise, similar to the throughput.

For Yago3 in Figure 9(b), the throughput continues to rise as the number of threads increases, but

the upward trend gradually slows down with the increasing thread count. Simultaneously, latency

decreases as the thread count increases, and the changes in the decreasing trend align with the

throughput.

The trends of these twometrics can be explained as follows. The RPQ tasks are randomly assigned

to threads in the Thread Pool for execution. When the available number of threads is limited, the

processing ability cannot catch up with the task-arrival speed, leading to lower throughput and

higher tail latency. As the available thread count increases, throughput gradually rises, and tail

latency progressively decreases on both SO and Yago3. However, as the thread count continues to

increase, the probability of different threads simultaneously maintaining the same TRD also keeps

growing, causing more locking of threads that limits further improvements in both throughput

and latency. Compared to Yago3, the SO dataset is much more dense, and increasing the thread

count further has even a small negative impact on the performance due to management overhead.

Note that the parallelization on such dense graphs may be improved by assigning the RPQ task of

maintaining the same TRD to the same thread as much as possible to reduce the waiting time due

to locking. But how in general parallelization the tasks on dense graphs remain a future research

problem.

5.4.3 Performance of DGC:. The DGC on MWP only needs to be executed when the memory runs

low. However, having too many old edges in TRDs can significantly reduce query performance by
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increasing traversal overhead. We now explore the timing to explicitly execute DGC by monitoring

the ratio of “old” nodes in the TRDs. The “old” nodes are defined as follows: for a given GC cut-off

time 𝑡𝑔𝑐 , all nodes in TRDs whose timestamps are all less than 𝑡𝑔𝑐 are called the “old” nodes. Here the

𝑡𝑔𝑐 is continuously calculated every time 2k tuples have been processed. The condition to execute

DGC is defined on the ratio: (1 - the number of “old” nodes / all nodes in TRDs) x 100%. When the

ratio exceeds a given ratio threshold, referred to as the “GC threshold,” the DGC is executed. When

the GC threshold is set to 0%, we only execute DGC when the memory runs low. On the other hand,

if this GC threshold is set to 100%, the DGC is executed for each window movement (adopting naive
GC strategy if the ratio still exceeds the GC threshold after executing DGC). In this experiment, we

explore the effect of different GC thresholds on system performance and evaluate how DGC affects

memory freeing (represented by the number of nodes, edges, and TRDs).
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Fig. 10. Throughput and tail latency on SO with different GC threshold.

Figure 10 presents the trend of tail latency and throughput with query 𝑄3, where |𝑊 | = 30 and

𝑆𝑡𝑒𝑝 (𝑊 ) = 7 on SO. The graph shows how these metrics change as the GC threshold increases from

0% to 80%, with an increment of 10%. The throughput initially rises as the GC threshold increases

from 0% to 30% but decreases continuously beyond that point. Conversely, tail latency follows

an opposite pattern. Both throughput and tail latency reach their best values at a GC threshold

of 30%, which validates our analysis in Section 5.4.3 that pruning old tuples can improve query

performance, but these advantages quickly diminish as we further increase the GC threshold since

frequent GC due to large thresholds leads to performance degradation, particularly for tail latency.
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Fig. 11. The number of nodes, edges, and TRDs in memory.

We evaluated the performance of DGC in reducing memory consumption. Figure 11 illustrates

the changes in the number of nodes, edges, and TRDs over time under the same experimental
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conditions as before, except for fixing the GC threshold to 40%. These values were recorded every

10 seconds after the initial GC operation. The number of stored edges refers to the number of

edges in TRDs, while the number of stored nodes represents the existing nodes in the TRDs. It

is important to note that these metrics can only decrease right after any execution of DGC. In

this experiment, DGC was executed approximately every 33 seconds on average and successfully

removed old nodes, edges, and TRDs by 5% to 20% each time. This indicates that our DGC method

effectively works for RPQ evaluation (see Figure 11).
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Fig. 12. Throughput and tail latency on SO with different tuple-arrival speeds.

5.4.4 Stability on Various Tuple-arrival Speed. For most real-world applications, it is essential to

maintain a stable throughput and tail latency when querying under different tuple-arrival speeds

[20, 39]. In this experiment, we controlled the arrival speed of tuples and evaluated the throughput

(which should not exceed the arrival speed) and tail latency using query 𝑄3, with a window size of

|𝑊 | = 30 and step length of 𝑆𝑡𝑒𝑝 (𝑊 ) = 7.

Figure 12(a) illustrates that both methods show an increasing throughput as the tuple-arrival

speed reaches 240 per second. After reaching this point, the throughput of PBO stabilizes while

those of MWP continue to rise until the tuple-arrival speed reaches approximately 370 per second.

It aligns with our previous experimental results and indicates their maximum “processing abilities”.

Consider the tail latency when the tuple-arrival speed increases as shown in Figure 12(b). Both

methods experience a rapid increase in tail latency once the speed surpasses their respective

processing abilities. This is due to longer waiting times in the cache queue. When the tuple-

arrival speed remains below their processing abilities, MWP demonstrates more stable tail latency

compared to PBO. Therefore, we can conclude that MWP outperforms PBO in terms of stability

and performance under varying tuple-arrival speeds.

Note that the tail latency of PBO decreases first as the tuple-arrival speed rises from 100 to 200,

and then increases as the tuple-arrival speed continuously rises. This can be explained by the fact

that PBO produces results at the end of each sliding window, and the low arrival speed prolongs

the time in sliding to the next window, thus delaying the time to produce results.

6 RELATEDWORK
Regular Path Queries: RPQs and corresponding evaluation methods are widely used in graph

querying [1, 2, 17]. Earlier works on evaluating RPQs can be loosely divided into navigational

and relational approaches. The navigational approaches including splitting RPQ by its rare labels

[27, 35], evaluating RPQs using the concept of Brzozowski derivatives [36], bidirectional random
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walks [43], or based on partial answers [44]. [5] provides a time- and space-efficient strategy

that combines the Glushkov automaton [19] with ring index [4]. Other relational approaches use

recursive queries, most focusing on the recursive SQL queries [14, 45] and relational algebra [18, 24].

Recent approaches leverage software or hardware acceleration techniques, including evaluating

RPQs on top of field programmable gate arrays to enable parallelism [32] and using just-in-time

compilation to directly evaluate the RPQ on the graph [41]. Note that all of these works focus on

static graphs. [38] is the first work to consider persistent RPQ evaluation on streaming graphs. The

detailed illustration for [38] is provided in Section 2.

Streaming Graph Processing: Existing streaming graph processing target developing efficient

incremental algorithms to maintain matches of a given query as the graph changes. Examples

include connectivity [25], shortest path [7], transitive closure [28]. Most related to our work is

based on the sliding window model that maintains dynamic query structures for queries as the

window moves, such as cycle detection [39], aggregate query [33], triangle counting [20], and path

query [38]. The blocking phase between two neighboring windows affects query performance to

varying degrees; ours is, to the best of our knowledge, the first work to consider parallel processing

multiple windows on streaming graphs.

Streaming Processing System: There has been a significant amount of work on RDF stream

processing, involves designing a communication interface for streaming RDF systems based on

the Linked Data Notification protocol [9], providing a framework for publishing RDF streams on

the web [3], extending SPARQLv1.0 [3] for reasoning and a complex event pattern matching on

RDF streams, and computing entailments for streaming reasoning with schema-enhanced graph

pattern matching based on the existence of RDF schemas [26]. The persistent query evaluation

over RDF streams such as C-SPARQL [6], CQELS [29], SPARQL𝑠𝑡𝑟𝑒𝑎𝑚 [10] and RSP-QL [13] are

designed for SPARQLv1.0. Thus one cannot formulate path expressions such as RPQs, which is

previously reported in [46]. Our contributions are orthogonal to existing work on streaming RDF

systems, which is similar to [38].

7 CONCLUSION AND FUTUREWORK
In this paper, we present a multi-window parallel processing strategy called MWP and introduce

a new data structure named TRD for the non-blocking parallel evaluation of RPQs on streaming

graphs. Additionally, we propose an efficient approach for swift garbage collection on the TRDs.

Experimental analysis conducted on real-world streaming graphs demonstrates the outstanding

performance and scalability benefits of our approach. While our primary focus is on RPQs in this

paper, the MWP strategy has the capability to accommodate various window-based queries, such

as cycle detection, by addressing the blocking phase between adjacent windows and adopting a

parallel processing strategy.

Furthermore, this work assumes a parallel framework with shared memory. To extend its appli-

cability to distributed systems like Flink or MPI, it is necessary to design the map-reduce phases or

communication messages for processing TRDs across workers. Additionally, a well-thought-out

streaming partition strategy for TRDs should be devised to minimize communication costs between

workers and balance the workload. Future research directions that we contemplate encompass: (i)

supporting RPQs with complex constraints and (ii) applying the MWP strategy to other streaming

graph queries.
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