
RED-ANNS: An RDMA-Enabled Distributed Framework for
Graph-Based Approximate Nearest Neighbor Search

Yue Chen
Fudan University

yuechen23@m.fudan.edu.cn

Kai Zhang∗
Fudan University

zhangk@fudan.edu.cn

Sipeng Chen
Fudan University

sipengchen22@m.fudan.edu.cn

Shihai Xiao
Huawei Technologies Co., Ltd

xiaoshihai@huawei.com

Xiaomin Zou
Huawei Technologies Co., Ltd
zouxiaomin1@huawei.com

Ren Ren
Huawei Technologies Co., Ltd

renren1@huawei.com

Yinan Jing
Fudan University

jingyn@fudan.edu.cn

X. Sean Wang
Fudan University

xywangcs@fudan.edu.cn

Li Cao
Huawei Technologies Co., Ltd

xyzcaoli@outlook.com

Mingxiang Wan
Huawei Technologies Co., Ltd
wanmingxiang1@huawei.com

ABSTRACT
Unstructured data, such as text and images, are converted into high-
dimensional vectors to capture their semantics for effective data
retrieval. Approximate Nearest Neighbor Search (ANNS) over these
vectors has become a fundamental technique in many domains, in-
cluding retrieval-augmented generation and recommendation sys-
tems. With an ever-increasing volume of data, existing distributed
solutions typically segment data across multiple machine nodes,
handling query processing in a MapReduce-style approach. How-
ever, this approach suffers from reduced indexing efficiency and
increased computational overhead, resulting in limited performance
enhancement despite investing several times more resources.

In this work, we propose RED-ANNS, a distributed ANNS ap-
proach on an RDMA network. The core idea is to maintain a logi-
cally full graph across a shared memory space of multiple nodes
and utilize Remote Direct Memory Access (RDMA) to search the
distributed graph, thereby avoiding the reduction in indexing effi-
ciency caused by segmentation. The key to making this approach
effective is to address the overhead associated with remote accesses.
We reduce remote access frequency through locality-aware data
placement and affinity-based query scheduling, while we hide re-
mote access latency with a dependency-relaxed best-first search
algorithm. Extensive experiments demonstrate that RED-ANNS
achieves a performance improvement of up to 2.5× overMapReduce-
style approaches and up to 5.3× over open source vector databases.

PVLDB Reference Format:
Yue Chen, Kai Zhang, Sipeng Chen, Shihai Xiao, Xiaomin Zou, Ren Ren,
Yinan Jing, X. Sean Wang, Li Cao, and Mingxiang Wan. RED-ANNS: An
RDMA-Enabled Distributed Framework for Graph-Based Approximate
Nearest Neighbor Search. PVLDB, 19(3): 399 - 412, 2025.
doi:10.14778/3778092.3778101
∗Dr. Kai Zhang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cheenyuee/RED-ANNS.git.

1 INTRODUCTION
Encoding unstructured data into high-dimensional vector represen-
tations using embedding models has become a critical way of effi-
cient data retrieval andmanagement [36, 53]. Extensive research has
been conducted to improve vector retrieval performance by design-
ing efficient Approximate Nearest Neighbor Search (ANNS) indexes,
which have beenwidely used in search engines [7, 8, 54], recommen-
dation systems [9, 34], and intelligent question answering [30, 39].
Moreover, popular large language models (LLMs) often utilize the
retrieval-augmented generation (RAG) framework to access exter-
nal knowledge libraries, retrieving contextually relevant informa-
tion to enhance model outputs with vector search [2, 32, 46, 56].

As application scenarios become increasingly diverse and com-
plex, the volume of vectors has been expanding at an unprecedented
rate. For example, a monitoring system would segment each frame
of the camera video stream and embed each object that appeared
in the image frame. This results in searching billions of embedding
vectors to locate a specific object or incident. For such workloads,
the required storage often reaches the terabyte scale, exceeding
the memory capacity of conventional servers [42]. Some persistent
storage-based ANNS approaches only require small memory space
for large datasets, but suffer 4.2-6.4× performance degradation due
to associated I/O costs [8, 22, 24]. As business scenarios continue
to evolve, they pose more stringent requirements for query latency,
which can only be met with memory-based ANNS solutions.

To perform large-scale in-memory vector searches, existing solu-
tions adopt a segmentation-based approach for data storage and uti-
lize a MapReduce-style execution framework [55] to perform ANNS

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 3 ISSN 2150-8097.
doi:10.14778/3778092.3778101

https://doi.org/10.14778/3778092.3778101
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/cheenyuee/RED-ANNS.git
https://doi.org/10.14778/3778092.3778101

in distributed environments. Specifically, this approach partitions
the dataset into multiple segments and distributes the segments
across multiple nodes, with indexes built offline for each segment
independently [14, 19, 47, 55]. During query processing, queries are
broadcast to all nodes in the cluster. Each node searches its local
segments and retrieves a local top-k result for each segment (map).
The local results from all nodes are then aggregated to produce the
final top-k result (reduce). This approach can leverage the memory
space and computational resources of multiple nodes for parallel
execution. However, the introduction of segmentation significantly
reduces indexing efficiency and increases computational overhead
during query execution, resulting in a sharp drop in overall system
throughput. For example, even though graph-based ANNS indexes
exhibit superior performance over other indexes and have been
widely adopted for high-performance ANNS [33, 48], partitioning
the dataset into four segments and building a separate graph index
for each can incur a 2.5× performance degradation compared to
searching on a single graph index [52]. This is primarily due to the
fact that there is no linear reduction in search hops on a subgraph
compared to a full graph. In our experiments, searching on a 1

4 sub-
graph would only lead to 40% fewer hops. In other words, 4× more
computational resources are used to achieve only 1.6× performance
improvement, which is extremely inefficient for scaling out.

In this work, we propose RED-ANNS, an RDMA-enabled dis-
tributed framework that significantly enhances resource efficiency
and scalability for graph-based ANNS. To avoid the reduction in
indexing efficiency of existing distributed approaches, RED-ANNS
fully leverages the advantages of a distributed full graph index,
which is placed across multiple machine nodes, with edges indi-
cating local access or remote access. With the RDMA network,
processes on a node can directly access a part of the graph on an-
other node. Compared to existing approaches, the full graph search
enables a lower computation overhead while maintaining the same
retrieval accuracy. However, the primary challenge to achieving po-
tential performance gains is reducing the frequency and overhead
of remote accesses involved in the search process. To address this,
RED-ANNS reduces remote accesses by designing locality-aware
data placement and affinity-based query scheduling, and based on
the characteristics of ANNS and the RDMA network, RED-ANNS
proposes a dependency-relaxed best-first search algorithm that in-
corporates data prefetching to hide remote access latency. Through
the proposed techniques, RED-ANNS effectively performs ANNS in
distributed settings with significantly enhanced resource efficiency.

The main contributions of this work are summarized as follows:

• We propose a distributed graph-based ANNS framework for
large-scale vector search, which delivers significantly improved
computational resource efficiency.

• We design locality-aware data placement and affinity-based
query scheduling strategies to enhance data access locality,
thereby reducing remote data accesses in ANNS.

• We propose a dependency-relaxed best-first search algorithm
that introduces data prefetching to hide remote data access
latency in distributed graph search.

• We implement a prototype of RED-ANNS. Experimental eval-
uations demonstrate that RED-ANNS achieves up to 2.5× per-
formance improvement over existing distributed solutions.

RED-ANNS is an efficient distributed in-memory ANNS solution
with superior scalability, expected to yield significantly improved
resource efficiency for large-scale vector search.

2 BACKGROUND
2.1 Approximate Nearest Neighbor Search

Definition 2.1. Given a dataset of 𝑁 vectors with dimension 𝐷 ,
denoted as X = {𝑥1, . . . , 𝑥𝑁 } ⊆ R𝐷 , a query vector 𝑞 ∈ R𝐷 , and a
distance function 𝛿 (·, ·), the top-𝑘 (𝑘 ≤ 𝑁) NNS problem is to find
a subset 𝑆𝑘 ⊆ X containing the 𝑘 closest vectors to 𝑞, defined as:

𝑆𝑘 = arg min
𝑆⊆X, |𝑆 |=𝑘

∑︁
𝑥∈𝑆

𝛿 (𝑥, 𝑞) (1)

Nearest Neighbor Search (NNS) is used to identify the top-𝑘
feature vectors in a database that are closest to a given query vec-
tor, based on predefined distance metrics such as the Euclidean
distance, as shown in Definition 2.1. However, exhaustive search
for the exact top-𝑘 nearest neighbors is computationally expen-
sive, especially for large-scale and high-dimensional data due to
the challenges imposed by the curse of dimensionality [21, 42]. To
improve retrieval performance, extensive research has been con-
ducted to design efficient Approximate Nearest Neighbor Search
(ANNS) indexes, which achieve significant performance improve-
ments by tolerating a small loss in accuracy. These studies mainly
include graph-based indexes [16, 24, 33, 35], inverted file index-
ing [4, 13, 41, 44, 51], and quantization [3, 18, 20, 25, 26, 50]. The
search performance of ANNS will be evaluated through the speed-
vs-recall tradeoff, using throughput and latency to assess retrieval
speed, and recall rate to evaluate retrieval accuracy. Given an ap-
proximate top-𝑘 result set 𝑆 ′

𝑘
and the exact result set 𝑆𝑘 , the ANNS

recall is defined as 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝑆 ′
𝑘
∩ 𝑆𝑘 |/|𝑆𝑘 |.

Extensive research indicates that graph-based ANNS methods
achieve state-of-the-art performance on a variety of datasets, such
as HNSW [33] and Vamana [24]. The core idea of graph-based
methods is to represent feature vectors as vertices in a graph and to
establish edges between them based on distance relationships, form-
ing a neighborhood graph. During the search phase, the Best-First
Search (BFS) algorithm [48] traverses the graph to locate potential
result vertices. The traversal starts from an entry point and employs
a greedy strategy to iteratively select the closest unchecked vertex
to the query from the candidate pool for neighbor expansion, updat-
ing the pool with newly visited neighbors. This process continues
until the convergence condition is met, that is, when no unchecked
candidates remain. Since graphs are built on neighbor relationships,
they typically require fewer vector distance calculations compared
to other solutions [48], leading to higher query performance.

2.2 Limitation of Existing Distributed Solutions
Existing distributed ANNS solutions partition database vectors
into segments across multiple nodes and build graph indexes for
each segment separately [1, 12, 19, 31, 47, 49], enabling sub-graph
parallel search (sub-GPS) [52] within a MapReduce-style execution
framework. For example, the popular vector database Milvus [19,
47] partitions data into segments of up to 1 GB by default. Queries
are then dispatched to nodes that hold segments of the searched
collection. After each node performs ANNS on its local segments,

90 92 94 96 98
Recall@10

2k

4k

6k

QP
S

Seg.num=1
Seg.num=2
Seg.num=4
Seg.num=8

(a) DEEP100M

90 92 94 96 98
Recall@10

1k

2k

3k

4k

QP
S

Seg.num=1
Seg.num=2
Seg.num=4
Seg.num=8

(b) MS-Turing100M

Figure 1: Performance impact by graph segmentation

the results are aggregated to derive the global top-𝑘 results. To
control the total number of segments, smaller segments can be
merged into larger ones and index rebuilding is performed [47].

For the sub-GPS solutions, maintaining separate graph indexes
for each segment allows local query execution with minimal inter-
node communication overhead (except for the final aggregation).
However, this method fragments the ideal connected graph into
multiple isolated subgraphs, resulting in the loss of neighbor infor-
mation between subgraphs and reduced indexing efficiency [52].
During query execution, multiple BFS traversals are required to
find the nearest neighbors due to lack of connectivity, increasing
computational overhead, especially when segments are small and
numerous. Figure 1 compares the performance of Milvus on 100-
million scale datasets in a four-node setup (hardware configuration
detailed in §7.1), using one, two, four and eight segments per node,
with each segment indexed by the built-in HNSW [47]. As the num-
ber of segments per node increases from 1 to 4, the performance
degrades by an average of 2.1× at 0.95 recall, and further declines
to 2.9× with eight segments, demonstrating a reduced efficiency
due to smaller and more numerous segments. Distance calculation
statistics show that four subgraphs require an average of 2.4×more
distance calculations, increasing to 3.5× with eight segments, illus-
trating why sub-GPS solutions suffer performance degradation, a
phenomenon also verified in existing work [52].

The above experiments demonstrate that performing ANNS in
memory segments across all nodes would result in significant per-
formance degradation. Some research proposes only probing a
portion of segments based on the clustering property of the nearest
neighbors [6, 11, 45]. However, our experiments show that this
strategy can be detrimental to query accuracy. Figure 2 presents
the single node performance on ten-million scale dataset when
the dataset is partitioned into four segments using the balanced
k-means algorithm [10], with an HNSW [33] index built for each
segment. On the DEEP dataset, probing the three most relevant
segments can achieve a recall of above 0.99. However, by probing
two segments, the recall drops to a maximum of 0.97. In contrast, on
the MS-Turing dataset, the accuracy loss is more pronounced due
to its more dispersed groundtruth distribution. Achieving a recall
of up to 0.99 requires searching all segments, whereas the recall
only reaches 0.95 and 0.86 with probing three and two segments,
respectively. In production environments that generally have strict
requirements for high accuracy, searching only for partial segments
can barely reach the goal. Moreover, the figure also demonstrates
the performance advantage of full-graph based ANNS, which con-
sistently delivers both high throughput and high recall.

88 90 92 94 96 98
Recall@10

2k

5k

8k

10k

12k

QP
S

Probe.num=1
Probe.num=2
Probe.num=3

Probe.num=4
Full-Graph

(a) DEEP10M

60 70 80 90 100
Recall@10

0

2k

4k

6k

8k

QP
S

Probe.num=1
Probe.num=2
Probe.num=3

Probe.num=4
Full-Graph

(b) MS-Turing10M

Figure 2: Performance and accuracy impact with varying
number of probed segments

0 10 20 30 40 50 60 70 80 90 100
Remote Access Ratio(%)

0.0

0.2

0.5

0.8

1.0

No
rm

 T
hr

ou
gh

pu
t Thd.num=1

Thd.num=2
Thd.num=4
Thd.num=8
Thd.num=16

(a) Throughput performance

0 10 20 30 40 50 60 70 80 90 100
Remote Access Ratio(%)

0

20

40

60

80

100

Ba
nd

wi
dt

h(
Gb

ps
) PeakThd.num=1

Thd.num=2
Thd.num=4
Thd.num=8
Thd.num=16

(b) Bandwidth consumption

Figure 3: Performance impact on full-graph based distributed
ANNS approach with varying ratio of remote accesses

3 RED-ANNS: AN OVERVIEW
3.1 Core Idea
Given the limitations faced by existing distributed solutions in
performance and scalability, we propose RED-ANNS, an RDMA-
enabled distributed ANNS approach. Instead of segmenting the
vectors among distributed nodes and performing MapReduce-style
queries, RED-ANNS adopts a full-graph parallel search (full-GPS)
strategy by maintaining a logical full graph over the entire database
vectors in distributed memory to fully leverage the connectivity of
graph index for improved retrieval efficiency. To enable fine-grained
cross-node data access in full-GPS, RED-ANNS utilizes a high-speed
RDMA network as its underlying communication infrastructure.
RDMA technology enables computers to directly access authorized
memory regions on remote nodes, offering a low-latency data access
mechanism for distributed systems. RED-ANNS builds a unified
memory space across multiple nodes with RDMA, which sets the
foundation for a distributed full-GPS implementation.

However, since full-GPS is conducted across the entire graph,
it inevitably incurs remote accesses as the graph is placed among
multiple nodes. And although the RDMA network provides rela-
tively low remote access latency, excessive remote access would
significantly degrade performance and counteract the advantage
brought by the full-GPS design. This is because the remote memory
access overhead of RDMA is still around 100× higher than that of
local memory access [27], which would become a bottleneck in
ANNS. To examine the performance impact of remote access, we
build a Vamana [24] index on the DEEP100M dataset and deploy
a full copy of the data on each of the four nodes (configuration
detailed in §7.1). During query execution, we artificially control the
ratio of data fetched from local versus remote nodes to simulate
performance under different levels of remote access. Figure 3(a)

presents the performance degradation under different remote ac-
cess ratios, while Figure 3(b) shows the corresponding consumption
of network bandwidth. Considering a random access pattern with
75% remote accesses in the four-node setup, with a single thread
the performance drops by 60%, indicating that the system is latency-
bound at low load. When scaling to 16 threads, performance further
drops by 80% as the network approaches saturation, demonstrating
that the system becomes bandwidth-bound under high load. These
degradations highlight the critical importance of addressing remote
access challenges in distributed full-GPS implementations.

3.2 Design Methodology in RED-ANNS
To achieve a better trade-off between sub-GPS, which suffers from
computation inefficiency, and full-GPS, which suffers from remote
access overhead, RED-ANNS aims to optimize data access without
compromising computation efficiency by addressing the remote
access overhead in full-GPS in two ways: minimizing the remote
access frequency and hiding the access latency. Themain techniques
proposed in RED-ANNS to achieve the goal are as follows.

1) Locality-aware data placement.AnANNS exhibits the prop-
erty of gradually converging near the target region, and the base
vectors it accesses tend to be spatially clustered around the query
vector. This property presents an opportunity to reduce remote
access by optimizing data placement. However, simply partition-
ing the base vectors into 𝑛 clusters for 𝑛 machine nodes would
result in suboptimal performance due to its inconsistency with the
graph-building procedure. In RED-ANNS, we reduce remote access
of graph traversal by exploiting graph locality and vector similarity.
We use similarity as the weights of graph edges and partition the
graph with the goal of minimizing cross-node edges and colocating
highly similar vertices. Additionally, hot vectors on the boundary
across partitions are duplicated to further reduce remote accesses.

2) Affinity-based query scheduling.With incoming queries,
RED-ANNS routes queries to nodes that have better localities, align-
ing query execution with optimized data placement. To achieve
this, we build an anchor set of vectors to evaluate which node
is more appropriate. For an online query, RED-ANNS first identi-
fies primary and secondary candidate nodes and assigns the query
to the primary candidate for execution. Targeting the potential
load imbalance caused by query assignment and execution latency,
RED-ANNS further incorporates an affinity-based work stealing
mechanism. When a node has processed all its assigned queries, it
steals from the nodes with pending queries, prioritizing the ones
whose secondary candidate is itself. This strategy addresses the
load imbalance while mitigating locality loss caused by stealing.

3) Dependency-relaxed best-first search. Prefetching is a
common way to hide memory access latency in ANNS. However,
the high remote access latency in RED-ANNS renders the existing
prefetching mechanism largely ineffective. To address this, we pro-
pose relaxing the best-first dependencies in the graph search order
to enable efficient data prefetching. Specifically, for multiple search
branches involved in the search process (that is, the candidate pool
maintains several vertices to be expanded), RED-ANNS computes
neighbor expansions on the current branch while asynchronously
fetching the neighbors for the potential following expansion, cre-
ating an overlap between computation and data loading. We also

RDMA

Distributed Shared Memory Pool

Graph
Construction

Graph
Partition

Affinity-based
Scheduler

Stealing
Module

Relaxed
BFS

Affinity-based
Scheduler

Stealing
Module

Relaxed
BFS

Queries
…

Node 1 Node 2 Node 3

Workers Workers

Task Queue Task Queue

Node 1 Node 2 Node 3
…

Base Set

Prefetching

Figure 4: The architecture of RED-ANNS

employ a pruning scheme to reduce unnecessary prefetches. Due
to the connectivity of the neighborhood graph, RED-ANNS with
the relaxed BFS order can always navigate to the target region with
the groundtruths, while a much higher performance is achieved.

3.3 The Architecture of RED-ANNS
Figure 4 illustrates the architecture of RED-ANNS, which operates
on a cluster of servers connected via an RDMA network. After
the graph is constructed and partitioned offline, the full graph
is maintained across all nodes in the cluster, where queries are
scheduled and executed in real time based on this full graph.

Building distributed graph. RED-ANNS first constructs a
graph index on the entire database vectors in an offline phase.
Then we perform graph partitioning on the constructed graph and
place partitions on the corresponding nodes to build a distributed
graph. To facilitate data access on the distributed graph, an ad-
dress mapping table is built to map each vertex_id to its physical
storage location in the shared memory pool, represented as a tu-
ple (node_id, local_id), where node_id represents the node
storing the vertex, and local_id indicates the offset of the vertex
within that specific node. To avoid the overhead of table lookups
during graph traversal, we further inline the physical location infor-
mation directly into the neighbor list in the graph. Specifically, each
vertex is uniquely identified by the two-dimensional location tuple
(node_id, local_id), and every vertex_id in the neighbor list
is replaced with this tuple. When accessing a vertex, if its node_id
corresponds to the local node, the data can be accessed directly; oth-
erwise, a remote access work request is issued via the underlying
RDMA interface to fetch the data from the corresponding remote
node. Additionally, RED-ANNS adds a duplication mechanism to
store frequently accessed remote vertices locally, which reduces
remote accesses. It is important to note that although the data are
physically partitioned across machines, the system still logically
maintains a unified graph structure.

Query execution workflow. During online query processing,
RED-ANNS manages the scheduling and execution of queries in
the cluster. As shown in the figure, queries are routed to the corre-
sponding physical node for execution with Affinity-based Scheduler,
which chooses the node leading to fewer remote accesses. In query
execution, the corresponding node performs the ANNS algorithm

and accesses the distributed graph in the search process. Specifi-
cally, for each hop that ANNS searches along the graph, the Relaxed
BFS module performs query execution with relaxed execution de-
pendency, where the mechanism initiates multiple remote accesses
to prefetch potential candidate neighbors in the search path. This
relaxed BFS aims at effectively pipelining the high-cost remote I/O
with distance calculation. When the task queue of a node becomes
empty, the Stealing Module fetches queries from heavily loaded
nodes to its node, and the work stealing also prioritizes queries
with a higher affinity for this node. With the set of techniques,
queries are executed efficiently on the cluster with a locality-aware
balanced load. This leads to fewer remote accesses and a mitigation
of the remote access penalty, which is the key to improving overall
resource efficiency for a full-GPS design.

4 DATA PLACEMENT AND QUERY
SCHEDULING

To reduce remote access during query execution, we distribute data
across multiple machine nodes based on graph locality and schedule
queries to the node with the highest affinity.

4.1 Locality-Aware Data Placement
For efficient query execution, we first partition and distribute the
base data across multiple machine nodes, providing the opportunity
to reduce remote accesses. Clustering algorithms [7, 8, 10] offer
a straightforward method for partitioning the vector space into
multiple Voronoi regions, grouping nearby vectors together, and as-
signing them to the same node. However, the clustering mechanism
inherently differs from that used in graph index construction, which
can cause data accesses during the search to frequently alternate
between local and remote nodes due to the graph connectivity.

Locality-aware graph partitioning. To improve search effi-
ciency in the distributed graph, we employ a locality-aware graph
partitioning strategy that considers both graph structure and vector
similarity for efficient data placement. Our graph partitioning has
three goals: 1) minimizing cross-node edges without breaking the
intrinsic graph structure to enhance data access locality, 2) ensuring
a balanced distribution of vertices across physical nodes to facilitate
load balancing, and 3) co-locating highly similar vectors at partition
boundaries on the same node for higher access efficiency. To pre-
serve the locality while maintaining a balanced load distribution,
we adopt a balanced graph partitioning algorithm METIS [28] as
the base algorithm to divide the graph into balanced partitions.
Considering that METIS cannot understand the vector similarities
at partition boundaries, we further assign edge weights based on
normalized vector similarity, so that short edges representing high
similarity are prioritized to be preserved locally, whereas longer
edges can be compromised for cross-node connections. Specifically,
for the graph𝐺 (𝑉 , 𝐸), where𝑉 and 𝐸 denote the sets of vertices and
edges, respectively, the edge weight between two vertices 𝑢 ∈ 𝑉
and 𝑣 ∈ 𝑉 is defined as:

Weight(𝑢, 𝑣) = 1 − 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) − 𝑑𝑖𝑠𝑡min

𝑑𝑖𝑠𝑡max − 𝑑𝑖𝑠𝑡min
(2)

where, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) represents the vector distance between the two
vertices, and 𝑑𝑖𝑠𝑡max and 𝑑𝑖𝑠𝑡min refer to the maximum and mini-
mum distances, respectively, between all connected vertex pairs

Top-k

A F GB C D EBase Set

a1 a2 a3 am

…
Node 1 Node nNode 2

Anchor Set …

Index for Anchor Set

(a) The anchor set for scheduling

Primary Secondary

q1 a1 a2 … a4
q2 a3 a4 … a7
q3 a1 a2 … a8

Nearest Anchors

q1 Node 1 Node 2

q2 Node 2 Node n

q3 Node 1 Node n

Vote

Vote

(b) Voting for nodes

Figure 5: Affinity-based query assignment

in the graph. The optimization goal of partitioning the graph into
𝑛 ∈ Z+ parts is formulated as:

min
P

∑︁
(𝑢,𝑣) ∈𝐸

𝑢∈𝑃𝑖 , 𝑣∈𝑃 𝑗 , 𝑖≠𝑗

Weight(𝑢, 𝑣) (3)

where, 𝑃𝑖 and 𝑃 𝑗 represent different partitions of 𝑉 , with each
partition satisfying 𝑃𝑖 ≈ |𝑉 |𝑛 , ∀𝑖 = 1, . . . , 𝑛. Finally, the vertices are
divided into 𝑛 balanced parts, each of which is placed as a data
shard on one of the 𝑛 machine nodes.

Duplication mechanism. To enhance the local availability of
vertices near partition boundaries across multiple relevant nodes,
we duplicate frequently accessed boundary vertices in local DRAM.
To achieve this, we perform offline profiling using a query training
set generated by randomly sampling from real queries—for example,
historical queries in real-world applications—to capture the data
access characteristics. During profiling, we track all remotely ac-
cessed vertices and their access frequencies, allowing us to identify
hot vertices and duplicate them from their original remote nodes to
a local cache with a predefined capacity. During online query pro-
cessing, when a remote vertex is required, RED-ANNS first checks
the local cache. If the vertex is found, remote access is avoided.

4.2 Affinity-Based Query Scheduling
Affinity-based query scheduling consists of two modules. In a given
data placement, the query assignment module routes each query
to the node with highest affinity, improving data access locality.
To address potential load imbalance, the work-stealing module
provides runtime load balancing, improving resource utilization.

Affinity-based query assignment. To improve data access
locality, we consider the affinity between each query and the data
shards distributed across different physical nodes. Since the graph
traversal during the search process occurs primarily around the
region containing the query’s top-𝑘 nearest neighbors, we define
the affinity between a query and a data shard as the proportion
of the query’s top-𝑘 nearest neighbors that reside in this shard.
Specifically, given a dataset X partitioned into 𝑛 disjoint shards
𝑃1, 𝑃2, . . . , 𝑃𝑛 such thatX =

⋃𝑛
𝑖=1 𝑃𝑖 , a query 𝑞, and its top-𝑘 nearest

neighbors 𝑆𝑘 withinX, the affinity value between query𝑞 and shard
𝑃𝑖 is defined as:

Affinity(𝑞, 𝑃𝑖) =
|𝑆𝑘 ∩ 𝑃𝑖 |
|𝑆𝑘 |

(4)

Ideally, each query is assigned to the node that hosts the data shard
with the highest affinity, so that most of the vertices accessed during
the search process reside locally.

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0]
Local Groundtruth Proportion

0

2k

5k

8k

10k

Fr
eq

ue
nc

y

-1.0% -2.8%

-2.5%
DEEP(ID)

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0]
Local Groundtruth Proportion

0

2k

5k

8k

10k

-2.0% -4.5%

-7.0%

LAION(OOD)
Random Anchor-based (our) Groundtruth-based (Ideal)Random Anchor-based (our) Groundtruth-based (Ideal)

Figure 6: Effectiveness analysis of affinity-based query assign-
ment with in-distribution and out-of-distribution workloads.
The x-axis represents the proportion of a query’s top-100
neighbors that are located on the assigned node, while the
y-axis shows the query frequency (out of 10k queries).

However, the actual groundtruth of an online query’s top-𝑘 near-
est neighbors is unknown, making it impossible to compute the
exact affinity between the query and the data shards. To enable
affinity-based query assignment, we construct a set of anchor vec-
tors that serve as a bridge to help identify the node expected to host
the most affine shard for query execution. As shown in Figure 5(a),
given a data placement, we first prepare a sample set of base points
as an anchor set A = {𝑎1, . . . , 𝑎𝑚}. For each anchor vector, we
identify its top-𝑘 nearest neighbors from the base set and compute
its affinity for each shard. Then, each anchor is associated with the
node that hosts the most affine shard, as formalized by:

Anchor(𝑎𝑖) = argmax
𝑗

Affinity(𝑎𝑖 , 𝑃 𝑗) (5)

For example, when most nearest neighbors for 𝑎1 are located in
Node 1, Anchor(𝑎1) = 1. As shown in Figure 5(b), to identify the
node that is expected to host the most affine shard for an online
query vector 𝑞, we first retrieve its top-𝑘 nearest neighbors from the
anchor set A, denoted by 𝑎1, . . . , 𝑎𝑘 (accelerated by an additional
graph index over A), and then determine the Primary Node using
a voting mechanism as follows:

PrimaryNode(𝑞) =mode({Anchor(𝑎1), . . . ,Anchor(𝑎𝑘)}) (6)

where the mode operator calculates the node id that appears the
most times. Finally, the query is assigned to the Primary Node for
execution by pushing it into the task queue of that node.

Figure 6 shows the effectiveness of query assignment achieved
with a lightweight 30K-scale anchor set over a 100M-scale base
set distributed over four nodes. Our query assignment enables
most queries to maintain a high proportion of their top-100 neigh-
bors locally, except for those near partition boundaries, where the
top-100 neighbors inherently span multiple nodes. In addition, the
anchor vectors also help RED-ANNS in adaptively selecting lo-
cal entry points during the search process. For example, when 𝑞1
chooses Node 1 as the primary scheduling node in Figure 5(a), the
groundtruths of the nearest anchor vector in that node are enqueued
into the candidate pool to start the search procedure (that is, A and
B in the base set). In this way, the query avoids searching from a
fixed or remote entry point but instead attempts to approach the
region containing its results using adaptive local entry points.

Affinity-basedwork-stealingmechanism.While we prefer to
execute each query on the node with the highest affinity, in practice,
query assignments across nodes may be imbalanced, and queries
differ in their convergence difficulty (e.g., varying hop counts),

Scheduler

Scheduler

Scheduler

Queries

Stealing

Stealing

Stealing

……

Dequeue

Task QueueNode 1

Node 2

Node n

Empty

Task Queue

Task Queue

q7
n

q5
1

q2
n

BFS

BFS

BFSq4
n

q3
n

q1
2

q6
3

Schedule
to

Primary
Node

Steal by
Secondary

Node

Enqueue

Figure 7: Affinity-based work stealing

resulting in uneven computational workloads [45]. As a result,
some nodes may finish their assigned query tasks earlier than
others. Even though the regular work-stealing mechanism can
provide runtime load balancing by allowing idle nodes to take on
queries with higher data affinity to other busy nodes, it comes at
the cost of increased remote access due to queries being executed
on suboptimal nodes. The affinity-based work-stealing mechanism
helps mitigate the increase in remote accesses. To achieve this, as
shown in Figure 5(b), we also select a runner-up candidate as the
Secondary Node when voting during query assignment, and store
this information together with the query task. Then, as shown in
Figure 7, when load imbalance occurs, the work-stealing module
on an idle node attempts to balance the load by selecting a query
task from the tail of the overloaded task queue, prioritizing tasks
whose Secondary Node matches itself, and migrates it to execute
the query. If no such matching query is found, it directly selects
the task at the tail of the queue.

5 DEPENDENCY-RELAXED BEST-FIRST
SEARCH

To hide the network latency associated with remote access, we in-
troduce a dependency-relaxed BFS algorithm with an efficient data
prefetching mechanism that enables the overlap of computation
and I/O for distributed query execution in RED-ANNS.

5.1 Why Existing Prefetching Mechanisms Fail
Existing memory-based indexing systems improve memory access
efficiency by leveraging C++ prefetching instructions [15, 16, 33].
When a vertex from the candidate pool is selected for neighbor
expansion, the distances between the query and all of its neighbors
must be computed. In typical graph construction algorithms, the
degree of vertex ranges from 32 to 128. During batched neighbor
distance computations, a prefetch instruction is issued prior to each
computation to proactively load the data required for the next calcu-
lation into the CPU cache. This prefetching mechanism has proven
effective in memory-based ANNS indexes, such as HNSW[33].

However, although this prefetching mechanism is effective in
single-node memory-based ANNS indexes, it becomes less effective
in distributed settings. In RDMA networks, a read can introduce a
round-trip latency of several microseconds, while a distance com-
putation takes only tens of nanoseconds. The latency of loading
vector data from remote nodes is two orders of magnitude higher

than the computation time. Consequently, only prefetching the
next neighbor, as in the existing prefetching mechanism, cannot
achieve an effective temporal overlap between data loading and
computation, and remote accesses cause the CPU to idle during
waiting I/O, resulting in a significant performance degradation.

5.2 Execution Dependency Analysis
In the BFS search process, all operations form a sequential chain
composed of multiple hops, with each hop expanding the neighbors
of a candidate vertex. As shown in Figure 8(a), the execution of a sin-
gle hop consists of several fine-grained subtasks[23, 48]: (i) Graph
Read that reads the neighbor list of the selected vertex, (ii) Graph
Traverse that scans the neighbors of the vertex, (iii) Vector Read that
reads the feature vector of each neighbor, (iv) Distance Calculation
that calculates the distance between the query and each neighbor,
(v) Candidate Update and Next Vertex Select that updates the can-
didate pool and chooses the candidate with the lowest distance to
the query for the next hop. There are two types of dependencies
in the process. Within each hop, data dependencies require subse-
quent subtasks to wait until the previous ones are completed before
execution can proceed, which we call intra-hop data dependency.
Between adjacent hops along the search path, the BFS must wait
for the completion of the neighbor expansion at the previous hop
to compute the best candidates for the next hop, which is referred
to as an inter-hop requirement of the best-first greedy strategy. The
combination of intra-hop data dependencies and inter-hop strategy
requirements creates a tightly coupled execution dependency.

The chained execution dependencies severely impact search per-
formance in distributed settings. As shown in Figure 8(a), given
the inherently high I/O latency of read operations due to network
transmission, the sequential nature of the execution limits the con-
currency between computation and I/O, resulting in low CPU uti-
lization and high query latency. An optimized memory layout can
reduce the round-trip waiting time required for each hop, as shown
in Figure 8(b). Since vertices involved in distance computations
may be selected to expand its neighbors further in future iterations,
colocating each vertex’s vector data and neighbor list in memory
allows both the vector and its associated neighbor list to be fetched
together as a single vertex data unit (referred to as Vertex Read)
through a single RDMA read. However, the latency of Vertex Read
still causes significant performance degradation and cannot be ef-
fectively hidden due to the chained execution dependencies.

5.3 Dependency-Relaxed Best-First Search
To enable concurrency between computation and I/O, we relax
the best-first requirement in BFS. We first introduce how one-hop
relaxed BFS works and then extend it to multi-hop relaxed BFS. To
reduce network traffic, we also incorporate a quantization-based
pruning technique that reduces unnecessary data prefetching.

One-hop dependency-relaxed BFS. Figure 8(c) illustrates the
one-hop relaxed dependency BFS. Instead of waiting for all neighbor
expansions in the current hop to complete, we begin prefetching
the data required for the next hop’s neighbor expansion in advance.
Specifically, before starting Distance Calculation and Candidate
Update in the 𝑖-th iteration, we preselect a vertex from the current
candidate pool for neighbor expansion in the (𝑖 + 1)-th iteration

(b) Original dependency with optimized memory layout

Graph
Trav.

Vertices Read

Dist.
Calc.

Cand.
UpdateCPU

IO

Graph
Trav.

Iter. i Iter. i+1

(c) Relaxed dependency

Graph
Trav.

Dist.
Calc.

Cand.
Update

Graph
Trav.

Vertices Read

Dist.
Calc.

Vertices Read

Cand.
UpdateCPU

IO

Graph
Trav.

Iter. i Iter. i+1 Iter. i+2
Idle Idle

Idle

CPU

IO

Graph
Trav.

Dist.
Calc.

Graph
Read

Vector
Read

Cand.
Update

Cand.
Update

(a) Original dependency
Idle Idle

Post Poll
Completion

Post Poll
Completion

Figure 8: Dependency-relaxed prefetching mechanism. Op-
erations with the same color represent subtasks belonging
to the same hop.

t

hop

Fetch A1, A2

Fetch …

Fetch B1
Fetch C1

(b) Dependency-relaxed BFS

Dist.
Calc.

Cand.
Update

Graph
Trav.

Vertices
Read

Relaxed
Dependency

A B C

A1 A2 B1 B2 C1 C2

Vertices expected to expand
(a) Neighbor expansion with pruning

C3

Pruning-based on
quantized distance

Figure 9: Dependency-relaxed BFS with pruning

and perform Graph Traverse to issue asynchronous I/O requests for
fetching data of its neighbors, overlapping the computation time of
the 𝑖-th iteration with the I/O time for the (𝑖 + 1)-th iteration and
thus reducing the idle time in the (𝑖+1)-th iteration. However, since
the prefetch step occurs before the Candidate Update in the 𝑖-th
iteration, the vertex chosen for neighbor expansion in the (𝑖 + 1)-th
iteration is independent of the updated queue; it is selected based on
the old candidates. Therefore, this scheme relaxes the original best-
first requirement in BFS, potentially resulting in a slightly longer
search path in the graph than that of the original BFS algorithm.

Multi-hop dependency-relaxed BFS. One-hop relaxed BFS
helps to hide part of the network latency compared to the no-
prefetching scenario, but the computation time of a single-hop
neighbor expansion is still insufficient to fully mask the communi-
cation delay. Leveraging the multiple search branches of BFS (that
is, the candidate pool contains several vertices to be expanded),
we extend one-hop relaxed BFS to an 𝑛-hop relaxed BFS strategy.
For example, given current candidate vertices A, B, and C in the
candidate pool as illustrated in Figure 9(a), we issue asynchronous
I/O requests for neighbors of B and C in advance before performing
the Distance Calculation and Candidate Update for the neighbors of
A, as shown in Figure 9(b). This allows the selection of expansion
vertices for the subsequent two hops to be independent of the Can-
didate Update results of hop A, thus enabling 2-hop relaxed data
prefetching to hide more network latency by prefetching earlier
and allowing a higher degree of overlap.

Considering that only a small fraction of the expanded neighbors
are actually added to the candidate pool, while most are discarded
due to being far from the query, a large amount of unnecessary
data transfer occurs during the search process. Moreover, breaking

the best-first execution dependency further amplifies this effect. To
reduce network traffic, we incorporate product quantization [25]
to prune remote neighbors that are unlikely to contribute to the
search. Specifically, before the search begins, each machine node
stores the compressed quantized codes of all vectors. During the
search, for each remote neighbor, we first compute an approximate
distance between the query and the remote neighbor based on local
quantized codes to estimate the likelihood of being added to the
candidate pool. Only neighbors whose quantized distance is less
than 𝜖 times themaximumdistance in the current candidate pool are
fetched for subsequent precise distance calculation. The parameter
𝜖 controls the pruning threshold, preventing over-pruning that
could degrade search accuracy by removing essential neighbors.
As shown in Figure 9, after pruning the neighbors, we only expand
vertices B and C with their neighbors B1 and C1, respectively.

5.4 Algorithm Explanation
Our dependency-relaxed BFS algorithm is shown in algorithm 1,
incorporating a relaxation parameter 𝑛 and a pruning threshold 𝜖 .
Relaxed-BFS first initializes a work request queue to temporarily
store ongoing RDMA requests, and then adds the entry points to
the candidate pool (Line 1-3). ExpandNeighbors operation computes
distances for a batch of neighbor vectors, updates the candidate pool
accordingly, and temporarily maintains the neighbor lists of newly
enqueued vertices for use in subsequent neighbor expansions. Re-
laxed BFS selects the vertex closest to the query from the candidate
pool in each iteration, and processes local and remote neighbors
separately (Line 5-7). For remote neighbors, the Relaxed BFS first
prunes the neighbor set (Lines 8-12), and then issues a PostRead
operation to asynchronously fetch the necessary vertex data of
neighbors, including both the vectors and their neighbor list (Line
13). In a given iteration, computations for remote neighbors are
delayed by 𝑛 iterations to allow sufficient time for I/O completion
(Line 19). In contrast, local neighbors are processed immediately to
update the candidate pool (Line 14), mitigating the negative impact
of longer search paths caused by relaxed dependency. Within each
iteration, the algorithm first issues asynchronous I/O requests for
remote neighbors before computing local neighbors (Line 13-14).
This ordering ensures that even when the relaxation parameter
𝑛 = 0, some latency can still be hidden by adjusting the compu-
tation sequence of neighbor vectors. Notably, when updating the
candidate pool, newly enqueued vertices may be selected for future
neighbor expansion in subsequent iterations. To accommodate this,
their neighbor lists, as part of the vertex data, are temporarily stored
in the candidate pool. In later iterations, these neighbor lists can be
directly retrieved for graph traversal, thereby avoiding redundant
data fetches for the neighbor list. For vertices that are not enqueued,
their data is immediately discarded, as it will no longer be used.

6 IMPLEMENTATION
We have implemented a prototype of RED-ANNS in C++ 17, utiliz-
ing the MPI framework for inter-node coordination and the RDMA
Verbs programming interface for remote access. In our software
and hardware stack, we use RoCE-supported NICs and Mellanox
Ethernet switch to build the communication network. Through one-
sided read operations, RED-ANNS utilizes RDMA’s CPU offload

Algorithm 1: Relaxed Best-First Search
Input: Graph 𝐺 , entry points 𝑃 , query 𝑞, candidate pool

size 𝑙 , result size 𝑘 , distance function 𝛿 (·, ·), relaxed
hop 𝑛, pruning factor 𝜖

Output: Approximate nearest neighbors of q
1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑃𝑜𝑜𝑙 𝑆 ← ∅
2 𝑤𝑜𝑟𝑘𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑄𝑢𝑒𝑢𝑒 𝑄 ← ∅
3 𝐸𝑥𝑝𝑎𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆, 𝑙, 𝛿 (·, ·), 𝑞, 𝑃)
4 while 𝑆.𝐻𝑎𝑠𝑈𝑛𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑥 () do
5 𝑢 ← 𝑆.𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑈𝑛𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝑉𝑒𝑟𝑡𝑒𝑥 ()
6 𝑢.𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 (𝑡𝑟𝑢𝑒)
7 𝑙𝐵, 𝑟𝐵 ← 𝑑𝑖𝑣𝑖𝑑𝑒 𝑁𝑜𝑢𝑡 (𝑢) 𝑖𝑛𝑡𝑜 𝑙𝑜𝑐𝑎𝑙/𝑟𝑒𝑚𝑜𝑡𝑒 𝑏𝑎𝑡𝑐ℎ

8 for 𝑣 ∈ 𝑟𝐵 do
9 if 𝑃𝑄.𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑣, 𝑞) > 𝜖 ∗ 𝑆.𝐵𝑎𝑐𝑘 () .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
10 𝑟𝐵.𝑅𝑒𝑚𝑜𝑣𝑒 (𝑣) // prune remote neighbors

11 end
12 end
13 𝑃𝑜𝑠𝑡𝑅𝑒𝑎𝑑 (𝑟𝐵), 𝑄.𝑃𝑢𝑠ℎ(𝑟𝐵) // async read data

14 𝐸𝑥𝑝𝑎𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆, 𝑙, 𝛿 (·, ·), 𝑞, 𝑙𝐵)
15 if 𝑛 > 0 then
16 𝑛 ← 𝑛 − 1, 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
17 end
18 𝑟𝐵 ← 𝑄.𝑃𝑜𝑝 (), 𝑃𝑜𝑙𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑟𝐵) // wait I/O

19 𝐸𝑥𝑝𝑎𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆, 𝑙, 𝛿 (·, ·), 𝑞, 𝑟𝐵)
20 end
21 while !𝑄 .Empty() do
22 𝑟𝐵 ← 𝑄.𝑃𝑜𝑝 (), 𝑃𝑜𝑙𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑟𝐵) // wait I/O

23 𝐸𝑥𝑝𝑎𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆, 𝑙, 𝛿 (·, ·), 𝑞, 𝑟𝐵)
24 end
25 return 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑘 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑆

capability to pull vertex data from remote memory into local mem-
ory for neighbor expansion. To efficiently handle Work Requests
[27], we also make full use of RDMA’s features, as detailed below.

(1) Doorbell Batching:We employ batch submission to improve
the request efficiency during neighbor expansion. When
posting multiple Work Requests to the ibv_post_send()
verbs, submitting them as a linked list in a single call—rather
than making multiple separate calls for each individual
request—improves performance by allowing the low-level
driver to optimize the process.

(2) Selective Signaling: We implement selective signaling in
the Send Queue to reduce PCIe transactions and NIC pro-
cessing overhead. By marking requests as unsignaled using
send_flags, the system avoids generating a Completion
Queue Entry (CQE) for every Work Queue Entry (WQE),
and only the final request in a batched requests is marked
as signaled to generate a CQE.

(3) Concurrent Processing: We enable the concurrent process-
ing of multiple requests by configuring the parameters
max_rd_atomic and max_dest_rd_atomic of the Queue
Pair, allowing RDMA reads to be handled more efficiently.

Table 1: Datasets in experiments

Dataset Dist. Dim. Scale Query
Emb.

Base
Emb. Type

DEEP [5] L2 96 100M Image Image ID
MS-Turing [53] L2 100 100M Text Text ID
Text2Image [42] IP 200 100M Text Image OOD
LAION [38] L2 512 100M Text Image OOD

7 EVALUATION
7.1 Evaluation Setup
Hardware configuration. All evaluations were conducted on a
rack-scale cluster consisting of four machines. Two machines are
equipped with dual 10-core Intel(R) Xeon(R) Silver 4210R CPUs
and 128 GB DRAM, and the other two with dual 16-core Intel(R)
Xeon(R) Gold 5218 CPUs and 128 GB DRAM. All machines run
Ubuntu 20.04 with Mellanox OFED v5.8-4.1.5.0 and are equipped
with a ConnectX-5 MCX516A 100Gbps RoCE NIC (PCIe 3.0 x16),
connected to a Mellanox SN2100 100GbE switch.

Workloads. We selected multiple representative datasets cover-
ing both In-Distribution (ID) and Out-of-Distribution (OOD) work-
loads. Table 1 summarizes the datasets, including DEEP, MS-Turing
(MS-T), Text2Image (T2I) and LAION, which are widely recognized
in academia and industry as benchmark datasets for ANNS. Among
them, DEEP, MS-T and T2I were obtained from the BigANN Bench-
mark [42]. Each dataset consists of a collection of database vectors,
query vectors, and the corresponding groundtruth. We standardize
the experiments to be conducted on a data scale of 100M.

Comparing targets.We selected the popular distributed vector
databases to compare RED-ANNS with mainstream industry imple-
mentations, including Milvus [47], Vearch [31], and Elasticsearch
[1]. Moreover, to fairly and unbiased demonstrate the superiority
of full-GPS over MapReduce-style execution, we also implemented
a lightweight baseline, referred to as MR-ANNS, which shares
the same codebase with RED-ANNS (e.g., the AVX512 accelerated
computation library) but follows MapReduce-style execution. MR-
ANNS maintains only one subgraph per node to represent the best
achievable performance for MapReduce-style methods.

We also evaluated several variants of RED-ANNS to assess the im-
provement of each proposed design component. Specifically, Ran-
dom represents RED-ANNS using the full-GPS strategy with ran-
dom data placement and query scheduling. Locality incorporates
locality-aware data placement and affinity-based query schedul-
ing. RBFS executes queries using the dependency-relaxed best-first
search instead of the conventional BFS approach.

Parameter setting. In Milvus, Vearch and Elasticsearch, we use
their HNSW index [33], with parameters𝑀 = 64, 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =

100, and use the optimized segment parameter𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 20GB to
reduce the creation of numerous small segments in Milvus. For both
MR-ANNS and RED-ANNS, we use the Vamana index [24] with
parameters 𝑅 = 64, 𝐿 = 100. In RED-ANNS, the randomly sampled
query training set is set to 1M (1% of the baseset size), the cache
capacity for duplication is set to 4M (4% of the baseset size), the
affinity-based query scheduling module uses a 30K base sampling
set as the anchor set, and the relaxed hop count 𝑛 is set to three.

90 95
Recall@10

0

10k

20k

30k

40k

QP
S

DEEP

90 95
Recall@10

0

10k

20k

MS-Turing

90 95
Recall@10

0

2k

4k

6k

Text2Image

85 90 95
Recall@10

0

1k

2k

3k

4k LAION

Milvus
Vearch

Elasticsearch
MR-ANNS

RED-ANNS:Random
RED-ANNS:Locality

RED-ANNS:Locality+RBFS

Figure 10: Performance comparison with different recalls

7.2 Overall Performance
We evaluate performance in terms of retrieval speed, measured
by Queries Per Second (QPS), and retrieval accuracy, measured by
Recall@k, in the four-node cluster with eight threads per node.

Performance under different values of recall. Figure 10
shows performance under different recall levels, with 𝑘 fixed at
10, following previous work [24, 33, 42]. To achieve higher recall,
the (R)BFS algorithm requires a larger candidate pool size to allow
more neighbor expansions, increasing the likelihood of retrieving
the true top-𝑘 nearest neighbors. However, this results in more
distance calculations, reducing QPS. Compared to MR-ANNS, RED-
ANNS achieves performance improvements of up to 1.7-1.8×, 2.1-
2.4×, 1.9-2.0× and 2.0-2.2× on the DEEP, MS-T, T2I and LAION
datasets, respectively, at Recall@10≥0.9. Among the three industry
implementations, Milvus delivers the best performance. RED-ANNS
outperforms Milvus by 4.0–5.3×, and surpasses Vearch and Elastic-
search by 5.1–9.6× across the four datasets, at Recall@10≥0.9.

Performance under different values of 𝑘 . Figure 11 shows
performance at varying values of 𝑘 , with the recall fixed at 0.9. As 𝑘
increases, the (R)BFS algorithm usually also needs to traverse more
vertices to find more nearest neighbors, resulting in a decrease in
QPS. However, on the LAION dataset that exhibits significant OOD
characteristics, retrieving an accurate top-1 result is particularly
challenging, resulting in a lower QPS at 𝑘=1 compared to larger
values of 𝑘 . In general, RED-ANNS achieves up to 1.6-1.9×, 2.0-2.4×,
1.8-2.0× and 1.9-2.1× performance improvement over MR-ANNS
on the DEEP, MS-T, T2I and LAION datasets, respectively, across
different values of 𝑘 . Notably, on the DEEP dataset, we observe
that for a MapReduce-style execution, searching for only the top-
40 results on each subgraph is sufficient to ensure that the final
aggregated top-100 results achieve a Recall@k of 0.9, eliminating
the need to search for the full top-100 results on each subgraph.
Because Milvus enforces retrieving at least 100 results from each
subgraph, the resulting recall naturally exceeds the 0.9 threshold.

Analysis of improvement. As shown in Figure 10 and Fig-
ure 11, Compared to MR-ANNS, Random achieves at most a 20%
performance improvement at Recall@10=0.9 by employing the full-
GPS strategy, which provides minimal computational overhead.
However, its performance remains limited due to excessive remote
accesses. Compared to Random, Locality improves more perfor-
mance by 42–75% due to enhanced data access locality. Further-
more, compared to Locality, RBFS helps hide the network latency for
necessary remote access, leading to additional performance gains
of 14–33%. In addition, we note that MR-ANNS outperforms Milvus

Top-1 Top-10 Top-1000

20k

40k

QP
S

×

DEEP

Top-1 Top-10 Top-1000

10k

20k

30k

QP
S

MS-Turing

Top-1 Top-10 Top-1000

2k

5k

8k

QP
S

Text2Image

Top-1 Top-10 Top-1000

1k

2k

QP
S

×

LAION
Milvus Vearch Elasticsearch MR-ANNS RED-ANNS:Random RED-ANNS:Locality RED-ANNS:Locality+RBFS

Figure 11: Performance comparison with Top-1, Top-10, and Top-100

90 95
Recall@10

0

5k

Di
st

. C
al

c.

-62.5%
-56.5%

DEEP

90 95
Recall@10

0

10k

20k

-75.0%
-69.4%

MS-Turing

90 95
Recall@10

0

20k

40k

-59.5%
-56.6%

Text2Image

90 95
Recall@10

0

50k

100k

-64.4%

-56.3%

LAION
MR-ANNS RED-ANNSMR-ANNS RED-ANNSMR-ANNS RED-ANNSMR-ANNS RED-ANNS

Figure 12: Distance computation overhead

Local Remote
Data Access

0

1k

2k

Fr
eq

ue
nc

y

-8.0%

-28.5%

DEEP

Local Remote
Data Access

0

1k

2k -10.9%
-15.6%

MS-Turing

Local Remote
Data Access

0

2k

4k

6k -6.8%

-14.6%

Text2Image

Local Remote
Data Access

0

5k

10k -8.8%

-12.4%

LAION
Fixed EP Adaptive EPFixed EP Adaptive EPFixed EP Adaptive EPFixed EP Adaptive EP

Figure 13: Performance implications of adaptive entry point

because Milvus maintains multiple segments per node, which re-
duces indexing efficiency, and as a full-featured distributed vector
database, Milvus incorporates a complete database architecture
[19], inevitably introducing runtime overhead.

7.3 Effectiveness Analysis
7.3.1 Minimal Computational Overhead. Thanks to our full-GPS
strategy, RED-ANNS achieves optimal indexing efficiency with min-
imal computational overhead. Figure 12 compares the distance com-
putation overhead of RED-ANNS and MR-ANNS at Recall@10=0.9
and 0.95 in the four-node setting. At Recall@10=0.9, RED-ANNS
reduces the number of distance computations by 62%, 75%, 59% and
64% on the DEEP, MS-T, T2I and LAION datasets, respectively. This
significant reduction creates substantial opportunities for perfor-
mance improvement compared to MapReduce-style approaches.

7.3.2 Enhanced Data Access Locality. We evaluate the impact of
our data placement and query scheduling strategies on remote
access separately by fixing one component while varying the other.

Locality-aware data placement. Figure 14 shows the propor-
tion of remote accesses and throughput of RED-ANNS under differ-
ent data placement schemes, including varying duplication scales.
Under Random, the remote access ratio is typically 75% in a four-
node setup. By applying locality-aware graph partitioning, the ra-
tios are significantly reduced to 16%, 38%, 25%, and 24% on the DEEP,
MS-T, T2I, and LAION datasets, respectively. After further dupli-
cating 4M of frequently accessed remote vertices in the local cache,

DEEP MS-Turing Text2Image LAION0%

25%

50%

75%

100%

Re
m

ot
e

Ra
tio

 (%
) Random

BKMeans
Locality
Locality+Dup(1M)

Locality+Dup(2M)
Locality+Dup(4M)

Throughput

0

1

2

3

No
rm

. Q
PS

Figure 14: Proportion of remote accesses with different data
placement schemes

DEEP MS-Turing Text2Image LAION0%

25%

50%

75%

100%

Re
m

ot
e

Ra
tio

 (%
) Random

Anchors(1k)
Anchors(30k)
Anchors(30k)+WS

Anchors(30k)+ABWS Throughput

0

1

2

3

No
rm

. Q
PS

Figure 15: Proportion of remote accesses and corresponding
throughput with different query scheduling schemes

we leveraged the generalizability of offline profiling to achieve hit
rates of 38%, 19%, 36%, and 33% for all remote access requests on
the four datasets, respectively, thus reducing remote access ratios
to 10%, 31%, 16% and 16%. However, the effectiveness of duplication
is jointly influenced by cache lookup overhead, cache hit rate, and
remote access cost. On the 100-dimensional MS-T dataset, where
the hit rate is relatively low and the data transmission cost is small
due to the lower dimensionality, duplication does not yield notice-
able throughput gains. In contrast, on the 512-dimensional LAION
dataset, where both the hit rate and the dimensionality are higher,
duplication delivers an additional 11% performance improvement.

Affinity-based query scheduling. Figure 15 shows the pro-
portion of remote accesses and throughput of RED-ANNS under
different query scheduling schemes. Affinity-based query assign-
ment with 1K anchors effectively routes queries to their most affine
nodes, significantly reducing remote accesses compared to Random.
Increasing anchor granularity to 30K enables a more accurate affin-
ity estimation and further reduces remote accesses. Work-stealing
(WS) increases the remote access proportion by 4–7% across the
entire workload due to 10–15% of stolen queries losing locality. Nev-
ertheless, it improves resource utilization through load balancing
and achieves 6–12% higher QPS compared to assignment without
WS. Affinity-based work-stealing (ABWS) recovers some of the

BFS
RBFS:n=0

RBFS:n=1
RBFS:n=2

RBFS:n=8

BFS and RBFS with different n

0
400
800

1200
1600

To
ta

l L
at

en
cy

 (u
s)

Expand Neighbors
Post Read
Wait & Poll Completion

(a) Neighbor prefetching

BFSε=1.2ε=1.1ε=1.0ε=0.9ε=0.8
BFS and RBFS with different ε

0

500

1.0k

1.5k

Re
m

ot
e

Fr
eq

ue
nc

y

38.3%

12.1%
7.2% 4.2% 3.1% 2.8%

Frequency
Throughput

0

10k

20k

30k

QP
S

(b) Neighbor pruning

Figure 16: Performance implications of Relaxed BFS

lost locality, keeping the remote access proportion close to assign-
ment without WS while boosting QPS by 11–18% through load
balancing. The anchor set also assists in adaptively selecting local
entry points during the search, as shown in Figure 13. By avoiding
graph traversal from remote entry points, this mechanism reduces
remote accesses by 12–28%. Meanwhile, since adaptive entry points
shorten search paths, local access also decreases by 7–11%.

7.3.3 Hidden Remote Access Latency. RBFS hides remote access
latency by relaxing the strict best-first greediness of conventional
BFS, enabling network latency to overlap with CPU distance com-
putations. Figure 16(a) decompose the average query latency of
RBFS under different dependency relaxation levels on the MS-T
dataset at Recall@10=0.9. The latency is broken down into four
parts: Expand Neighbors, Post Read,Wait I/O and Poll Completion.
Among them, Expand Neighbors part encompasses CPU overhead,
such as Graph Traversal, Distance Calculation and Candidate Update.
For RBFS, when 𝑛 = 0 (i.e., no dependency relaxation), reordering
the distance computations for neighbor expansion reduces CPU
wait time, improving performance by 10%. At 𝑛 = 1, dependency
relaxation reduces CPU wait time by enabling greater overlap, lead-
ing to a noticeable drop in average query latency compared to
conventional BFS. The latency reaches its lowest point at 𝑛 = 2,
where the network latency is effectively hidden, and the CPU wait
time is reduced by 90%, leading to an overall 37% reduction in aver-
age query latency. However, as relaxed-hops increases further, the
disruption of execution dependencies causes more vertex traversals,
and the Expand Neighbors time exceeds that of BFS by 9% at 𝑛 = 8.

7.3.4 Pruned Remote Access Frequency. RBFS reduces unnecessary
data transfer by pruning remote neighbors based on a local quan-
tized distance estimation, boosting throughput under constrained
network resources. Figure 16(b) shows the remote access frequency
and throughput of RBFS under different pruning parameters 𝜖 on
the MS-T dataset at Recall@10=0.9. The remote access proportion
among all data accesses is also indicated above each bar. A smaller 𝜖
corresponds to a more aggressive pruning strategy, which reduces
remote accesses, but may negatively impact search accuracy due to
filtering necessary neighbors. At 𝜖 = 1.2, pruning reduces remote
accesses by 68% and improves QPS compared to conventional BFS.
The optimal QPS is achieved at 𝜖 = 1.0, where the remote access
frequency drops by 89%. However, when 𝜖 falls below 1.0, pruning
becomes too aggressive, filtering essential remote neighbors and
degrading search accuracy. Maintaining the target recall under such
conditions requires a larger candidate pool size, which lengthens
the search path and consequently lowers QPS.

1 2 4 8 16
Thread Num

0

20

40

60

80

100

Ba
nd

W
id

th
(G

bp
s) Random

Anchors
Anchors + Duplication
Anchors + Duplication + Pruning

Figure 17: Network traffic

DEEP
MS-Turing

Text2Image
LAION0

10k

20k

Co
ns

tru
ct

io
n

Ti
m

e(
s)

Direct construction
Divide-and-conquer
Divide-and-conquer(distributed)

Figure 18: Construction time

7.3.5 Resource Tradeoff. In RED-ANNS, memory is strategically
utilized to reduce remote accesses during search, thus reducing
network overhead. Specifically, the anchor set used for affinity es-
timation contains 30K vectors, accounting for only 0.03% of the
100M-scale dataset and resulting in negligible memory overhead.
Furthermore, each node duplicates up to 4% hot vertices in its lo-
cal cache, adding 16% memory overhead across four nodes (i.e.,
4% × 4). We also employ product quantization with a 6.25% com-
pression ratio to prune remote neighbors, storing the codebook of
remote vectors for each node, which introduces an additional 18.75%
memory overhead (i.e., 6.25% × 3). Figure 17 presents the network
consumption under different optimization techniques, with varying
numbers of search threads per node on the MS-T dataset. With 8
threads per node, after introducing an anchor set for affinity-based
query scheduling, network traffic drops to 68% of Random. Adding
duplication to increase the local availability of remote vertices fur-
ther reduces traffic to 49%, and incorporating neighbor pruning
reduces it to 17%, significantly alleviating bandwidth consumption.

7.4 Scalability
We evaluated the scalability of RED-ANNS and compared it with
MR-ANNS in the same memory budget, that is, without additional
duplication or codebook storage, with 𝑘 fixed at 10.

Bigger dataset. Figure 19(a) shows the performance and dis-
tance computation overhead of RED-ANNS across different dataset
sizes on DEEP dataset at Recall@10=0.9 in the four-node setting.
As the dataset size increases, throughput gradually decreases due
to higher computation costs; however, the proportion of remote
accesses remains stable at 18–21%. Compared to MR-ANNS, RED-
ANNS achieves performance improvements of 1.7×, 1.6×, and 1.6×
on the 100M, 200M, and 400M scales, respectively.

Scale up. Figure 19(b) shows the performance under varying
numbers of search threads on DEEP dataset at Recall@10=0.9. Com-
pared to MR-ANNS, RED-ANNS achieves speedups of 1.9×, 1.7×,
and 1.5× with 1, 8, and 16 threads per node, respectively, with
greater gains observed at fewer threads. This is because contention
for network resources affects RED-ANNS performance as concur-
rency increases; however, its optimized data locality still signifi-
cantly reduces remote accesses, delivering strong overall speedups.

Scale out. Figure 19(c) shows the performance under different
numbers of nodes on DEEP dataset at Recall@10=0.9. Compared
to MR-ANNS, RED-ANNS achieves up to 1.3×, 1.5×, and 1.7× im-
provements with 2, 3, and 4 nodes, respectively, providing strong
scalability because its computational overhead remains constant
owing to the full graph index. In contrast, MR-ANNS incurs increas-
ing computational costs due to the growing number of subgraphs

0

1k

2k

3k

4k

Di
st

. C
al

c.

100M 200M 400M
Dataset Size

0

10k

20k

30k

40k

50k

QP
S

MR-ANNS
RED-ANNS:Locality
RED-ANNS:Locality+RBFS

Local
Remote

(a) Bigger dataset

1 2 4 8 16
Thread Num

10k

20k

30k

40k

50k

QP
S

MR-ANNS
RED-ANNS:Locality
RED-ANNS:Locality+RBFS

(b) Scale up

1 2 3 4
Node Num

15k

20k

25k

30k

35k

QP
S

MR-ANNS
RED-ANNS:Locality
RED-ANNS:Locality+RBFS

(c) Scale out

24 8 16 32 64
Node Num

0%

25%

50%

75%

100%

Re
m

ot
e

Ra
tio

 (%
) DEEP

MS-Turing
Text2Image
LAION

(d) Remote access in scale out

Figure 19: Scalability evaluation

with more nodes. We also conduct pseudo-distributed experiments
to study remote access behavior at larger node scales by launching
more RED-ANNS instances, where any cross-instance data access is
treated as a remote access, logically corresponding to RDMA com-
munication in real multi-node deployments. Figure 19(d) shows
that the remote access ratio, on the four datasets at Recall@10=0.9,
increases with the number of nodes; however, even with 32 nodes,
more than half of the data accesses remain local, indicating the
locality on larger node scales.

8 DISCUSSION
Graph construction. To construct the full graph index, we use
DiskANN [24] for scalable graph construction on a single node,
supporting two construction strategies: direct construction and
divide-and-conquer. For datasets that fit entirely in memory, a Va-
mana index can be built directly on the dataset. For larger datasets,
the divide-and-conquer approach first divides the dataset into 𝑘

clusters, introducing overlaps between clusters by assigning each
vector to its top-ℓ nearest clusters (typically ℓ=2). Vamana indices
are then constructed independently and sequentially for each clus-
ter. Finally, the full graph index is obtained by merging the edge sets
of all clusters, where vectors shared across multiple clusters act as
bridges to establish inter-cluster connectivity and yield a connected
full graph. In distributed settings, the construction tasks per-cluster
can also be naturally parallelized across multiple nodes [29, 40],
improving efficiency. Figure 18 shows the construction time on
our 100M-scale datasets using different construction approaches.
On a single node with 16 threads, the divide-and-conquer strategy
incurs a longer construction time because cluster overlaps increase
the total data volume processed. However, when per-cluster con-
struction is parallelized across four nodes, the construction time is
significantly reduced, with the average dropping below two hours.

Graph updates.We construct a full graph index over the entire
database vectors in distributed memory. This indexing paradigm
is consistent with the existing single-node index setting [24, 43].
For insertions, the graph index first needs to locate the insertion
position in the graph by searching for the nearest neighbors of the
new vector and then adds edges between them. For deletions, the
old vector is removed, and its former neighbors are reconnected
to restore graph connectivity. In the distributed setting, to enable
efficient search during insertion, we treat the inserted vector as a
query vector and schedule it to an appropriate node. To correctly
handle edge modifications during insertion and deletion, we adopt
distributed lock-based concurrency control to protect access to
each vertex’s neighbor set, supporting concurrent updates across

multiple nodes. As the underlying data evolve through insertions
and deletions, the distribution of base vectors may change. In such
cases, lightweight reprocessing becomes necessary. For example,
the anchor set used for query scheduling should be resampled from
the updated base set to reflect the new distribution.

9 RELATEDWORK
Large-scale ANNS solutions. To address the memory challenge in
large-scale ANNS, existingmethodsmainly fall into three categories.
1) Compression-based methods leverage quantization techniques to
compress raw vectors, such as PQ [25], SQ [57], and RaBitQ [17],
allowing the datasets to fit in memory, where distance estimation
is conducted through compressed codes. 2) Persistent storage–based
methods offload large datasets to SSDs/NVM to alleviate DRAM
pressure. For example, DiskANN [24] stores the graph on SSDs and
dynamically loads data during search. HM-ANN [37], as a hetero-
geneous memory design, stores the graph in Intel Optane (high
capacity) whilemaintaining high-degree hub vertices in DRAM (low
latency) to accelerate access. 3) Distributed memory–based methods
adopt divide-and-conquer strategies to scale storage across multiple
nodes. However, existing logical segmentation implementations,
such as Milvus [47], Vearch [31], and Elasticsearch [1], suffer from
degraded query performance due to escalating computational over-
head as the number of segments increases. In contrast, we propose
RED-ANNS, which maintains a globally shared full-graph index
in the unified memory space of multiple nodes, providing optimal
computation efficiency and strong scalability.

10 CONCLUSION
Distributed ANNS is a fundamental infrastructure for retrieving
large volumes of unstructured data. In this paper, we identify re-
source inefficiencies in existing solutions and propose RED-ANNS,
a framework that leverages RDMA networks to build a shared mem-
ory of a cluster and adopts a full graph index to support efficient
distributed ANNS. To reduce remote accesses during search, we
propose locality-aware data placement and affinity-based query
scheduling, enhancing data access locality. To hide network latency
for remote accesses, we propose a dependency-relaxed best-first
search algorithm which incorporates an effective data prefetching.
Extensive experimental results demonstrate that RED-ANNS deliv-
ers outstanding performance and scalability on various datasets.

ACKNOWLEDGMENTS
This work was supported by the Project of Key R&D Program of
Shandong Province (Grant No. 2024CXGC010113).

REFERENCES
[1] 2020. Elasticsearch: An open source, distributed, RESTful search engine. https:

//github.com/elastic/elasticsearch
[2] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based

Language Models and Applications. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics: Tutorial Abstracts, ACL 2023,
Toronto, Canada, July 9-14, 2023, Yun-Nung Vivian Chen, Margot Mieskes, and
Siva Reddy (Eds.). Association for Computational Linguistics, 41–46. https:
//doi.org/10.18653/V1/2023.ACL-TUTORIALS.6

[3] Artem Babenko and Victor S. Lempitsky. 2014. Additive Quantization for Extreme
Vector Compression. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer
Society, 931–938. https://doi.org/10.1109/CVPR.2014.124

[4] Artem Babenko and Victor S. Lempitsky. 2015. The Inverted Multi-Index. IEEE
Trans. Pattern Anal. Mach. Intell. 37, 6 (2015), 1247–1260. https://doi.org/10.1109/
TPAMI.2014.2361319

[5] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-
Scale Datasets of Deep Descriptors. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2055–2063. https://doi.org/10.1109/CVPR.2016.226

[6] Qi Chen. 2021. Research talk: SPTAG++: Fast hundreds of billions-scale vector
search with millisecond response time. https://www.microsoft.com/en-
us/research/video/research-talk-sptag-fast-hundreds-of-billions-scale-vector-
search-with-millisecond-response-time/.

[7] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search. https://github.com/Microsoft/SPTAG

[8] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. In Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (Eds.). 5199–5212. https://proceedings.neurips.cc/paper/2021/hash/
299dc35e747eb77177d9cea10a802da2-Abstract.html

[9] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen,
Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 191–198. https:
//doi.org/10.1145/2959100.2959190

[10] Rieke de Maeyer, Sami Sieranoja, and Pasi Fränti. 2023. Balanced k-means
revisited. (2023).

[11] Shiyuan Deng, Xiao Yan, Kelvin Kai Wing Ng, Chenyu Jiang, and James Cheng.
2019. Pyramid: A General Framework for Distributed Similarity Search on
Large-scale Datasets. In 2019 IEEE International Conference on Big Data (IEEE
BigData), Los Angeles, CA, USA, December 9-12, 2019, Chaitanya K. Baru, Jun
Huan, Latifur Khan, Xiaohua Hu, Ronay Ak, Yuanyuan Tian, Roger S. Barga,
Carlo Zaniolo, Kisung Lee, and Yanfang (Fanny) Ye (Eds.). IEEE, 1066–1071.
https://doi.org/10.1109/BIGDATA47090.2019.9006219

[12] Etienne Dilocker, Bob van Luijt, Byron Voorbach, Mohd Shukri Hasan, Abdel
Rodriguez, Dirk Alexander Kulawiak, Marcin Antas, and Parker Duckworth.
[n.d.]. Weaviate. https://github.com/weaviate/weaviate

[13] Mohamad Dolatshah, Ali Hadian, and Behrouz Minaei-Bidgoli. 2015. Ball*-tree:
Efficient spatial indexing for constrained nearest-neighbor search in metric
spaces. CoRR abs/1511.00628 (2015). arXiv:1511.00628 http://arxiv.org/abs/1511.
00628

[14] Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2021. LANNS: A Web-Scale Approximate Nearest
Neighbor Lookup System. Proc. VLDB Endow. 15, 4 (2021), 850–858. https:
//doi.org/10.14778/3503585.3503594

[15] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss library. CoRR abs/2401.08281 (2024). https://doi.org/10.48550/ARXIV.
2401.08281 arXiv:2401.08281

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474. https://doi.org/10.14778/3303753.3303754

[17] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor
Search. Proc. ACM Manag. Data 2, 3 (2024), 167. https://doi.org/10.1145/3654970

[18] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013.
IEEE Computer Society, 2946–2953. https://doi.org/10.1109/CVPR.2013.379

[19] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
Ting Wang, Bo Tang, and Charles Xie. 2022. Manu: A Cloud Native Vector
Database Management System. Proc. VLDB Endow. 15, 12 (2022), 3548–3561.

https://doi.org/10.14778/3554821.3554843
[20] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and

Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector
Quantization. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research), Vol. 119. PMLR, 3887–3896. http://proceedings.mlr.press/
v119/guo20h.html

[21] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
Jeffrey Scott Vitter (Ed.). ACM, 604–613. https://doi.org/10.1145/276698.276876

[22] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan
Simhadri, and Sheshansh Agrawal. 2022. OOD-DiskANN: Efficient and Scal-
able Graph ANNS for Out-of-Distribution Queries. CoRR abs/2211.12850 (2022).
https://doi.org/10.48550/ARXIV.2211.12850 arXiv:2211.12850

[23] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. CXL-ANNS: Software-Hardware Collaborative Mem-
ory Disaggregation and Computation for Billion-Scale Approximate Nearest
Neighbor Search. In Proceedings of the 2023 USENIX Annual Technical Confer-
ence, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, Julia Lawall and
Dan Williams (Eds.). USENIX Association, 585–600. https://www.usenix.org/
conference/atc23/presentation/jang

[24] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate Billion-point
Nearest Neighbor Search on a Single Node. InAdvances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.
cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf

[25] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128. https://doi.org/10.1109/TPAMI.2010.57

[26] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quantiza-
tion for Approximate Nearest Neighbor Search. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014. IEEE Computer Society, 2329–2336. https://doi.org/10.1109/CVPR.2014.298

[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. In Proceedings of the 2016 USENIX Annual
Technical Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016, Ajay
Gulati and Hakim Weatherspoon (Eds.). USENIX Association, 437–450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[28] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392. https://doi.org/10.1137/S1064827595287997

[29] Sang-Hong Kim and Ha-Myung Park. 2023. Efficient Distributed Approximate
k-Nearest Neighbor Graph Construction by Multiway Random Division Forest.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh,
Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma
Ozcan, and Jieping Ye (Eds.). ACM, 1097–1106. https://doi.org/10.1145/3580305.
3599327

[30] Patrick S. H. Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich
Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021. PAQ:
65 Million Probably-Asked Questions and What You Can Do With Them. Trans.
Assoc. Comput. Linguistics 9 (2021), 1098–1115. https://doi.org/10.1162/TACL_
A_00415

[31] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyun Ni, and Ning Wang.
2019. The Design and Implementation of a Real Time Visual Search System on
JD E-commerce Platform. arXiv:1908.07389 [cs.IR]

[32] Haotian Liu, Kilho Son, Jianwei Yang, Ce Liu, Jianfeng Gao, Yong Jae Lee,
and Chunyuan Li. 2023. Learning Customized Visual Models with Retrieval-
Augmented Knowledge. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 15148–
15158. https://doi.org/10.1109/CVPR52729.2023.01454

[33] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/
TPAMI.2018.2889473

[34] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. In KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM,
2311–2320. https://doi.org/10.1145/3394486.3403280

[35] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.
Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases.
Proc. ACM Manag. Data 1, 1 (2023), 54:1–54:27. https://doi.org/10.1145/3588908

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://doi.org/10.18653/V1/2023.ACL-TUTORIALS.6
https://doi.org/10.18653/V1/2023.ACL-TUTORIALS.6
https://doi.org/10.1109/CVPR.2014.124
https://doi.org/10.1109/TPAMI.2014.2361319
https://doi.org/10.1109/TPAMI.2014.2361319
https://doi.org/10.1109/CVPR.2016.226
https://www.microsoft.com/en-us/research/video/research-talk-sptag-fast-hundreds-of-billions-scale-vector-search-with-millisecond-response-time/
https://www.microsoft.com/en-us/research/video/research-talk-sptag-fast-hundreds-of-billions-scale-vector-search-with-millisecond-response-time/
https://www.microsoft.com/en-us/research/video/research-talk-sptag-fast-hundreds-of-billions-scale-vector-search-with-millisecond-response-time/
https://github.com/Microsoft/SPTAG
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/BIGDATA47090.2019.9006219
https://github.com/weaviate/weaviate
http://arxiv.org/abs/1511.00628
http://arxiv.org/abs/1511.00628
https://doi.org/10.14778/3503585.3503594
https://doi.org/10.14778/3503585.3503594
https://doi.org/10.48550/ARXIV.2401.08281
https://doi.org/10.48550/ARXIV.2401.08281
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1145/3654970
https://doi.org/10.1109/CVPR.2013.379
https://doi.org/10.14778/3554821.3554843
http://proceedings.mlr.press/v119/guo20h.html
http://proceedings.mlr.press/v119/guo20h.html
https://doi.org/10.1145/276698.276876
https://doi.org/10.48550/ARXIV.2211.12850
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/CVPR.2014.298
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/3580305.3599327
https://doi.org/10.1145/3580305.3599327
https://doi.org/10.1162/TACL_A_00415
https://doi.org/10.1162/TACL_A_00415
https://arxiv.org/abs/1908.07389
https://doi.org/10.1109/CVPR52729.2023.01454
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3394486.3403280
https://doi.org/10.1145/3588908

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Mod-
els From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-
ceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.),
Vol. 139. PMLR, 8748–8763. http://proceedings.mlr.press/v139/radford21a.html

[37] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-Point
Nearest Neighbor Search on Heterogeneous Memory. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
788d986905533aba051261497ecffcbb-Abstract.html

[38] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk,
ClaytonMullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki.
2021. LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs.
CoRR abs/2111.02114 (2021). arXiv:2111.02114 https://arxiv.org/abs/2111.02114

[39] Min Joon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P. Parikh, Ali Farhadi,
and Hannaneh Hajishirzi. 2019. Real-Time Open-Domain Question Answering
with Dense-Sparse Phrase Index. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís
Màrquez (Eds.). Association for Computational Linguistics, 4430–4441. https:
//doi.org/10.18653/V1/P19-1436

[40] Yang Shi, Yiping Sun, Jiaolong Du, Xiaocheng Zhong, Zhiyong Wang, and Yao
Hu. 2025. Scalable Overload-Aware Graph-Based Index Construction for 10-
Billion-Scale Vector Similarity Search. In Companion Proceedings of the ACM
on Web Conference 2025, WWW 2025, Sydney, NSW, Australia, 28 April 2025 - 2
May 2025, Guodong Long, Michale Blumestein, Yi Chang, Liane Lewin-Eytan,
Zi Helen Huang, and Elad Yom-Tov (Eds.). ACM, 1303–1307. https://doi.org/10.
1145/3701716.3715576

[41] Chanop Silpa-Anan and Richard I. Hartley. 2008. Optimised KD-trees for fast im-
age descriptor matching. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska,
USA. IEEE Computer Society. https://doi.org/10.1109/CVPR.2008.4587638

[42] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Kr-
ishnaswamy, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong Wang.
2021. Results of the NeurIPS’21 Challenge on Billion-Scale Approximate Near-
est Neighbor Search. In NeurIPS 2021 Competitions and Demonstrations Track,
6-14 December 2021, Online (Proceedings of Machine Learning Research), Douwe
Kiela, Marco Ciccone, and Barbara Caputo (Eds.), Vol. 176. PMLR, 177–189.
https://proceedings.mlr.press/v176/simhadri22a.html

[43] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-
Based ANN Index for Streaming Similarity Search. CoRR abs/2105.09613 (2021).
arXiv:2105.09613 https://arxiv.org/abs/2105.09613

[44] Josef Sivic and Andrew Zisserman. 2003. Video Google: A Text Retrieval Ap-
proach to Object Matching in Videos. In 9th IEEE International Conference on
Computer Vision (ICCV 2003), 14-17 October 2003, Nice, France. IEEE Computer
Society, 1470–1477. https://doi.org/10.1109/ICCV.2003.1238663

[45] Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin, and Yu Zhang. 2024.
Scalable Billion-point Approximate Nearest Neighbor Search Using SmartSSDs.
In Proceedings of the 2024 USENIX Annual Technical Conference, USENIX ATC
2024, Santa Clara, CA, USA, July 10-12, 2024, Saurabh Bagchi and Yiying Zhang
(Eds.). USENIX Association, 1135–1150. https://www.usenix.org/conference/
atc24/presentation/tian

[46] Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu, Bo Li, Mohammad Shoeybi,
and Bryan Catanzaro. 2024. InstructRetro: Instruction Tuning post Retrieval-
Augmented Pretraining. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net. https:
//openreview.net/forum?id=PLAGGbssT8

[47] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,

Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua
Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-
Built Vector Data Management System. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[48] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approxi-
mate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.
https://doi.org/10.14778/3476249.3476255

[49] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152–3165. https://doi.org/10.14778/3415478.3415541

[50] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N.
Holtmann-Rice, David Simcha, and Felix X. Yu. 2017. Multiscale Quantiza-
tion for Fast Similarity Search. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (Eds.). 5745–5755. https://proceedings.neurips.cc/paper/2017/hash/
b6617980ce90f637e68c3ebe8b9be745-Abstract.html

[51] Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neigh-
bor Search in General Metric Spaces. In Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, Vijaya Ramachandran (Ed.). ACM/SIAM, 311–321. http:
//dl.acm.org/citation.cfm?id=313559.313789

[52] Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao Dai, Zixuan Zhou,
Shuangchen Li, Xuefei Ning, Yuan Xie, Huazhong Yang, and Yu Wang. 2023.
DF-GAS: a Distributed FPGA-as-a-Service Architecture towards Billion-Scale
Graph-based Approximate Nearest Neighbor Search. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2023,
Toronto, ON, Canada, 28 October 2023 - 1 November 2023. ACM, 283–296. https:
//doi.org/10.1145/3613424.3614292

[53] Hongfei Zhang, Xia Song, Chenyan Xiong, Corby Rosset, Paul N. Bennett, Nick
Craswell, and Saurabh Tiwary. 2019. Generic Intent Representation in Web
Search. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25,
2019, Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-
Yun Nie, and Falk Scholer (Eds.). ACM, 65–74. https://doi.org/10.1145/3331184.
3331198

[54] Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao, Ruicheng Zheng, Yingxia
Shao, Hao Sun, Hanqing Zhu, Premkumar Srinivasan, Weiwei Deng, Qi Zhang,
and Xing Xie. 2022. Uni-Retriever: Towards Learning the Unified Embedding
Based Retriever in Bing Sponsored Search. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM, 4493–
4501. https://doi.org/10.1145/3534678.3539212

[55] Zili Zhang, Chao Jin, Linpeng Tang, Xuanzhe Liu, and Xin Jin. 2023. Fast, Ap-
proximate Vector Queries on Very Large Unstructured Datasets. In 20th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2023, Boston,
MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX
Association, 995–1011. https://www.usenix.org/conference/nsdi23/presentation/
zhang-zili

[56] Siyun Zhao, Yuqing Yang, ZilongWang, Zhiyuan He, Luna Qiu, and Lili Qiu. 2024.
Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey
on How toMake your LLMs use External DataMoreWisely. CoRR abs/2409.14924
(2024). https://doi.org/10.48550/ARXIV.2409.14924 arXiv:2409.14924

[57] Xiaoyao Zhong, Haotian Li, Jiabao Jin, Mingyu Yang, Deming Chu, Xiangyu
Wang, Zhitao Shen, Wei Jia, George Gu, Yi Xie, Xuemin Lin, Heng Tao Shen,
Jingkuan Song, and Peng Cheng. 2025. VSAG: An Optimized Search Framework
for Graph-based Approximate Nearest Neighbor Search. CoRR abs/2503.17911
(2025). https://doi.org/10.48550/ARXIV.2503.17911 arXiv:2503.17911

http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.neurips.cc/paper/2020/hash/788d986905533aba051261497ecffcbb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/788d986905533aba051261497ecffcbb-Abstract.html
https://arxiv.org/abs/2111.02114
https://doi.org/10.18653/V1/P19-1436
https://doi.org/10.18653/V1/P19-1436
https://doi.org/10.1145/3701716.3715576
https://doi.org/10.1145/3701716.3715576
https://doi.org/10.1109/CVPR.2008.4587638
https://proceedings.mlr.press/v176/simhadri22a.html
https://arxiv.org/abs/2105.09613
https://doi.org/10.1109/ICCV.2003.1238663
https://www.usenix.org/conference/atc24/presentation/tian
https://www.usenix.org/conference/atc24/presentation/tian
https://openreview.net/forum?id=PLAGGbssT8
https://openreview.net/forum?id=PLAGGbssT8
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.14778/3415478.3415541
https://proceedings.neurips.cc/paper/2017/hash/b6617980ce90f637e68c3ebe8b9be745-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b6617980ce90f637e68c3ebe8b9be745-Abstract.html
http://dl.acm.org/citation.cfm?id=313559.313789
http://dl.acm.org/citation.cfm?id=313559.313789
https://doi.org/10.1145/3613424.3614292
https://doi.org/10.1145/3613424.3614292
https://doi.org/10.1145/3331184.3331198
https://doi.org/10.1145/3331184.3331198
https://doi.org/10.1145/3534678.3539212
https://www.usenix.org/conference/nsdi23/presentation/zhang-zili
https://www.usenix.org/conference/nsdi23/presentation/zhang-zili
https://doi.org/10.48550/ARXIV.2409.14924
https://doi.org/10.48550/ARXIV.2503.17911

	Abstract
	1 Introduction
	2 Background
	2.1 Approximate Nearest Neighbor Search
	2.2 Limitation of Existing Distributed Solutions

	3 RED-ANNS: An Overview
	3.1 Core Idea
	3.2 Design Methodology in RED-ANNS
	3.3 The Architecture of RED-ANNS

	4 Data Placement and Query Scheduling
	4.1 Locality-Aware Data Placement
	4.2 Affinity-Based Query Scheduling

	5 Dependency-Relaxed Best-First Search
	5.1 Why Existing Prefetching Mechanisms Fail
	5.2 Execution Dependency Analysis
	5.3 Dependency-Relaxed Best-First Search
	5.4 Algorithm Explanation

	6 Implementation
	7 Evaluation
	7.1 Evaluation Setup
	7.2 Overall Performance
	7.3 Effectiveness Analysis
	7.4 Scalability

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

