
RayDB: Building Databases with Ray Tracing Cores
Xuri Shi

Fudan University
xrshi23@m.fudan.edu.cn

Kai Zhang∗
Fudan University

zhangk@fudan.edu.cn

X. Sean Wang
Fudan University

xywangCS@fudan.edu.cn

Xiaodong Zhang
The Ohio State University
zhang@cse.ohio-state.edu

Rubao Lee
Freelance Researcher
lee.rubao@ieee.org

ABSTRACT
Ray tracing (RT) cores are a new type of hardware that have been
actively integrated into modern GPUs. Recent studies have demon-
strated that RT cores can deliver much higher performance than
GPU CUDA cores and CPUs for general-purpose data processing
tasks like table scan. In this paper, we propose RayDB, the first
query engine that leverages RT cores to accelerate database query
processing. RayDB transforms the core part of the query execu-
tion that involves multiple operators into one single ray tracing
job. With a set of proposed encoding and ray launching techniques,
RayDB effectively exploits RT cores to accelerate diverse workloads.
Experimental results show that RayDB outperforms the state-of-
the-art GPU-based query engine by up to 18.3×.

PVLDB Reference Format:
Xuri Shi, Kai Zhang, X. Sean Wang, Xiaodong Zhang, and Rubao Lee.
RayDB: Building Databases with Ray Tracing Cores. PVLDB, 19(1): 43 - 55,
2025.
doi:10.14778/3772181.3772185

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/LonelySlim/myOptixDB/tree/fin.

1 INTRODUCTION
With the ever-increasing data volume from applications, modern
processors have been intensively studied to enhance the perfor-
mance of database engines. Representative processors for which
database systems have been designed include GPU CUDA cores [4,
13, 32], Tensor cores [12, 15], and FPGAs [26, 33]. Specifically, GPUs
were originally designed to accelerate computer graphics. After they
were found useful in general-purpose computing for the massive
number of cores, the programming model evolved from OpenGL to
CUDA/OpenCL, and GPUs are used to accelerate a broad class of
data processing tasks. Crystal [32] is the state-of-the-art implemen-
tation of GPU databases, which has made a notable advancement
in utilizing CUDA cores. Experimental results show that Crystal is
16× faster than the GPU-based HeavyDB and 61× faster than the
CPU-based MonetDB. However, Crystal saturates more than 97% of

∗Dr. Kai Zhang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 19, No. 1 ISSN 2150-8097.
doi:10.14778/3772181.3772185

the GPU memory bandwidth for queries in the Star Schema Bench-
mark (SSB). Since the approach has already tried to minimize the
amount of data accessed, it has become difficult to further improve
the query performance on CUDA cores.

Recently, commodity GPUs have incorporated ray tracing (RT)
cores to boost the real-time rendering of 3D scenes. As an important
type of computing resource, RT cores have been adopted in mobile,
desktop, and workstation processors, which are under fast develop-
ment. RT cores efficiently trace rays through a 3D space to identify
intersected objects. With user-defined functions (a.k.a., shaders),
RT cores can perform customizable operations upon ray-object
intersections, providing versatility for various tasks. RT cores have
been used to accelerate data processing tasks such as K-nearest
neighbor search [25, 38], scan operator [14, 21], and range mini-
mum queries [22]. Specifically, existing work like RTScan [21] has
shown that RT cores can bring up to 4.6× higher performance than
CUDA cores and CPU for database operators. Therefore, we be-
lieve that RT cores have the potential to become another critical
computing resource for general-purpose data processing tasks.

Unlike database implementations on CUDA cores, accelerating a
data processing program with RT cores requires the program to be
transformed into an efficient RT job. In an RT job, data records are
transformed into primitives, such as triangles or spheres, positioned
in a three-dimensional space with a bounding volume hierarchy
(BVH), while a query is converted into rays in a specified region. If
the task does not fit such a job transformation, or the mapping is
inefficient (e.g., lack of parallelism with a limited number of rays),
it may result in even lower performance than CPUs and CUDA
cores [14, 21]. Due to the above reason, exploring RT cores to
accelerate database queries is quite challenging because an operator
like Join or GroupBy is hard to transform into an independent RT
job. Moreover, since the execution of an operator depends on the
output of its previous operator in the query plan, the BVHs for
the following operators have to be built during query execution,
which is very time-consuming. Therefore, simply implementing
independent RT-based operators like CUDA-based databases cannot
exploit the performance advantage of RT cores.

In this paper, we propose RayDB, a query engine that utilizes
ray tracing cores to achieve unprecedented performance. Instead
of implementing an RT job for each operator, the main idea of
RayDB is to map the core query execution containing multiple
operators into a single RT job. To be specific, RayDB maps and
encodes the data attributes involved in the core operators, i.e.,
Aggregation, GroupBy, and Scan, to the coordinates x, y, z in the
3D space, respectively. RayDB pre-builds a set of BVHs for query
execution to select from. When building a BVH, the attributes

https://doi.org/10.14778/3772181.3772185
https://github.com/LonelySlim/myOptixDB/tree/fin
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3772181.3772185

https://www.reddit.com/r/nvidia/comments/97qogl/former_nvidia_gpu_architect_what_is_rt_core_in
https://www.reddit.com/r/nvidia/comments/97qogl/former_nvidia_gpu_architect_what_is_rt_core_in

queries [22]. RTScan [21] and RTIndex [14] are pioneering imple-
mentations that leverage RT cores to accelerate the Scan oper-
ator. Specifically, RTScan [21] achieves significant performance
improvement by mapping the evaluation of entire conjunctive pred-
icates into a ray tracing process. Experiments show that RTScan
achieves up to 4.6× higher performance than BinDex [20], which
is the state-of-the-art scan approach on CPUs. Figure 4 demon-
strates the approach of RTScan when evaluating a query with
three predicates. For each data record, the three data attributes
involved in the predicates are used as the coordinates of the corre-
sponding primitive. Assuming that the conjunctive predicates are
(0 ≤ 𝑥 ≤ 𝑎∧ 0 ≤ 𝑦 ≤ 𝑏 ∧ 0 ≤ 𝑧 ≤ 𝑐), then the query area is a cuboid
with the origin as a vertex and three edges of length 𝑎, 𝑏, and 𝑐 as
shown in the figure. The data records satisfying the conjunctive
predicates are all in the query area. To reduce the computation
overheads on intersection tests, RTScan adopts Data Sieving, which
uses pre-stored results to filter most data records (the dashed area).
Then, RTScan launches rays in the remaining region to intersect
primitives with enhanced parallelism. These techniques add up to
form the performance improvement over CUDA cores and CPUs.
In addition, RTScan adopts Uniform Encoding to evenly distribute
data records in space, enabling it to achieve good performance even
under skewed data distributions.

After analyzing RTScan and other RT-based implementations,
we summarize three key aspects of efficiently mapping a data pro-
cessing task to a high-performance RT job. 1) Evaluating multiple
operators in one job: RTScan utilizes the 3D feature to evaluate three
predicates simultaneously within one RT job, whose execution time
is even lower than that of evaluating one predicate. 2) Reducing the
amount of data accesses: The evaluation of conjunctive predicates
and the Data Sieving technique dramatically shrink the querying
region, leading to a significantly smaller number of primitives for
intersections. 3) Enhancing the parallelism: RTScan segments a long
ray into several small rays with spacing, which aims at maximizing
the utilization of RT cores while balancing their load.

2.4 Challenges of Accelerating Query
Processing with RT Cores

For GPU acceleration with CUDA cores, operators are generally
implemented as separate CUDA kernels and executed sequentially.
RTScan demonstrates a standalone implementation of accelerating
Scan with RT cores. However, accelerating database queries with
each operator implemented as a separate RT job faces several critical
issues that are hard to address.
Difficulties in the three-dimensional mapping of operators:
In order to improve performance, a database operator needs to be ef-
fectively converted into a ray tracing job, or the performance advan-
tage of RT hardware cannot be effectively exploited. For instance,
a naive scan implementation on RT cores can be 2.3 × 104 times
slower than the state-of-the-art CPU-based implementation [21].
However, the natures of some database operators make it hard to
map the data in the 3D space and hard to convert operations into
ray intersections. Therefore, except Scan, other operators like Join
and GroupBy have not demonstrated superior performance on RT
cores so far.

Inefficiency of the execution of multiple operators: A ray
tracing job uses a BVH as its index, but building a BVH is a time-
consuming process that takes orders of magnitude longer time
than the RT job itself. For a dataset with 120 million tuples, the
average time to build a BVH is 227.84 ms, while the average time
to launch rays is only 0.75 ms. When the operators of a query are
executed sequentially on RT cores, the BVHs for the second to the
last operator can only be built online, resulting in an ultra-high
query processing latency.
A: SELECT AVG(Math)

FROM Score
WHERE English >= 60
GROUP BY Hometown;

We take the query 𝐴 as an example, which executes the oper-
ators in the following order: Scan → GroupBy → Aggregation.
For Scan, the BVH it traverses can be pre-built from the English
column directly. However, for GroupBy, the BVH it traversed is
built from the Hometown column filtered by the execution results
of Scan. Therefore, it can only start building the BVH after the
execution of Scan is complete and the results are obtained. The
above process is shown in Figure 5a. As a result, the BVH building
process for GroupBy has to be taken as part of the query execution,
which results in ultra-low performance. An alternative scheme is
shown in Figure 5b, where the BVHs for all operators have been
pre-built from their corresponding attributes. In this case, GroupBy
cannot get the filtered results from Scan and has to group all data
in the column. Moreover, the results of GroupBy have to be fur-
ther filtered according to the results of Scan. Consequently, this
scheme completely negates the performance benefit of RT cores
and is severely inefficient.

To conclude, due to the aforementioned issues, accelerating data-
base queries with RT cores to outperform CUDA cores and CPUs is
particularly challenging.

3 THE DESIGN OF RAYDB
3.1 Overview of RayDB
We propose RayDB, a high-performance query engine accelerated
by RT cores. Specifically, RayDB leverages RT cores to accelerate
three core operatorsAggregation, GroupBy, and Scanwhile dele-
gating the remaining parts of the query to CUDA cores. Instead of
implementing each operator as a separate RT job, RayDB maps the
execution of these three operators to one ray tracing job. The basic
idea is to use the attributes involved in these three operators as the
coordinates for a data record, i.e., the attributes in Aggregation,
GroupBy, and Scan are used as the X-coordinate, Y-coordinate, and
Z-coordinate, respectively.

The workflow of RayDB is illustrated in Figure 7. As denormal-
ization is widely adopted in data warehouses and favored by many
technology companies [1, 2, 11], RayDB is designed to accelerate
data warehouse queries on denormalized tables. During the offline
phase, it performs denormalization in initialization by joining all
relevant tables into a single flat table, thereby eliminating the need
for Join during query execution. Next, a set of BVHs is built of-
fline based on different combinations of attributes in the wide table.
For a given query, RayDB parses the attribute composition of its
three core operators and selects a pre-built BVH from the BVH

(a) Build BVHs in real time

filter

build

BVH

Scan

traversal

Eng.

...

... build

BVH

GroupBy

traversal

H.T.

...

...

...

could build in advance must build in real time

(b) Build BVHs in advance

filter
build

BVH

Scan

traversal

Eng.

...

... build

BVH

GroupBy

traversal

H.T.

...

...

...

Figure 5: Two strategies of query execution
with RT cores

(a) Table Score and the corresponding

primitives of its data records in space

(b) The rays corresponding to

query A (3D)

(c) The rays corresponding to

query A (XY plane)

X (Math

[Aggregation])

Y (Hometown

[Group by])

Z (English

[Scan])

60 100

½sy

½sx

↑

↑

↑

↑
↑

↓

sx

↑ ↓sy

X (Math

[Aggregation])

Y (Hometown

[Group by])

↑
↓

½sx

↑ ↓

½sy

A

B

C

X (Math

[Aggregation])

Y (Hometown

[Group by])

Z (English

[Scan])

(72,7,100)

(90,2,81)

Math

72

90

Eng.

100

81

H.T.

7

2

4

1

Year ...

...

...

...............

Figure 6: The design of RayDB

GroupBy

Aggregation

Scan

Other Operators

OrderBy
Having

…

RT CUDA

Offline

Online

BVH

Selection

…Build BVHs

CUDA

Query
Parsing

Query

Figure 7: The workflow of RayDB

set that covers all the required attributes. It is worth noting that
when a query involves excessive number of attributes such that
no BVH can fully cover all of them, RayDB can utilize a BVH that
includes only part of the required attributes to enable the query to
still benefit from the acceleration provided by RT cores (introduced
in Section 4.5). With the selected BVH, the RT cores are responsi-
ble for accelerating the execution of Aggregation, GroupBy, and
Scan, which are fused into a single RT job. The design is based on
the observation that these three operators appear consecutively in
the query plan after denormalization. It is worth noting that this
approach offers sufficient flexibility to remain effective even when
certain core operators are absent from the query. For example, in
queries without GroupBy, all records can be treated as belonging to
the same group. RayDB determines the corresponding query area
in the space based on Scan and launches a set of rays to intersect
all primitives in the area. By only accessing data records in the
query area defined by Scan, there is a significant reduction in the
amount of data accessed for a query. Based on the coordinates of
an intersected primitive, RayDB can obtain its data attributes for
GroupBy and Aggregation and then perform the corresponding
operations. For each data record, the data attributes involved in the
three operators are stored together as coordinates, which can be
retrieved by a single memory access. It dramatically reduces the
number of random accesses to the device memory. Once the RT
cores complete execution, the remaining operatorssuch as OrderBy

and Havingare handled by CUDA cores in a manner similar to
existing CUDA-based database systems.

Instead of building a BVH for every query, RayDB maintains a
few BVHs to support a wide range of queries. The encoding scheme
allows multiple attributes to be compressed into a single coordinate
(introduced in Section 4), where a query may use one or an arbitrary
combination of the encoded attributes, enabling each BVH to sup-
port more queries. Furthermore, based on our observation of real-
world queries, we find that certain columns tend to be used with
specific types of operators. For example, in TPC-H, l_shipdate
is predominantly used in Scan, while l_extendedprice is typi-
cally used in Aggregation. By pre-constructing BVHs for semanti-
cally meaningful combinations of attributes, RayDB is able to cover
common OLAP queries using a few BVHs. For queries with sub-
queries, RayDB can accelerate them if the optimizer rewrites them
into equivalent queries without subqueries through techniques like
unnesting or decorrelation. If such rewriting isnt possible, RayDB
currently does not support their execution.

3.2 The Mechanism of RayDB: An Example
In this subsection, we demonstrate how a BVH is constructed and
how an RT job is executed. Suppose there is a denormalized ta-
ble named 𝑆𝑐𝑜𝑟𝑒 , as shown in Figure 6a, that stores information
about students’ scores. Each row of the table corresponds to a stu-
dent, and the table has many attributes, among which the 𝑀𝑎𝑡ℎ,
𝐸𝑛𝑔𝑙𝑖𝑠ℎ, 𝐻𝑜𝑚𝑒𝑡𝑜𝑤𝑛, and 𝑌𝑒𝑎𝑟 are used to store students’ math
scores, English scores, hometowns, and academic years, respec-
tively. The course scores are in the range [0, 100] and are integers.
For each column, there must exist a data range that can be known
in advance (e.g., maintained as metadata). We use the execution of
query A (Section 2.4) as an example. The query obtains the average
math score of students in each hometown who have passed English.
Building the BVH: First, it should be clarified that the BVH con-
structed in this example is the most suitable one from the pre-built
BVH set for executing Query A. The key step in building a BVH
lies in mapping data records to primitives. Based on the idea of rep-
resenting data attributes involved in Aggregation, GroupBy, and
Scan by the coordinates in three-dimensional space, RayDB makes
the X-axis, Y-axis, and Z-axis represent the data attributes involved
in Aggregation, GroupBy, and Scan, respectively. In this way, each

data record in the table corresponds to a primitive in space. For ex-
ample, row 0 of the table corresponds to (72, 7, 100) in space. Then,
using the point as its vertex, RayDB creates a right triangle as the
primitive. The reason why we choose triangles as primitives is that
only the ray-triangle intersection test is hardware-supported by RT
cores, while the intersection tests for other types of primitives are
software-based and offloaded to CUDA cores. Therefore, the use
of triangles allows RayDB to enhance performance by exploiting
hardware acceleration from RT cores. Specifically, if the coordinate
of a data record is (𝑎,𝑏, 𝑐), then the three vertex coordinates of the
right triangle we create are (𝑎,𝑏, 𝑐), (𝑎 + 𝑆𝑥 , 𝑏, 𝑐), and (𝑎,𝑏 + 𝑆𝑦, 𝑐),
where 𝑆𝑥 and 𝑆𝑦 are the two leg lengths of the right triangle. There-
fore, the projections of a primitive on the XZ-plane and YZ-plane
are a line segment 𝑆𝑥 and a line segment 𝑆𝑦 , respectively. In this
case, each data record in the table is mapped to a triangle in three-
dimensional space, as shown in Figure 6a. Once all primitives in
the space are determined, the BVH can be built.
Executing the RT job: With the selected BVH, RayDB initiates
the execution of the RT job by launching a set of rays. For query 𝐴,
RayDB launches a set of parallel rays starting from the𝑍 = 60 plane
to the 𝑍 = 100 plane, along the positive direction of the Z-axis, as
shown in Figure 6b. The rays launched should be dense enough
to intersect all triangles in the region. Rays are launched as a two-
dimensional array from the view of the XY-plane (𝑍 = 60 plane),
which have an interval of 1

2𝑆𝑥 along the X-axis and an interval of
1
2𝑆𝑦 along the Y-axis. Recall that when mapping data to primitives,
the two legs of right triangles have lengths 𝑆𝑥 and 𝑆𝑦 , respectively.
The design guarantees that a triangle can be intersected by at least
one ray. As shown in Figure 6c, primitives may intersect one ray
(triangle A) or three rays (triangle B), and in the limiting case
primitives intersect at most three rays (triangle C)2. If the interval
grows, there may be triangles that fail to intersect any ray. In turn, if
the interval gets smaller, it increases the probability that a triangle is
intersected by more than one ray, which degrades the performance.
Rays entirely cover the query area 60 ≤ 𝑍 ≤ 100, and triangles in
the query area are bound to intersect rays, while triangles not in
the query area are bound not to intersect any ray.

For students who pass the English examination, their triangles
are in the query area 60 ≤ 𝑍 ≤ 100. Thus, the set of triangles
intersecting a ray is the set of students that satisfy the predicate of
Scan. For each triangle that is intersected by a ray, the Y-coordinate
of its right-angle vertex is used to find the group to which it belongs,
while the X-coordinate is read to compute the aggregate function,
respectively. The aggregate function is AVG in Query A, so we
maintain two arrays in the Any Hit Shader function, whose pseudo-
code is shown in Algorithm 1. The sum array is to store the sum
of 𝑀𝑎𝑡ℎ for all students in each group, and the count array is to
store the number of students in each group. Indexing by the Y-axis
coordinate, RayDB appends the X-coordinate to the corresponding
element of the sum array and increments the corresponding element
of the count array by 1. The Any Hit Shader, which is executed
on the SM as part of the shader pipeline, will be called each time
a ray finds an intersection with a triangle. Therefore, the flag bit

2https://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-
intersection/309730/2 (last accessed 2025/10/6)

array 𝑉𝑓 𝑙𝑎𝑔 (line 3) is used to ensure that triangles are not double-
counted, and the atomic operation 𝑎𝑡𝑜𝑚𝑖𝑐_𝑎𝑑𝑑 (lines 5 and 6) is
used to avoid synchronization issues when tracing multiple rays in
parallel. After the BVH traversal is complete, the sum of the 𝑀𝑎𝑡ℎ
(𝑉𝑠𝑢𝑚) is divided by the number of students (𝑉𝑐𝑜𝑢𝑛𝑡) to obtain the
average score of 𝑀𝑎𝑡ℎ in each group. Since aggregate functions
share the common characteristic of operating on a group of values
to return a single scalar result, their implementations are generally
similar. As a result, RayDB supports all commonly used aggregate
functions, including AVG, SUM, COUNT, MAX, and MIN.

Algorithm 1 Pseudo-code of Any Hit Shader
Input: flag bit array 𝑉𝑓 𝑙𝑎𝑔 , result arrays 𝑉𝑠𝑢𝑚,𝑉𝑐𝑜𝑢𝑛𝑡
Output: result arrays 𝑉𝑠𝑢𝑚,𝑉𝑐𝑜𝑢𝑛𝑡
1: primIdx← get_prim_index()
2: [𝑎,𝑏, 𝑐] ← get_prim_right_vertex_coord(primIdx)
3: flag← atomic_bit_exch(𝑉𝑓 𝑙𝑎𝑔 [𝑝𝑟𝑖𝑚𝐼𝑑𝑥], 1)
4: if flag = 0 then
5: atomic_add(𝑉𝑠𝑢𝑚 [𝑏], 𝑎)
6: atomic_add(𝑉𝑐𝑜𝑢𝑛𝑡 [𝑏], 1)
7: end if

4 ENCODING OF MULTIPLE DATA
ATTRIBUTES

4.1 Challenges from Processing Multiple
Attributes

Query 𝐴 is a simple query where each operator involves only one
data attribute. However, in real-world queries, it is common for an
operator to involve multiple data attributes. When mapping Query
𝐴 in the space, a primitive directly uses the value in the correspond-
ing attribute as the coordinate on an axis. For instance, 𝐸𝑛𝑔𝑙𝑖𝑠ℎ
is used as the coordinate on the Z-axis. However, when multiple
data attributes are evaluated by one operator, the coordinate on
one dimension needs to represent all data attributes involved. For
instance, with the Where clause WHERE English ≥ 60 and Math
≥ 60, both English score and Math score should be represented by
the Z-axis. To address this issue, in RayDB, we propose to encode
multiple data attributes as the coordinate on each axis. In addition,
the encoding scheme brings an extra benefit: it compresses multiple
attributes into a single coordinate, allowing a query to utilize one
or an arbitrary combination of the encoded attributes. This enables
a single BVH to support a wider range of queries, thereby reducing
the number of pre-built BVHs required. However, since different
operators have different functionalities, an appropriate encoding
scheme needs to be chosen for each one. In this section, we study
how to encode attributes for Scan, GroupBy, and Aggregation.

4.2 Scan with Conjunctive Predicates
The encoding scheme for Scan needs to maintain the relative order
of the encoded data and specify the ray launching area to ensure
correct execution. A query generally contains multiple conjunctive
predicates, like 𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝𝑛 , and the attributes involved in
the predicates can be encoded in the same attribute.

https://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-intersection/309730/2
https://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-intersection/309730/2

Any Hit Shader, we obtain 𝑀𝑎𝑡ℎ and 𝐸𝑛𝑔𝑙𝑖𝑠ℎ by decoding the X-
coordinate and computing the two aggregate functions separately.
Given that the coordinates have 32 bits and 7 bits are sufficient
to store a single score, the X-coordinate can hold up to 4 scores.
Therefore, the encoding can support queries with up to 4 aggregate
functions, as shown in Figure 10.

For cases where an aggregate function contains multiple data
attributes, e.g., SUM(Math + English), the calculated result Math
+ English is directly encoded in the coordinate if the result does
not exceed the expression range of a float. Multiple queries in SSB
have such forms of aggregations. This scheme may help make
further compressions. In this example, the range of Math + English
is [0, 200], which only needs 8 bits instead of 14 bits when being
separately stored. RayDB adopts this optimization when possible
to store more attributes in a coordinate.

4.5 Breaking through the Encoding Limitation
RayDB converts all data types to INTEGER for encoding, while BVH
coordinates can only be represented using Float, which can ac-
curately represent integers only within the range of [−224, 224].
Under this limitation, the maximum number of attributes that can
be encoded into a single coordinate depends on the value range
of each attribute involved in the encoding. Taking attributes from
the SSB as an example, RayDB can encode up to four LO_QUANTITY
(with a value range of 150) or six LO_DISCOUNT (with a value range
of 010) into a single coordinate.

Although a coordinate can only encode a limited number of
attributes, RayDB can support queries with more attributes. From a
high-level perspective, when a BVH that covers all attributes in the
query is unavailable in the pre-constructed BVH set, RayDB can
utilize a BVH that encodes only part of the attributes to enable the
query to still benefit from the acceleration provided by the RT cores.
RayDB performs the RT job on the BVH, and upon detecting a ray-
primitive intersection, the Any-Hit Shader that is called uses the
primitive ID (i.e., row ID) to access the remaining uncoded attributes
from the denormalized table in the GPU memory and perform
the corresponding operations. Since reading attributes from the
GPU memory incurs extra memory accesses, RayDB selects the
optimal BVH by maximizing the attribute coveragei.e., choosing
the BVH that encodes the largest number of attributes involved in
the query. In particular, attributes in Scan are given higher weight,
as the presence of Scan can significantly reduce memory access
overhead. This selection process is formalized as max{ 𝑥 +𝑦+𝛼 ·𝑧 },
where 𝑥 , 𝑦, and 𝑧 represent the number of the matched attributes in
Aggregation, GroupBy, and Scan, respectively, and 𝛼 is the weight
assigned to Scan.

5 SCALING OUTWITH MULTIPLE GPUS
In RayDB, we store multiple BVHs in the device memory to support
various queries. When BVHs exceed the device memory size of a
single GPU, RayDB can only discard some BVHs. This results in
more queries failing to find a BVH that encodes all of their attributes
and instead choosing a BVH that covers only a part of the attributes,
as described in Section 4.5. This incurs additional memory accesses,
leading to performance degradation.

Figure 11: The workflow of parallel execution on multiple
GPUs

To copewith this dilemma, we design a parallel execution scheme
for RayDB on multiple GPUs, which can not only utilize the de-
vice memory of multiple GPUs to accommodate larger data sizes
but also utilize the RT cores of multiple GPUs to improve query
performance. The key idea is that the 3D space in RayDB can be
naturally partitioned into any number of independent regions for
parallel execution. First, all primitives can be divided into several
sets according to the X-axis (Aggregation), Y-axis (GroupBy), or
Z-axis (Scan) coordinates. After that, each set can be assigned to a
GPU and used to build a specific BVH, which can be viewed as a
sub-BVH. In this way, each GPU is supposed to intersect primitives
to get partial results for the query. After all GPUs have completed
processing, the final query result can be obtained by merging the
results from all GPUs.

Figure 11 shows the parallel execution workflow when partition-
ing the data space along the Y-axis (GroupBy). We evenly divide the
range of Y-axis coordinates into 𝑁 segments, and the primitives
located in the same segment are divided into the same group and
assigned to the same GPU to build the BVH. Spatially, the entire
data space is partitioned into a number of equal-sized subspaces
along the Y-axis, and each subspace is assigned to a GPU, and each
GPU launches rays in this subspace according to the same prin-
ciples as a single GPU. Since we are partitioning the space along
the Y-axis, the result obtained by each GPU is the query result for
the groups involved within the corresponding segment. The final
merge process is as simple as concatenating the results of each
GPU in order to obtain the final query result. Since each primitive
belongs to only one subspace, it is neither repeatedly accessed by
multiple GPUs nor omitted, which ensures the correctness of the
parallel execution result. In this way, all GPUs can be executed in
parallel without any dependency. This approach can not only solve
the problem of insufficient device memory but also accelerate the
execution of queries.

The obvious benefit of partitioning the data space along the Y-
axis is the simplification of merging. If we partition the space along
the X-axis (Aggregation) according to a similar principle and the
aggregate function is SUM as an example, the result obtained by
each GPU is not the sum of some groups but the partial sum of all
groups in the subspace. During the merge process, we need to sum

the result arrays of all GPUs together to get the query result, which
is more time-consuming. In addition, if the data space is partitioned
along the Z-axis (Scan), the query region may only be in a small
number of subspaces, which will cause a serious load imbalance. In
summary, we believe that partitioning along the Y-axis is a good
choice for most cases.

The denormalized table can also be partitionedsplit by attributes
and distributed across multiple GPUs. Unlike BVHs, each GPU may
need to access attributes stored on other GPUs during query exe-
cution. With technologies like NVLink and RDMA enabling direct
memory access between GPUs, RayDB can still support queries
involving an arbitrary number of attributes in a multi-GPU parallel
execution environment.

6 EXPERIMENTAL ANALYSIS
6.1 Experiment Setup
Hardware and Software We run most experiments on a machine
equipped with two Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz,
128GB DDR4 DRAM, and an NVIDIA GeForce RTX 4090 with 128
RT cores, 16384 CUDA cores, and 24GB VRAM. The operating
system is 64-bit Ubuntu Server 20.04 with Linux Kernel 5.4.0-42-
generic. The GPU programming interface uses CUDA 10.1 and
OptiX 7.1.

In Section 6.3, we also compare the performance between RayDB
and Crystal on NVIDIA TITAN X (PASCAL), where OptiX 5.1 is
used for programming. The GPU was launched in 2015 and does
not have RT cores. Therefore, ray tracing jobs are only executed
on CUDA cores. The experiment aims to analyze the performance
benefits from RT core acceleration. In Section 6.8, to evaluate the
scalability of RayDB on multiple GPUs, the experiment was run on
a machine with four NVIDIA GeForce RTX 4080 SUPER.
Workloads Throughout the experiments, we adopt the Star Schema
Benchmark (SSB) [28]. There are a total of 13 queries in the bench-
mark, divided into 4 query flights. The industry usually flattens
SSB into a wide table model (SSB flat) to test the performance of
query engines. In our experiments, we run the SSB flat with a scale
factor of 1, 10, and 20 to evaluate the performance with different
data set sizes. When the scale factor equals 20, it will generate a
flat table with 120 million tuples.
Baseline We compare RayDB with Crystal [32]. Crystal is a re-
cently proposed state-of-the-art GPU database system that delivers
superior query execution performance compared to other systems.
It currently supports only queries from the Star Schema Bench-
mark (SSB). Specifically, Crystal implements a custom operator-
invocation program for each query in the SSB. For a fair compari-
son, we modify these programs by removing all Join. Besides, since
Cyrstal does not implement the OrderBy, we also remove it from
all queries.
Encoding In SSB, we adopt different encoding schemes for the
Aggregation operator. Three queries in Flight Q4 have the ag-
gregate function: sum(lo_revenue - lo_supplycost), and we
adopt the encoding optimization in Section 4.4 to make further
compression. The aggregate function of queries in Flight Q1 is
sum(lo_extendedprice * lo_discount). However, the range of
𝑙𝑜_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 ∗ 𝑙𝑜_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 is too large to be precisely repre-
sented as an integer by a 32-bit float. Therefore, in experiments, we

Table 1: Selectivity of queries in SSB

Query q11 q12 q13 q21 q22 q23

Sel.(%) 1.99 0.07 0.02 0.80 0.16 0.02
Query q31 q32 q33 q34 q41 q42 q43

Sel.(%) 3.67 0.14 5.76E-3 7.33E-5 1.59 0.38 0.04

use the approach in Section 4.5 to handle this situation. In evaluat-
ing Flight Q1, the X-coordinate only represents 𝑙𝑜_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒
while 𝑙𝑜_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 is stored in the GPU device memory.

6.2 Evaluation of Query Performance
Figure 12 illustrates the performance comparison between RayDB
and Crystal. In order to ensure the fairness of the comparison
between systems, the query execution time in the experiment is
unified as starting after loading all input data into GPU memory
and ending after the results are calculated. RayDB shows excellent
performance on the SSB flat. At SF=1, RayDB is faster than Crystal
on all queries, on average, by 82.08%. At SF=10, RayDB is faster
than Crystal on 12 out of 13 queries and 5.4× faster on average.
At SF=20, the situation is similar to that at SF=10. RayDB is faster
than Crystal on 12 out of 13 queries, at least 1.0× faster and at
most 18.3× faster. Over the entire SSB flat, RayDB is on average
8.5× faster than Crystal. It can be seen that RayDB maintains its
performance advantage over Crystal in all SF cases. Considering
that Crystal is by far the state-of-the-art GPU database system
delivering superior query execution performance compared to other
systems, the performance improvement is reasonably satisfactory.

Table 1 records the selectivity of each query in the SSB flat.
Referring to Figure 12, it is observed that the query execution time
of RayDB has a certain positive correlation with the selectivity of
the query. The selectivity of q11, q31, and q41 is significantly higher
than the other queries, and their execution time is also longer. The
fundamental reason for the positive correlation between query
execution time and query selectivity under certain conditions is
that a lower selectivity implies a smaller number of data records
in the query area, that is, a smaller amount of data to be accessed.
Among the above queries, although q11 does not have the highest
selectivity (1.99%, the maximum selectivity is 3.67% of q31), its
execution time is particularly long, and it is even the only query
for which RayDB has a longer execution time than Crystal. The
reason is the particularity of Flight q1. The queries in Flight q1
do not include the GroupBy operator. In our implementation, we
treat such queries as if all data records belong to the same unique
group. Recall that atomic operations are used in Any Hit Shader
to avoid synchronization issues, but they also limit parallelism,
which affects performance. In the presence of only one group, all
atomic operations target the same scalar value, further preventing
the parallelism advantage of RT cores from being fully exploited
and slowing down the execution of q11. This is also confirmed by
the shift of the execution time of q11 from SF=1 to SF=20: when the
dataset is small (SF=1), there are also fewer atomic operations, and
the restriction of parallelism is not obvious. Therefore, RayDB is
faster than Crystal. When the dataset becomes larger (SF=20), the

REFERENCES
[1] Analytics at Meta. 2022. Using LogTime Denormalization for Data Wrangling at

Meta. https://medium.com/meta-analytics/using-log-time-denormalization-for-
data-wrangling-at-meta-3b6fc050268a.

[2] Burak Bacioglu and Meenakshi Jindal. 2021. Elasticsearch Indexing Strategy in
Asset Management Platform (AMP). https://netflixtechblog.com/elasticsearch-
indexing-strategy-in-asset-management-platform-amp-99332231e541

[3] Piotr Bialas and Adam Strzelecki. 2016. Benchmarking the cost of thread diver-
gence in CUDA. In Parallel Processing and Applied Mathematics: 11th International
Conference, PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected
Papers, Part I 11. Springer, 570–579.

[4] BlazingSQL. 2021. BlazingSQL. https://github.com/BlazingDB/blazingsql.
[5] Peter A Boncz et al. 2002. Monet: A next-generation DBMS kernel for query-

intensive applications. Ph.D. Dissertation. Ph. d. thesis, Universiteit van Amster-
dam, Amsterdam, The Netherlands.

[6] Niladrish Chatterjee, Mike O’Connor, Gabriel H Loh, Nuwan Jayasena, and
Rajeev Balasubramonia. 2014. Managing DRAM latency divergence in irregular
GPGPU applications. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 128–139.

[7] Kevin Egan, Frédo Durand, and Ravi Ramamoorthi. 2011. Practical filtering for
efficient ray-traced directional occlusion. In Proceedings of the 2011 SIGGRAPH
Asia Conference. 1–10.

[8] Heiko Friedrich, Johannes Günther, Andreas Dietrich, Michael Scherbaum, Hans-
Peter Seidel, and Philipp Slusallek. 2006. Exploring the use of ray tracing for fu-
ture games. In Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames.
41–50.

[9] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined query processing in coprocessor environments. In Proceedings of
the 2018 International Conference on Management of Data. 1603–1618.

[10] Franco Fuschini, Hassan El-Sallabi, Vittorio Degli-Esposti, Lasse Vuokko, Doriana
Guiducci, and Pertti Vainikainen. 2008. Analysis of multipath propagation in
urban environment through multidimensional measurements and advanced ray
tracing simulation. IEEE Transactions on Antennas and Propagation 56, 3 (2008),
848–857.

[11] Google Cloud. 2025. Use nested and repeated fields. Google LLC.
[12] Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun

Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karanasos, and
Matteo Interlandi. 2022. Query processing on tensor computation runtimes.
arXiv preprint arXiv:2203.01877 (2022).

[13] HeavyDB. 2022. HeavyDB. https://github.com/heavyai/heavydb.
[14] Justus Henneberg and Felix Schuhknecht. 2023. RTIndeX: Exploiting

Hardware-Accelerated GPU Raytracing for Database Indexing. arXiv preprint
arXiv:2303.01139 (2023).

[15] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. Tcudb: Accelerating data-
base with tensor processors. In Proceedings of the 2022 International Conference
on Management of Data. 1360–1374.

[16] Henrik Wann Jensen and Per Christensen. 2007. High quality rendering using
ray tracing and photon mapping. In ACM SIGGRAPH 2007 courses. 1–es.

[17] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. 2016. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 555–569.

[18] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang Li,
and Xiaodong Zhang. 2021. The art of balance: a RateupDB experience of building
a CPU/GPU hybrid database product. Proceedings of the VLDB Endowment 14, 12
(2021), 2999–3013.

[19] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. Hippogriffdb: Balancing i/o and gpu bandwidth in big data
analytics. Proceedings of the VLDB Endowment 9, 14 (2016), 1647–1658.

[20] Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,
and X Sean Wang. 2020. Bindex: A two-layered index for fast and robust scans.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 909–923.

[21] Yangming Lv, Kai Zhang, Ziming Wang, Xiaodong Zhang, Rubao Lee, Zhenying
He, Yinan Jing, and X Sean Wang. 2024. RTScan: Efficient Scan with Ray Tracing
Cores. Proceedings of the VLDB Endowment 17, 6 (2024), 1460–1472.

[22] Enzo Meneses, Cristóbal A Navarro, Héctor Ferrada, and Felipe A Quezada. 2024.
Accelerating range minimum queries with ray tracing cores. Future Generation
Computer Systems 157 (2024), 98–111.

[23] Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. 2019. Efficient space
skipping and adaptive sampling of unstructured volumes using hardware accel-
erated ray tracing. In 2019 IEEE Visualization Conference (VIS). IEEE, 256–260.

[24] Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2020. Accelerating
unstructured mesh point location with RT cores. IEEE transactions on visualiza-
tion and computer graphics 28, 8 (2020), 2852–2866.

[25] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. Rt-knns unbound:
Using rt cores to accelerate unrestricted neighbor search. In Proceedings of the
37th International Conference on Supercomputing. 289–300.

[26] Xuan-Thuan Nguyen, Hong-Thu Nguyen, Trong-Thuc Hoang, Katsumi Inoue,
Osamu Shimojo, Toshio Murayama, Kenji Tominaga, and Cong-Kha Pham. 2016.
An efficient FPGA-based database processor for fast database analytics. In 2016
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1758–1761.

[27] NVIDIA. 2018. NVIDIA TURING GPU ARCHITECTURE. https://images.
nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[28] Patrick ONeil, Elizabeth ONeil, Xuedong Chen, and Stephen Revilak. 2009. The
star schema benchmark and augmented fact table indexing. In Performance
Evaluation and Benchmarking: First TPC Technology Conference, TPCTC 2009,
Lyon, France, August 24-28, 2009, Revised Selected Papers 1. Springer, 237–252.

[29] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. Optix: a general purpose ray tracing engine. Acm transactions on
graphics (tog) 29, 4 (2010), 1–13.

[30] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query processing on
heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR) 55, 1 (2022),
1–38.

[31] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni. 2021. CFM:
SIMT Thread Divergence Reduction by Melding Similar Control-Flow Regions
in GPGPU Programs. CoRR (2021).

[32] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management of
data. 1617–1632.

[33] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer,
Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. 2012. Database analytics
acceleration using FPGAs. In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques. 411–420.

[34] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.
2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing
Cores for Tet-Mesh Point Location. High Performance Graphics (Short Papers) 7
(2019), 13.

[35] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding,
and Xiaodong Zhang. 2014. Concurrent analytical query processing with GPUs.
Proceedings of the VLDB Endowment 7, 11 (2014), 1011–1022.

[36] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of pro-
cessing data warehousing queries on GPU devices. Proceedings of the VLDB
Endowment 6, 10 (2013), 817–828.

[37] Zhengqing Yun and Magdy F Iskander. 2015. Ray tracing for radio propagation
modeling: Principles and applications. IEEE access 3 (2015), 1089–1100.

[38] Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware ray
tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 76–89.

https://medium.com/meta-analytics/using-log-time-denormalization-for-data-wrangling-at-meta-3b6fc050268a
https://medium.com/meta-analytics/using-log-time-denormalization-for-data-wrangling-at-meta-3b6fc050268a
https://netflixtechblog.com/elasticsearch-indexing-strategy-in-asset-management-platform-amp-99332231e541
https://netflixtechblog.com/elasticsearch-indexing-strategy-in-asset-management-platform-amp-99332231e541
https://github.com/BlazingDB/blazingsql
https://github.com/heavyai/heavydb
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 An Analysis of GPU-based Databases
	2.2 Background of Ray Tracing
	2.3 Expedite Data Processing with RT Cores
	2.4 Challenges of Accelerating Query Processing with RT Cores

	3 The Design of RayDB
	3.1 Overview of RayDB
	3.2 The Mechanism of RayDB: An Example

	4 Encoding of Multiple Data Attributes
	4.1 Challenges from Processing Multiple Attributes
	4.2 Scan with Conjunctive Predicates
	4.3 GroupBy with Multiple Attributes
	4.4 Aggregation with Multiple Attributes
	4.5 Breaking through the Encoding Limitation

	5 Scaling Out with Multiple GPUs
	6 Experimental Analysis
	6.1 Experiment Setup
	6.2 Evaluation of Query Performance
	6.3 The Performance Gains from RT Cores and BVHs in RayDB
	6.4 GPU Memory Bandwidth Occupancy
	6.5 BVH Construction Overhead
	6.6 Comparison between Query-Level and Operator-Level Ray Tracing
	6.7 Comparison between Encoding and Splitting
	6.8 Scalability on Multiple GPUs

	7 Related Work
	8 Conclusion
	References

