
RoarGraph: A Projected Bipartite Graph for Efficient
Cross-Modal Approximate Nearest Neighbor Search
Meng Chen

Fudan University

mengchen22@m.fudan.edu.cn

Kai Zhang

Fudan University

zhangk@fudan.edu.cn

Zhenying He

Fudan University

zhenying@fudan.edu.cn

Yinan Jing

Fudan University

jingyn@fudan.edu.cn

X.Sean Wang

Fudan University

xywangcs@fudan.edu.cn

ABSTRACT
Approximate Nearest Neighbor Search (ANNS) is a fundamental

and critical component in many applications, including recommen-

dation systems and large language model-based applications. With

the advancement of multimodal neural models, which transform

data from different modalities into a shared high-dimensional space

as feature vectors, cross-modal ANNS aims to use the data vector

from one modality (e.g., texts) as the query to retrieve the most

similar items from another (e.g., images or videos). However, there

is an inherent distribution gap between embeddings from different

modalities, and cross-modal queries become Out-of-Distribution

(OOD) to the base data. Consequently, state-of-the-art ANNS ap-

proaches suffer poor performance for OOD workloads.

In this paper, we quantitatively analyze the properties of the

OOD workloads to gain an understanding of their ANNS efficiency.

Unlike single-modal workloads, we reveal OOD queries spatially

deviate from base data, and the k-nearest neighbors of an OOD

query are distant from each other in the embedding space. The

property breaks the assumptions of existing ANNS approaches

and mismatches their design for efficient search. With the insights

from the OOD workloads, we propose pRojected bipartite Graph
(RoarGraph), an efficient ANNS graph index that is built under the

guidance of query distribution. Extensive experiments show that

RoarGraph significantly outperforms state-of-the-art approaches

onmodern cross-modal datasets, achieving up to 3.56× faster search
speed at a 90% recall rate for OOD queries.

PVLDB Reference Format:
Meng Chen, Kai Zhang, Zhenying He, Yinan Jing, and X.Sean Wang.

RoarGraph: A Projected Bipartite Graph for Efficient Cross-Modal

Approximate Nearest Neighbor Search. PVLDB, 17(11): 2735 - 2749, 2024.

doi:10.14778/3681954.3681959

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/matchyc/RoarGraph.

The corresponding author is Dr. Kai Zhang.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681959

1 INTRODUCTION
Approximate nearest neighbor search (ANNS) is a fundamen-

tal and performance-critical component in various application do-

mains such as large-scale information retrieval [49, 54, 78], rec-

ommendation [11, 55], and question answering [42, 62]. More re-

cent applications of retrieval-augmented generation (RAG) in large

language models (LLMs) also utilize vector databases as external

knowledge libraries, employing ANNS to enhance search efficiency

[2, 46, 73]. These applications demand fast and accurate responses

to similarity vector search, where ANNS can be performed to effi-

ciently retrieve the approximate nearest neighbors from the data-

base for a given query, rather than conducting impractically ex-

act k-nearest neighbor searches [9, 19, 85]. To improve the ANNS

performance, a spectrum of studies have been carried out to de-

sign efficient data structures, including partition-based approaches

[15, 65, 67, 81], quantization-based methods [4, 24, 26, 36, 77], and

hashing-based methods [13, 21, 31, 31, 86], where graph-based ap-

proaches [20, 52, 56] represent the state-of-the-art performance on

many datasets.

Recently, cross-modal retrieval has drawn much attention with

the advancement of multimodal data representation techniques.

Deep learning models, such as CLIP [59], trained for multimodal

tasks embed unstructured data from different modalities like vision

and natural language into a shared high-dimensional space with

semantics preserved, say embeddings. In cross-modal vector search,

data from one modal (e.g., texts) is used as the query to retrieve the

most semantically similar data from another modal (e.g., images

or videos) [32, 41, 47]. With the diverse and critical application

scenarios, efficient ANNS are widely demanded to enhance the per-

formance of cross-modal retrieval [7, 63, 66, 68, 74, 80, 83]. However,

existing ANNS indexes are designed for single-modal scenarios,

and they suffer poor performance with cross-modal queries. For

example, in the modern cross-modal dataset LAION [61], an HNSW

(Hierarchical Navigable Small World) [52] index needs to visit 14374

nodes to ensure recall@10 to reach 0.95 in text-image search, while

only 1568 nodes are required to traverse if using an image to search

images, indicating nearly 10 times efficiency degradation.

The main characteristic of cross-modal retrieval is the dramati-

cally different data distributions between vectors from two modal-

ities. Even though multimodal neural embedding models enable

similarity measurements on vectors from different modalities, a

consistent and inherent distribution gap, recognized as themodality
gap, persists between embeddings of two modalities in cross-modal

representation learning [45]. Accordingly, in cross-modal ANNS,

https://doi.org/10.14778/3681954.3681959
https://github.com/matchyc/RoarGraph
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681959

query vectors are Out-of-Distribution (OOD) with respect to vectors

in the database (base data) [34]. This stands in stark contrast to

single-modal workloads where queries are In-Distribution (ID) with
the base data. The Mahalanobis distance [51] shows that queries

from another modality deviate 10 ∼ 100× far away from the base

data than that between ID queries and the base data in cross-modal

datasets, e.g. Text-to-Image [14], LAION [61], and WebVid [5]. Fur-

ther, through in-depth experiments and analysis, we find that an
out-of-distribution query is far from the base data, and the
k-nearest neighbors of such a query tend to be distant from
each other, indicating that queries deviate from the base data and

the nearest neighbors (ground truths) to OOD queries are more

widely distributed than that to ID queries.

However, state-of-the-art ANNS indexes are designed for ID

queries [20, 52, 56]. They presume that queries appear near the base

data and nearest neighbors for a query are in close proximity to

each other. Under the assumption, graph-based ANNS approaches

employ beam search (n-greedy search) during the index-building

phase to construct an approximate KNN graph [20, 35, 43, 50, 52],

where vectors with a smaller distance tend to be connected. Besides,

the search phase also uses beam search, which anticipates rapid

convergence with the closely connected base data. This indexing

convention suffers from OOD queries in cross-modal ANNS. Since

cross-modal queries and the base data follow different distributions

and the ground truths for OOD queries are scattered, the critical
assumption on the distribution of queries and the base data is
broken. As a result, the cross-modal search on such a graph cannot

converge efficiently but incurs more hops in graph traversals. That

constitutes the primary reason why existing ANNS approaches are

incompetent in handling OOD workloads.

We propose pRojected bipartite Graph (RoarGraph), an effi-

cient graph index with the knowledge from query distribution for

cross-modal ANNS. Our key idea is to map distributed vectors that

are nearest neighbors to queries into closely connected neighbors

within a graph index. The indexing process of RoarGraph is as fol-

lows. Firstly, with elaborate edge selection, a bipartite graph is built

by mapping the relationship of similarity between queries and base

data into the unified graph structure. Secondly, the bipartite graph

is projected onto base data, incorporating neighborhood-aware pro-

jection to create pathways for spatially distant nodes, recognized as

proximate from the perspective of queries. Finally, a connectivity

enhancement scheme is performed to ensure the graph’s connec-

tivity and the reachability of all base data vectors. The RoarGraph

index exclusively consists of base data yet effectively preserves the

neighboring relationship derived from the query distribution. The

main contributions of this paper are summarized as follows:

• We identify the inefficiency of cross-modal ANNS through

in-depth experiments and present an insightful analysis that

reveals underlying reasons causing performance degrada-

tion on state-of-the-art approaches in cross-modal ANNS.

• We propose RoarGraph, a novel graph index for efficient

cross-modal ANNS, which effectively utilizes query distri-

bution to guide graph index construction.

• We performed extensive experiments on three cross-modal

datasets comprising text, images, and video frames. Our

results show that RoarGraph significantly improves the

performance of cross-modal vector search.

RoarGraph speeds up cross-modal vector search on a graph by

minimizing detours and reducing the number of hops during the

search phase. This leads to a significant performance improvement

over existing graph indexes, ranging from 1.84× to 3.56× faster on

three cross-modal datasets with recall@k≥0.9, where k=1,10, and
100. In particular, RoarGraph also achieves an exceptional level of

recall (recall@k ≥ 0.99) that is unattainable by existing methods. A

variant of our approach won the championship in the OOD track

of NeurIPS’ Practical Vector Search (Big ANN) Challenge 2023.

2 BACKGROUND AND MOTIVATION
This section introduces the background of approximate nearest

neighbor search (ANNS) and out-of-distribution (OOD) ANNS. We

also quantitatively evaluate and analyze the performance of existing

ANNS approaches on cross-modal datasets.

2.1 Background on ANNS
2.1.1 The ANNS Definition. ANNS stems from the k-nearest neigh-

bors search (KNNS), which aims to find 𝑘 vectors in the database

(base data) that are closest to a given query vector. The measure-

ment of closeness typically involves utilizing cosine distance, ℓ2-

distance, inner product, etc. Contemporary applications involve

working with large-scale datasets in which the dimension of vectors

grows to hundreds [66], the pursuit of the exact KNNS becomes

both costly and impractical due to the challenges imposed by the

curse of dimensionality [33]. ANNS approaches create specific in-

dexes for the base data to achieve a tradeoff between search speed

and accuracy.

Definition 1. Given𝑁 vectors in the databaseX = {𝑥1, ..., 𝑥𝑁 } ∈
R𝐷 , 𝑞 ∈ R𝐷 and a function for computing the distance between two
vectors 𝛿 (·, ·). Top-k (𝑘 ≤ 𝑁) ANNS amis to find

𝑆 = k- argmin

𝑖∈1,...,𝑁
𝛿 (𝑞, 𝑥𝑖) (1)

𝑆 satisfies that |𝑆 | = 𝑘 , 𝛿 (𝑞, 𝑥) ≤ (1 + 𝜖)𝛿 (𝑥 ′, 𝑞) for 𝑥 ∈ 𝑆, 𝑥 ′ ∈ X \ 𝑆
and 𝜖 ≥ 0, where 𝜖 is a small constant and not used directly, only
denoting the approximation property hold by ANNS.

The search performance of an ANN index will be evaluated

by search speed-vs-recall tradeoff. Recall is calculated using the

formula recall@𝑘 = |𝑆 ∩ 𝐾𝑁𝑁 (𝑞) |/𝑘 , where 𝐾𝑁𝑁 (𝑞) represents
the exact k-nearest neighbors (ground truths) of a query 𝑞, and 𝑆 is

the result set with |𝑆 | = 𝑘 .

2.1.2 State-of-the-Art ANNS Approaches. Graph-based methods
and the inverted file index are two prevalent ANNS approaches.

Graph-based methods are the most high-performance ANNS ap-

proach family, providing a better search speed-recall tradeoff than

other methods [20, 44, 50, 52, 56, 75]. These methods index base data

into a graph structure that each node represents one data vector.

HNSW [52] is a well-known multi-layer graph in the hierarchical

structure. During construction, all base vectors are inserted into

the base layer (layer 0), and only subsets of layer 𝑖 will be inserted

into the 𝑖 + 1 layer, with decreasing probability from bottom to

top (the top layer contains only 1 point). Nodes within each layer

Table 1: Cross-modal Datasets

Dataset Scale Vector
Dimension

Type of
Query

Type of
Base

Text-to-Image[14] 10M 200 Text Image

LAION[61] 10M 512 Text Image

WebVid[5] 2.5M 512 Text Video

Table 2: 2-Wasserstein Distances on Cross-modal Datasets

Dataset 𝑊2 (𝐵1, 𝐵2) 𝑊2 (𝐵1, 𝑄) 𝑊2 (𝐵2, 𝑄)
Text-to-Image 0.864 1.439 1.437

LAION 0.882 1.677 1.677

WebVid 0.581 1.683 1.674

are connected to their approximate nearest neighbors. During the

search phase, HNSW employs greedy search on higher layers for a

given query. The closest point obtained from higher layers becomes

the entry point for the next layer. At the base layer, a beam search is

performed on the graph. Beam search is a variant of greedy search

that explores a graph by expanding the most promising element in

a limited queue [57], converging towards the nearest neighbors for

a given query. The capacity of the queue, termed the beam width,

controls the trade-off between accuracy and search speed.

The inverted file index (IVF)-based methods are another popular

index type in ANNS for its convenience and superior performance

for range nearest neighbors search, including IVF [67], IMI [3], etc.

IVF first applies K-means to cluster base data and gets 𝑛 centroids,

then assigns each vector in base data to its nearest cluster. Dur-

ing the search phase, IVF selects 𝑛𝑝𝑟𝑜𝑏𝑒 closest centroids to the

query, then scans all vectors belonging to the corresponding𝑛𝑝𝑟𝑜𝑏𝑒

clusters and obtains the top-k results.

2.2 Out-of-Distribution ANNS
Out-of-distributionApproximate Nearest Neighbor Search (OOD-

ANNS) indicates the distribution of queries differs from that of the

base data. A distribution gap is consistently present and inherent

between vectors from two modalities in modern cross-modal appli-

cations [45]. For instance, when using texts as queries to retrieve

relevant visual data, a distribution gap occurs, resulting in queries

becoming out-of-distribution. Unfortunately, the majority of ANNS

indexing algorithms are primarily designed for single-modal tasks,

such as image-image search.

The OOD property of cross-modal vector search can be mathe-

matically quantified using two mathematical distances: the Wasser-

stein distance [38, 72] that measures two distributions and the Ma-

halanobis distance [51] that measures the distance from a vector to

a distribution. We use two metrics to evaluate data distributions on

three modern real-world multimodal datasets: Text-to-Image [14],

LAION [61], and WebVid [5]. The characteristics of these datasets

are shown in Table 1.

To quantify the OOD characteristic by Wasserstein distance,

we sample two non-intersecting sets (𝐵1, 𝐵2) from the base data

and one query set (𝑄) from the query vectors, each containing

100,000 vectors. As shown in Table 2, two samples from the base

0 20 40

0

2

4

C
o
u
n
t
×1

0
4

Text-to-Image

ID Query

OOD Query

0 100 200 300

0

2

4

Mahalanobis distance

LAION

ID Query

OOD Query

0 200 400

0

2

4

6

8

WebVid

ID Query

OOD Query

Figure 1: Mahalanobis distances from OOD/ID queries to the
base data.

ID Query OOD Query

10 50 100

0.8

0.9

1

r
e
c
a
l
l
@
1
0

Text-to-Image

10 50 100

0.2
0.4
0.6
0.8
1

(a) Number of clusters probed by IVF

LAION

10 50 100

0.2

0.4

0.6

0.8

1

WebVid

0 200 400

0.6

0.8

1

r
e
c
a
l
l
@
1
0

Text-to-Image

0 200 400

0.4

0.6

0.8

1

(b) Hops during beam search on HNSW

LAION

0 200 400

0.4

0.6

0.8

1

WebVid

Figure 2: Performance evaluation on ID and OOD workloads.

data demonstrate proximity with𝑊2 (𝐵1, 𝐵2). In contrast, the query

distribution diverged from the base data distribution, being 1.67

times, 1.89 times, and 2.89 times more distant across three datasets.

In addition to the entire distribution difference, a query is con-

sidered out-of-distribution if its Mahalanobis distance to the base

data significantly differs from the distances between base vectors

[34]. For each 𝑞𝑖𝑑 in the ID query set and 𝑞𝑜𝑜𝑑 ∈ 𝑄 , we compute the

Mahalanobis distance to estimate 𝑑𝑀 (𝑞, 𝑃), where 𝑃 is the base data

distribution. As depicted in Figure 1, it is evident that OOD queries

significantly deviate from the base data distribution. In particu-

lar, queries from LAION and WebVid exhibit a more pronounced

out-of-distribution property compared to those in Text-to-Image.

2.3 The Inefficiency of Current Approaches for
OOD-ANNS

2.3.1 Performance of Current Approaches on OODWorkloads. Eval-
uations of IVF and HNSW are conducted on three multimodal

datasets shown in Table 1. In-distribution (ID) queries are sourced

from original large-scale datasets that follow the same empirical

distribution of base data, and OOD queries use the textual query

set for each dataset. We build IVF indexes by the Faiss library [37]

and HNSW indexes by the official implementations [52] with rec-

ommended parameters.

0.9 0.93 0.98
recall@10

0

1000

2000

3000

Q
P

S

Text-to-Image-10M
Vamana (OOD)
RobustVamana (OOD)
Vamana (ID)

0.9 0.93 0.98
recall@10

0

500

1000

1500

LAION-10M
Vamana (OOD)
RobustVamana (OOD)
Vamana (ID)

0.9 0.93 0.98
recall@10

0

1000

2000

WebVid-2.5M
Vamana (OOD)
RobustVamana (OOD)
Vamana (ID)

Figure 3: Evaluation of OOD-DiskANN and DiskANN. The
notations ID and OOD in parentheses denote ID and OOD
query workloads, respectively.

0 0.2 0.4 0.6
0

1

2

F
r
e
q
u
e
n
c
y
×1

0
3

Text-to-Image

ID Query

OOD Query

0 0.2 0.4 0.6
0

1

2

3

4

LAION

ID Query

OOD Query

0 0.2 0.4 0.6 0.8
0

2

4

WebVid

ID Query

OOD Query

Distance between 1
𝑠𝑡
NN and query

Figure 4: Distances between nearest neighbor to ID (vi-
sual)/OOD (textual) queries (104 queries for each category).

Critical performance degrading on OOD workloads is observed

in Figure 2. When using the IVF index, OOD queries demonstrate a

noticeable need to search a significantly larger number of clusters

to achieve high recalls, in contrast to ID queries. Recall@10 for ID

queries exceeded 0.97 when searching the closest 50 clusters on all

three datasets, whereas OOD queries achieved recall@10 of only

0.91, 0.20, and 0.52, respectively.

Similarly, with the HNSW index, OOD queries also require vis-

iting a much larger number of nodes during beam search on the

graph, resulting in poor search efficiency among the three datasets.

On the LAION dataset, OOD queries necessitate more than 500 hops

to achieve recall@10≥0.93, whereas only 48 hops are required for

ID queries. This highlights inefficient performance attributed to ap-

proximately 10 times the length of the search path caused by OOD

queries. The substantial performance decay proves that existing

indexes perform poorly on cross-modal ANNS tasks, emphasizing

the urgent need for an efficient index.

2.3.2 Limitations of Previous Solution for OOD-ANNS. The pio-

neering graph index designed to tackle the OOD-ANNS problem

is RobustVamana introduced in OOD-DiskANN [34]. The primary

objective of RobustVamana is to use query vectors to add edges

in the Vamana graph [35]. After linking the base data, queries are

also inserted into the Vamana graph. Then, it launches an intercon-

necting procedure named RobustStitch to create a full connection

among the closest nodes associated with inserted queries.

Figure 3 compares the performance of RobustVamana to its orig-

inal design, Vamana. Searching with OOD workloads, RobustVa-

mana offers 13% ∼ 67% improvements over Vamana when reaching

recall@10=0.9, though it becomes marginal with the increasing re-

call. However, OOD queries on RobustVamana are, on average, 3.9

times, 5.3 times, and 10.0 times slower than ID queries on Vamana

for the three datasets.

0.32 0.36 0.40 0.440

5

10

C
ou

nt
 (s

um
 =

 1
00

)

Text-to-Image
ID Query
OOD Query

0.20 0.25 0.30
Average distances between (ithNN, jthNN), i j among 100-NN

0

5

10

LAION
ID Query
OOD Query

0.12 0.15 0.18 0.21 0.240

10

20

WebVid
ID Query
OOD Query

Figure 5: For 104 queries’ 100 nearest neighbors, the average
distances between one vector and the other 99 vectors are
computed. Each count represents themean value of distances
within either OOD or ID query sets.

The results underscore the inefficiency in OOD-ANNS and high-

light the substantial potential to design a novel index for improve-

ment in performance concerning OOD workloads.

3 ANALYSIS OF OODWORKLOADS IN
CROSS-MODAL ANNS

In this section, we analyze out-of-distribution workloads to gain

insights into the reasons existing approaches are ineffective in

achieving high performance in cross-modal ANNS.

3.1 Underlying Key Differences
Through in-depth experiments and analysis, we find there are

two critical differences between out-of-distribution ANNS (OOD-

ANNS) and in-distribution ANNS (ID-ANNS).

OOD queries are distant from their nearest neighbors. In
Figure 4, we calculate the distances between queries and their k-

nearest neighbors (k=1), denoted as 𝛿 (𝑞, 𝑖𝑡ℎ𝑁𝑁). Let 𝑞 denote the
query, and 𝛿 (·, ·) represents the distance measurement function of

each dataset. As depicted in this figure, we observe that the dis-

tances fromOOD queries to their nearest neighbors are significantly

greater than those from in-distribution queries to the ground truth

of the same base data, i.e. 𝛿 (𝑞𝑜𝑜𝑑 , 𝑖𝑡ℎ𝑁𝑁𝑜𝑜𝑑) ≫ 𝛿 (𝑞𝑖𝑑 , 𝑖𝑡ℎ𝑁𝑁𝑖𝑑) in
the context of ANNS, with only a small intersection observed in

the histograms of Text-to-Image. Despite the presence of extreme

values, focusing on the median, OOD queries are 2.1 times, 5.3

times, and 11.3 times farther from their nearest neighbors than

ID queries.We also find that the deviated OOD query leads to the
k-nearest neighbors of an OOD query are distant from each
other in the high-dimensional space, as opposed to the neigh-

boring nature of the nearest neighbors of an ID query. To confirm

that the k-nearest neighbors of a given OOD query exhibit consider-

able spatial separation, in the scenario with k=100 for a given query

𝑞, we calculate the average distance between 𝑖𝑡ℎ𝑁𝑁 (𝑖 = 1...100)

and the other 99 nearest neighbors of 𝑞, resulting in 100 values that

represent the degree of separation between nearest neighbors of

𝑞. Subsequently, the values for 𝑖𝑡ℎ𝑁𝑁 across all queries are aver-

aged to obtain the mean, reflecting this general property. Figure 5

presents the phenomenon, distances in neighbors of OOD queries

are evidently larger than the neighbors of ID queries, for about 1.29

times, 1.45 times, and 2.11 times on the three datasets, respectively.

The finding suggests the presence of numerous noise data vectors

between the top-k answers to OOD queries.

Base Data
In-Distribution Query
2-NN to ID Query
Out-of-Distribution Query
2-NN to OOD Query

Figure 6: A three-dimensional toy example illustrating the
challenge of out-of-distribution nearest neighbors search.

To illustrate the counter-intuitive phenomenon, we present a toy

example in Figure 6. The base data, depicted as grey dots, fluctuates

in the vicinity of a 3D spherical surface. An ID query (lime diamond)

is situated in close proximity to the surface and is surrounded by

two closely located nearest neighbors (green points). Conversely,

an OOD query (red square) is positioned far away from the surface

of the ball, residing within a section of the half-sphere. The two

blue points, spatially distant from each other, sink deeper into the

sphere, becoming the closest neighbors for the OOD query.

Real-world examples from the LAION dataset are presented in

Figure 7. This diagram, derived from a subset of the LAION dataset

containing 500 data points, is generated by clustering 40 centers

from the K-means algorithm. Three examples from both ID queries

and OOD queries are sampled, and the five nearest neighbors to

each sampled query are computed. Principal Component Analysis

(PCA) [28] is applied on 100K points to reduce the dimensionality of

data to 2-dimension for visualization, and sampled 500 vectors are

used to calculate the Voronoi cells. The proximity of the five nearest

neighbors to ID queries is evident by the relatively close Voronoi

cells that contain them. Conversely, the five nearest neighbors to

OOD queries show significant dispersion across the diagram, with

the 5-NN of the OOD query residing in separated Voronoi cells.

3.2 Why Previous Methods Fail on OOD-ANNS
The main reason for the inefficiency of existing approaches is

that the OOD query breaks the assumptions held by conventional

ANNS approaches. The primary assumptions behind state-of-the-

art ANNS indexes include 1) queries exhibit proximity to vectors in

the base data, assuming a shared distribution for both queries and

base data [20, 44, 56], and 2) the k-nearest neighbors of a query are

close to each other in space R𝐷
, or a neighbor’s neighbor is likely

also to be a neighbor [16, 20, 44, 56, 57, 64].
Based on the assumptions, the graph-based methods generally

utilize beam search both for constructing an approximate k-nearest

neighbor graph and executing searches [19, 20, 43]. Thus, these

methods transform spatial proximity vectors into nodes that are

closely connected in a graph and further presume that beam search

can efficiently navigate into a sphere containing ground truths by

shrinking the search space at each step in greedy routing [20, 56, 57].

However, the search space expands significantly for OOD queries.

Considering a high-dimensional sphere denoted as 𝐵𝑘 (1𝑠𝑡𝑁𝑁, 𝑅)
centered at 1

𝑠𝑡𝑁𝑁 of a given query, with the radius 𝑅 defined as

the maximum of 𝛿 (𝑖𝑡ℎ𝑁𝑁, 𝑗𝑡ℎ𝑁𝑁) for a given query (𝑖 ≠ 𝑗). The

data nodes inside a sphere 𝐵𝑠 (𝑥) enclosing the currently visiting

Base Data 5-NN of ID Query 5-NN of OOD Query

Figure 7: Voronoi diagrams generated from 500 base data
vectors sampled from the LAION dataset.

node 𝑥 and 𝐵𝑘 constitute the recognized search space on the graph

[20, 56]. In Figure 5, it is observed that 𝑅𝑜𝑜𝑑 is significantly larger

than 𝑅𝑖𝑑 , ranging from 1.29 × to 2.11 ×. Expressing the volume of a

sphere as𝐶𝐵 × 𝑅𝐷 , where𝐶𝐵 is a constant for a fixed dimension 𝐷 ,

the ratio 𝑅𝐷
𝑜𝑜𝑑
/𝑅𝐷

𝑖𝑑
increases substantially in the high-dimensional

space, leading to significant enlargement of 𝐵𝑘
𝑜𝑜𝑑

compared to 𝐵𝑘
𝑖𝑑
.

Meanwhile, the search space 𝐵𝑠 (𝑥) undergoes a vast expansion and

encounters challenges in efficiently shrinking due to the inflation

of 𝐵𝑘 . Each of the separated nearest neighbors to an OOD query

becomes a local optimum trap in greedy routing, posing difficulties

for search convergence on existing graph indexes. This indicates

that a massive number of nodes are required to be visited for an

OOD query.

To illustrate the difficulty of convergence when searching an

OOD query, assuming a prevailing graph index is constructed based

on the data in Figure 7, where the close vectors tend to be connected

within the graph index. For an ID query, 𝐵𝑠 (𝑥) is easily reduced

along the search path due to the close proximity of the nearest

neighbors (blue hexagons).With each progression in greedy routing,

the search space contracts to a small sphere containing the nearest

neighbors to the ID query [20, 56, 57]. However, for an OOD query,

beam search struggles to converge in a single direction. The search

space cannot be recognized as shrunk even when routed to one

of the k-nearest neighbors (red diamonds). This is because the

ground truths for an OOD query are distributed within a huge

sphere compared to an ID query. To achieve a high recall, the

search process for OOD queries requires a larger beam width, an

extended search path, and increased computations and memory

accesses along the detour to escape from the local optimum and

find dispersed answers, leading to performance degradation.

The space partition-based methods such as IVF also suffer from

OOD queries. Clusters are obtained by running K-means algorithm

on the base data, where close points are assigned to the same cluster,

and the nearest neighbors for OOD queries can be distributed in sep-

arated far-away clusters. A cluster containing the closest centroid

to an OOD query may not contain ground truths since the close
neighbors recognized by an OOD query can be dispersed. In the

real-world example Figure 7, the obvious performance impact for

partition-based methods is the necessity to scan 5 clusters for OOD

queries to achieve recall@5=1.0, compared to only 2 clusters needed

for ID queries, resulting in about 2.5 times lower performance. This

negative impact becomes worse for million-scale datasets, as de-

scribed in Section 2.3.1.

……

……

Base Data

Embeddings

Query

Embeddings
G

F

E

D

C

B

A

𝐐𝟑

𝐐𝟏

𝐐𝟐

1𝑠𝑡NN to 𝑄

G

F

E

D

C

B

A

𝐐𝟑

𝐐𝟏

A

C

F

B

E

D

G

Query-Base

Bipartite Graph
Projected Graph RoarGraph

Neighborhood-Aware

Projection
Connectivity

Enhancement

(c) (d) (e)

𝐐𝟐

A

C

F

B

E

D

G

Link base nodes

to query nodes

Ready for Approximate Nearest

Neighbors Search

Preprocessing

Compute Ground Truth

(Nearest Neighbors)

Isolate

Base Node

(a)

Query to Base Link

(b)

Link query nodes to

𝑵𝒒 ground truths

(base nodes)

Figure 8: An overview of RoarGraph construction.

Erasing Query Node
Connecting the Closest Node

the closest
node to P

P P

Neighborhood-Aware
Projection

Project onto Base Nodes

Neighborhood-Aware

Bipartite Projection

Erasing Query Node

X

Y

Z

X

Y

Z
Undergoing Projection

𝛿(X, Y) < 𝛿(P, Y)
𝛿(X, Z) > 𝛿(P, Z)
𝛿(X, Y) < 𝛿(X, Z)

For P:
Z is harder to
reach than Y

For P:
Y is likely to
reach through X

Neighborhood-Aw
are

Projection
Project onto Base Nodes

Undergoing
Projection

Y

P
X

Z

X is closer to P
than Y and Z

Undergoing Projection

Y

P
X

Z

𝛿(X, Y) < 𝛿(P, Y)
𝛿(X, Z) > 𝛿(P, Z)

Seeking to Connect to Further
Nodes within the degree limit

Y

P
X

Z
Node P is Undergoing

Projection as pivot

Query Node Degree limit: 2Neighboring Nodes Identified by Query

(a) (b) (c)

Figure 9: An example ofNeighborhood-Aware Projection. Node
P, as the pivot, selects neighbors in the projection.

4 ROARGRAPH: A GRAPH INDEX FOR
EFFICIENT OOD-ANNS

With the revelation of inefficiencies in OOD-ANNS and insightful

analyses, we introduce RoarGraph, a graph index that is built under

the guidance of query distribution to provide efficient ANNS in

cross-modal retrieval.

4.1 Query Guided Index for ANNS: Challenges
As the particular characteristics of the OOD workloads break the

assumptions made in the design of existing ANNS approaches, we

propose to leverage the query distribution to guide the construction

of a graph index. In contrast to connecting base nodes with smaller

distances, we propose to transform spatially distant vectors,
perceived as close from queries’ perspectives, into closely
connected neighboring nodes within the graph index. Given
the goal, our approach utilizes queries to guide the RoarGraph

construction. For example, we use the embedded vectors of image

captions sampled from the original billion-scale LAION dataset to

build RoarGraph supporting text-image search for LAION.

To effectively utilize the query distribution in guiding the graph

construction, a bipartite graph emerges as a reasonable candidate

for modeling the relationship of closeness between embeddings

from two modalities. Widely utilized in recommendation systems

[17, 27, 76], a bipartite graph comprises two sets of nodes with

edges connecting nodes of each set, while nodes within the same

set remain unconnected.

In OOD-ANNS, base data and queries can be treated as two

distinct sets (base nodes and query nodes) within a bipartite graph.

Here, query nodes play a crucial role in serving as bridges to identify

and connect the nearest neighbors in base data to query vectors.

Besides, a greedy search on such a bipartite graph can be executed

by visiting neighbors’ neighbors. Given an online query, starting

from a base node, moving to its out-neighbors (queries) to check

out-neighbors (base nodes) of these queries, and then selecting a

closer base node to proceed. While it seems to be a natural structure

to model the closeness relationship of two distributions and support

search, the following challenges remain to build a competent graph

index for efficient ANNS.

(1) Effective establishment of edges between base nodes and

query nodes in the bipartite graph for modeling the neigh-

boring relationship between two modalities and enabling

practical greedy routing in ANNS is a non-trivial task.

Naively interconnecting nearest neighbors for both types

of nodes can only cause excessively high degrees, harming

search efficiency.

(2) Searching on a bipartite graph entails traversing through

query nodes, and maintaining high out-degrees (e.g., ≥ 100)

of query nodes is essential for base data coverage. This leads

to heavy overheads at each hop and an increased number

of visited nodes along the routing path, slowing the search.

Because each base node visiting involves fetching vector

data from the main memory to the CPU and calculating

its distance to the query, both of which are costly in the

node-visiting operation [10]. The more nodes are visited,

the more substantial memory access and computational

burden are imposed. Therefore, node degrees need to be

further reduced while preserving navigable paths for search

routing. Additionally, the memory consumption of a bipar-

tite graph is increased due to the inclusion of two node

types and edges.

(3) Limitations of reachability and connectivity among base

nodes arise when utilizing queries to guide the graph con-

struction. Solely depending on the out-neighbors of query

nodes in the bipartite graph to cover the entire base data

becomes challenging, resulting in isolated nodes or compo-

nents and impacting search efficiency.

Algorithm 1: RoarGraph Construction

Input: Base data set X, query set T , size of candidate set
for neighbor selection 𝐿, out-degree bound𝑀 ,

|T | × 𝑁𝑞 closest base nodes for each 𝑡 ∈ T
Output: RoarGraph Index

/* Construct bipartite graph */

1 Initialize the bipartite graph 𝐺𝑏𝑖 ← ∅
2 for 𝑡 ∈ T do
3 Set 𝑁𝑞 closest base nodes to 𝑡 as 𝑁𝑜𝑢𝑡 (𝑡)
4 𝑥 ← closest node to 𝑡 in 𝑁𝑜𝑢𝑡 (𝑡)
5 Add a direct edge from 𝑥 to 𝑡

6 𝑁𝑜𝑢𝑡 (𝑡) ← 𝑁𝑜𝑢𝑡 (𝑡) \ {𝑥}
7 end
/* Bipartite projection */

8 Initialize the projected graph 𝐺𝑝 𝑗 ← ∅
9 𝐺𝑝 𝑗 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑-𝐴𝑤𝑎𝑟𝑒𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝐺𝑏𝑖 , 𝑀, 𝐿)

10 𝐺 ′ ← 𝐺𝑝 𝑗

/* Connectivity enhancement */

11 for 𝑥 ∈ X do
12 𝐶 ← 𝐵𝑒𝑎𝑚𝑆𝑒𝑎𝑟𝑐ℎ(𝐺𝑝 𝑗 , 𝐿)
13 𝑁 ′𝑜𝑢𝑡 (𝑥) ← 𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑥,𝐶,𝑀)
14 ∀𝑝 ∈ 𝑁 ′𝑜𝑢𝑡 (𝑥), 𝑁 ′𝑜𝑢𝑡 (𝑝) ←

𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑝, 𝑁 ′𝑜𝑢𝑡 (𝑝) ∪ {𝑥}, 𝑀)
15 end
16 ∀𝑥 ∈ X, 𝑁𝑜𝑢𝑡_𝑝 𝑗 (𝑥) ← 𝑁 ′𝑜𝑢𝑡 (𝑥) ∪ 𝑁𝑜𝑢𝑡_𝑝 𝑗 (𝑥)
17 return 𝐺𝑝 𝑗

4.2 Design and Implementation
4.2.1 Overview. RoarGraph is proposed to address the aforemen-

tioned challenges and deliver superior performance in cross-modal

ANNS. The construction of RoarGraph can be outlined in three

steps, as presented in Figure 8(c-e).

In the initial step, we utilize the Query-Base Bipartite Graph
(Figure 8(c)) to unify queries (query nodes) and base data (base

nodes) within the same data structure. Prior to the bipartite graph,

ground truths of queries vectors are computed during preprocessing

(Figure 8(a)). After that, We establish edges from each query to its

𝑁𝑞 nearest neighbors and then edges from base nodes to queries are

added under a restrictive constraint that only the closest base node

of its in-neighbor can link to the query (blue arrow in Figure 8(c)).

This approach achieves two primary goals: 1) creating a closeness

mapping between queries and the base data and 2) reducing out-

degrees of base nodes to enhance search efficiency on the bipartite

graph, thereby addressing challenge 1.

Secondly, we propose a technique named Neighborhood-Aware
Projection to project the bipartite graph onto base data effectively.

Before projecting, a degree limitation is imposed on every node.

For each query node, we choose a connected base node as the pivot
to select neighbors from the out-neighbors of the corresponding

query node. Following the selection of the closest node to the pivot,
we select farther nodes than the selected ones iteratively. Through

Neighborhood-Aware Projection, we remove the query nodes but

keep the neighboring relationship obtained from the query distri-

bution in the projected graph (Figure 8(d)). It lowers the average

degree of the graph and makes the projected graph become naviga-

ble [20, 52]. Consequently, the number of visited nodes during the

search is reduced and thus resolves challenge 2.

In the final step, we apply Connectivity Enhancement to the pro-

jected graph to address the challenges of collecting isolated nodes,

handling separated graph components, and introducing more al-

ternative paths between nodes (solving challenge 3). We traverse

every node in the projected graph using beam search, incorporating

proximate nodes as diverse supplementary neighbors to each node

with an additional degree budget. This process enhances the con-

nectivity and reachability of the graph, completing the RoarGraph

index construction (Figure 8(e)).

Subsequently, we will provide a detailed introduction to the

design and each technical optimization.

4.2.2 Query-Base Bipartite Graph. We build the query-base bipar-

tite graph, which functions as a unified container, to establish a

neighboring map between the distributions of base data and queries.

Both queries (T) and base data (X) contribute to the formation of

the bipartite graph as two distinct node types: query nodes and

base nodes. Two kinds of directed edges need to be established: 1)

edges from base nodes to query nodes and 2) edges from query

nodes to base nodes.

First of all, to build the bipartite graph that can recognize the

proximity of the base data from the view of queries, we establish

edges from query nodes to base nodes. We add directed edges from

each query node to their 𝑁𝑞 nearest neighbors (base nodes) in the

base data. It is essential to maintain out-degrees of query nodes

(𝑁𝑞 = 3 in Figure 8(b)) at a larger value to 1) enlarge coverage

of base data and sufficiently model the neighboring relationship

within the base data by queries and 2) ensure the overlapping of

queries’ out-neighbors, making a majority of base nodes within the

bipartite graph reachable during search.

Second, to connect base nodes to query nodes, we tried a sim-

plistic strategy that turns existing directed edges into bidirectional

ones, assigning base nodes a degree𝑑 = 𝑁𝑞 . However, this approach

would require checking neighbors’ neighbors (𝑁 2

𝑞 nodes) at each

step of the search in the bipartite graph, as explained in Section 4.1,

which is inefficient. Instead, we propose maintaining 𝑁𝑞 links from

each query node to its nearest neighbors (see Algorithm 1, line 3)

and reducing 𝑑 , making the process more practical. Aligning with

our goal to minimize 𝑑 and adhere to the design goal of modeling

closeness relationship, we choose 𝑥 as the nearest base node among

𝑁𝑞 out-neighbors for each query node and add an edge from 𝑥

to its corresponding query node. This strategy reduces 𝑑 to 1 and

forms the bipartite graph. Concurrently, we remove the link from

the query node to 𝑥 , i.e., 𝑡𝑐 → 𝑥 in Algorithm 1, lines 4-6.

Figure 8(b-c) illustrates the query-base bipartite graph construc-

tion. In this example, with 𝑁𝑞 = 3, each query node in the built

bipartite graph has two out-neighbors, while the out-degrees of

the other base nodes are one. Figure 8(c), node C serves as 𝑥 in

Algorithm 1 for query node 𝑄1. Node G is isolated due to degree

limit and its insufficient closeness to query nodes, a phenomenon

commonly observed in real-world datasets [5, 14, 61].

Algorithm 2: Neighborhood-Aware Projection
Input: Bipartite graph𝐺𝑏𝑖 = (X,T , 𝐸), degree limitation𝑀 ,

candidate set size 𝐿, distance function 𝛿 (·, ·)
Output: Projected graph 𝐺 ′

1 𝐺 ′ ← ∅
2 for 𝑥 ∈ X and 𝑁𝑜𝑢𝑡 (𝑥) ≠ ∅ do
3 𝑆 ← 𝑁𝑜𝑢𝑡 (𝑥) in 𝐺𝑏𝑖

4 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅
5 ∀𝑠 ∈ 𝑆 , add 𝑁𝑜𝑢𝑡 (𝑠) in 𝐺𝑏𝑖 to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 until

|𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 | ≥ 𝐿
6 Sort 𝑐 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 in ascending order by 𝛿 (𝑥, 𝑐)
7 𝑁 ′𝑜𝑢𝑡 (𝑥) ← 𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑥,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑀)
8 for 𝑝 ∈ 𝑁 ′𝑜𝑢𝑡 (𝑥) do
9 𝑁 ′𝑜𝑢𝑡 (𝑝) ← 𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑝, 𝑁 ′𝑜𝑢𝑡 (𝑝) ∪ {𝑥}, 𝑀)

10 end
11 end
12 return 𝐺 ′ = (X, 𝐸′)

Algorithm 3: AcquireNeighbors
Input: Node 𝑥 , candidate set 𝐶 , degree limitation𝑀

Output: Out-neighbors of 𝑥
1 𝑅𝑒𝑠 ← ∅ // 𝑅𝑒𝑠 stores the neighbors for 𝑥

2 Add the closest node to 𝑥 in 𝐶 to 𝑅𝑒𝑠

3 for 𝑐 ∈ 𝐶 do
4 ∀𝑝 ∈ 𝑅𝑒𝑠 , add 𝑐 to 𝑅𝑒𝑠 if 𝛿 (𝑥, 𝑐) < 𝛿 (𝑐, 𝑝)
5 Break when |𝑅𝑒𝑠 | ≥ 𝑀
6 end
7 while ongoing projection and |𝑅𝑒𝑠 | < 𝑀 do
8 Add {𝑐 |𝑐 ∈ 𝐶 \ 𝑅𝑒𝑠} to 𝑅𝑒𝑠
9 end

10 return 𝑅𝑒𝑠

4.2.3 Neighborhood-Aware Projection. Despite the bipartite graph’s
high memory consumption, we find that searching on the query-

base bipartite graph is inefficient because routing through query

nodes needs a long search path, and there are too many nodes

visited along the search path (about 𝑁𝑞 base nodes at each hop).

To address the challenge, we propose to project the bipartite graph

onto the base nodes. Although a naive bipartite graph projection

approach that fully connects nodes sharing common neighbors [87]

could exclude query nodes, it is undesirable for a graph index due

to failing the objective of reducing degrees. Therefore, we propose

Neighborhood-Aware Projection to eliminate query nodes from the

bipartite graph while preserving the neighborhood relationships of

base nodes identified by the query nodes. In Figure 8(d), the graph

is projected, and the out-neighbors of query nodes are linked with

pivots C, D, and E. The edges𝐷 → 𝐵 and 𝐹 → 𝐷 are not established

due to degree bound.

We illustrate the projection with Figure 9. Let the query node

function as a bridge (green node), with the incoming neighbor

of a query node designated as the pivot (Node P) responsible for
selecting its neighbors during projection. Numerous proximal yet

irrelevant grey nodes are filtered in the current projection. For each

Average Degree: 1.87

(a) Before Connectivity Enhancement

Average Degree: 3.32

(b) After Connectivity Enhancement

Figure 10: An example illustrating connectivity enhancement
using 100 vectors of the base data from the LAION dataset.

pivot, out-neighbors of its bridges become potential neighbors of

the pivot (note that neighbors’ neighbors of base nodes are also
base nodes). These potential candidates, representing the nearest

neighbors to a query but distanced from each other (demonstrated

in Section 3), are placed into a 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 queue with a capacity

of 𝐿 and ranked by distances to the pivot (Algorithm 2 lines 5-6).

Next, the closest node in the queue is selected as an out-neighbor

for the pivot (Algorithm 3 line 2, Figure 9(b)), followed by acquiring

up to degree limit (𝑀) neighbors from the 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 queue for

each pivot. The essence of acquiring neighbors is that a candidate
is excluded from the pivot’s out-neighbor list if it is closer to any

existing neighbor than to the pivot (Algorithm 3 line 4). This strat-

egy includes more distant nodes among candidates with the goal

of establishing pathways for spatially scattered base nodes that

are in close proximity from the queries’ perspective. In Figure 9(c),

we perceive node 𝑌 is likely to be reached through node 𝑋 and 𝑍

is harder to find because the 𝑌 is relatively closer to 𝑋 , which is

already connected to the pivot P. So 𝑋 and 𝑍 become neighbors of

𝑃 within the degree limit.

To maximize the knowledge from query distribution, we will ful-

fill out-neighbors within the𝑀 degree limitation during projection

(Algorithm 3 line 8). For example, although node 𝑌 was previously

filtered, including it in the fulfill operation with degree limit = 3

ensures no degree budget is wasted. After acquiring neighbors for

each pivot, we also check if the pivot can establish reverse links to

its in-neighbors (Algorithm 2 line 9).

4.2.4 Connectivity Enhancement. The projected graph preserves

information from the query distribution. Nevertheless, it inade-

quately provides appropriate reachability and connectivity by only

relying on the coverage from the bipartite graph, which is crucial

for greedy routing [20, 57]. Illustrated in Figure 8(d), node G is

isolated, node B is unreachable, and the path from 𝐴→ 𝐷 is exces-

sively long. This challenge is further demonstrated in a real-world

dataset instance depicted in Figure 10(a), where 7% of nodes are

isolated, and 20% of nodes have degrees less than or equal to one.

This implies that a search process cannot access these 7 nodes even

if they are the ground truths, and it may cause a long routing path

due to the vulnerable connectivity.

To overcome this limitation and enhance navigability, we apply

Connectivity Enhancements to𝐺 ′, a duplicate of the projected graph
(Algorithm 1 line 10), and then merge edges in 𝐺 ′ and 𝐺𝑝 𝑗 in the

final step. Starting from the medoid of the base data, we treat base

vectors as queries and conduct a beam search for each of them,

with 𝐿 as the queue capacity. After converging, it returns 𝐿 visited

nodes as results. Every base node gain supplementary neighbors

from their individual results through Algorithm 3 and also attempt

to add reverse edges (Algorithm 1 line 12-14). Importantly, these

supplementary neighbors aid in routing for OOD queries among

distant nodes since these edges are established by traversing paths

formed from the projected graph.

Figure 8(c) shows that blue edges include node G into the graph,

make node B reachable, and shorten paths between nodes (e.g.,

A→D reduced from 4 to 3, B→A reduced from 4 to 2). Figure 10(b)

shows the effects of connectivity enhancement, which recognized

good property to gain navigability for greedy searching, with nodes

becoming reachable and links connected for reducing detours [20,

52]. Note that the edge direction in this figure is omitted, and the lay-

out of nodes in this figure does not accurately reflect real geometric

relationships; it solely illustrates the graph structure.

4.3 Search on RoarGraph
Greedy routing stands as the conventional search methodology

for graph-based ANNS. RoarGraph, as a general graph index, also

employs beam search as the search algorithm. We need to highlight

that existing optimizations and compression techniques for ANN

indexes [1, 9, 22, 36, 36] are orthogonal with RoarGraph, so Roar-

Graph can directly adopt the optimizations to enhance performance

if needed.

In the search process, we utilize the parameter 𝐿 to control the

priority queue length in beam search, with the medoid of the base

data as the initial node. At each step, the beam search selects the

node 𝑣 closest to the query from the queue and computes the dis-

tances between 𝑣 ’s out-neighbors and the query. Then, nodes are

added to the queue if they are closer to the query or if the queue

is not filled. The search terminates when no closer nodes can be

added to the queue.

5 EXPERIMENT
In this section, we introduce experimental settings, conduct eval-

uations to compare state-of-the-art graph indexes with RoarGraph,

and present ablation studies.

5.1 Experimental Setup
Datasets. Three modern large-scale cross-modal datasets shown

in Table 1 are used for evaluation. Text-to-Image [14] is a popular

benchmark with query distribution that differs from the base data,

consisting of image and textual query vectors produced by the

Se-ResNext-101 model [29] a variant of the DSSM model [30]. The

evaluation of similarity relies on the inner product, termed MIPS

(maximum inner product search), with a larger value indicating a

closer relationship. LAION [58] contains millions of Image-Alt-Text

pairs used as vector search benchmarks in [70], the embeddings

of image and text are produced by an advanced model, CLIP-ViT-

B/32 [59]. The distance measurement between texts and images is

based on cosine distance. WebVid [5] comprises caption and video

pairs that are sourced from stock footage sites, with similarity

determined by cosine distance. For WebVid, embeddings used in

this paper are frame embeddings provided by [39], which are also

encoded by CLIP-ViT-B/32. The official 10K vectors from [14] are

used for querying on Text-to-Image, and two sets of 10K textual

vectors sampled from original datasets are used for evaluating

LAION and WebVid. In addition, a substantial amount of textual

vectors, non-intersecting with queries for evaluation, are provided

for index construction within the respective datasets.

Algorithms and Parameter Setting.Graph-based methods are

selected as baselines in the evaluations due to their superior perfor-

mances [44]. HNSW [52] and NSG [20] are widely acknowledged

for their search efficiency. The recent 𝜏-MNG [56] establishes addi-

tional connections among close nodes, achieving a state-of-the-art

performance of recall@100 in ID-ANNS. RobustVamana [34] intro-

duced in Section 3 is the only index specifically designed for OOD

queries. We set the best parameters for all algorithms by following

the official instructions and empirical experiments.

• HNSW [52]: After varying 𝑀 from 8 to 48, 𝑀 = 32 is set to

control the out-degrees of nodes, and 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 500.

• NSG [56]: We set 𝑅 = 64 for degree limitation and 𝐶 = 𝐿 = 500

to provide good quality of neighbors.

• 𝜏-MNG [56]: 𝜏-MNG shares the internal parameters 𝑅,𝐶, 𝐿 with

NSG, set to 64, 500, 500. The parameter 𝜏 is fine-tuned from 0.01

to 0.3, as suggested in its paper, and for all datasets, 𝜏 is set to

0.01 to achieve the best performance.

• RobustVamana [34]: We set 𝑅 = 64, 𝐿 = 500, and 𝛼 = 1.0 after

varying it from 1.0 to 1.2. Queries are used in the same quantity as

base data for index construction to achieve optimal performance.

• RoarGraph (proposed): 𝑁𝑞 = 100 is set to control bipartite graph

connections,𝑀 = 35 and 𝐿 = 500 is set during Neighborhood-A
ware Projection and Connectivity Enhancement. Similar to Robust-

Vamana, queries with the same scale as the base data are used to

build indexes.

Official codes for all algorithms are employed to build indexes

and perform searches. RoarGraph is implemented in C++, and all

source codes were compiled using GCC 10.5.0 with the -O3 opti-

mization.

Performance Metrics. Following previous works [19, 20, 50,

52, 75], we use recall@k (defined in Section 2.1.1), to measure the

accuracy of retrieval, and the average recall@k of all queries is re-

ported in evaluations. We adopt queries per second (QPS), which is

also equivalent to latency in the single-thread scenario, to measure

the search speed, following [19, 20, 22, 52, 56, 75]. To thoroughly

validate the efficacy of each method across diverse retrieval sce-

narios, we configure 𝑘 for recall@k as 1, 10, and 100 during the

evaluation.

Evaluations were conducted on a machine with dual Intel(R)

Xeon(R) Gold 5318Y CPU and 512 GB ofmemory, running in Ubuntu

20.04. To ensure a fair comparison, all algorithms were run in single-

thread mode since not all methods support multi-threading in their

official implementations.

5.2 Search Speed vs. Recall
Results for QPS vs. Recall are reported in Figure 11. Traditional

graph-based methods that are designed for ID search, including

HNSW, NSG, and 𝜏-MNG, work poorly for OOD workloads in

cross-modal ANNS. RobustVamana, as a specific solution for OOD

tasks, is faster than the three ID indexes on LAION and WebVid for

0.80 0.85 0.90 0.95 1.00
recall@1

0

2000

4000

6000

Q
P

S

Text-to-Image-10M

0.70 0.80 0.90 1.00
recall@1

0

2000

4000

6000
LAION-10M

0.60 0.70 0.80 0.90 1.00
recall@1

0

2000

4000

6000

WebVid-2.5M

0.85 0.90 0.95 1.00
recall@10

0

2000

4000

Q
P

S

Text-to-Image-10M

0.70 0.80 0.90 1.00
recall@10

0

1000

2000

3000

4000

LAION-10M

0.60 0.70 0.80 0.90 1.00
recall@10

0

2000

4000

6000

WebVid-2.5M

0.90 0.95 1.00
recall@100

0

500

1000

1500

Q
P

S

Text-to-Image-10M

0.85 0.90 0.95 1.00
recall@100

0

500

1000

LAION-10M

0.80 0.90 1.00
recall@100

0

500

1000

1500
WebVid-2.5M

0.97 1.0

500

1000

0.96 1.0

750
450

0.97 1.0

100

200

HNSW NSG -MNG RobustVamana RoarGraph

Figure 11: Search performance on three datasets. The top
right is better.

recall@1 and recall@10. The proposed method RoarGraph consis-

tently outperforms all state-of-the-art graph indexes among three

cross-modal datasets when varying𝑘 in recall@k from 1 to 100 in all

recall regimes. Specifically, for recall@10≥0.9, RoarGraph achieves

speed-ups of 1.84×, 2.58×, and 3.56× than the most efficient graph

index on Text-to-Image, LAION, and WebVid, respectively. Simi-

lar improvements are observed for 𝑘 = 1, 100. Besides, RoarGraph

demonstrates the capability to attain a recall@100 ≥ 0.99 or even

higher on LAION and WebVid, a level that none of the other graph

indexes can practically achieve.

There is an observation that verifies our motivation and anal-

yses in Section 3. For the three conventional graph algorithms,

HNSW and NSG have similar performance, while the more recent

index 𝜏-MNG [56] shows a lower performance among cross-modal

datasets, especially for 𝑘 = 1 and 10. This is mainly because 𝜏-MNG

actually adds more edges to connect near neighbors around each

node upon NSG. However, according to our insights, the nearest

neighbors of an OOD query are not always clustered as ID queries.

Ground truths may be widely distributed, so the close nodes con-

nected contribute little to search efficiency but exacerbate the com-

putation burden.

5.3 Routing Hops vs. Recall
The number of hops required to achieve a target recall serves

as an alternative indicator of the search efficiency in navigating

the graph-based index. Each hop during the search involves a cer-

tain computational cost for checking its neighbors in the graph.

A lower number of hops typically signifies a shorter search path

when searching on the graph [35, 44]. In Figure 12, we assess the

hops incurred during beam search on three representative graph

indexes, HNSW, RobustVamana, and RoarGraph. We observe that

RoarGraph involves much less hops during the search across three

datasets compared to HNSW and RobustVamana, reducing the hops

(i.e., length of search path) to 44.1%, 21.0%, and 10.9% compared to

0.70 0.80 0.90 1.00
recall@10

0

100

200

H
op

s

Text-to-Image-10M
HNSW
RobustVamana
RoarGraph

0.80 0.90 1.00
recall@10

0

200

400

LAION-10M
HNSW
RobustVamana
RoarGraph

0.70 0.80 0.90 1.00
recall@10

0

200

400

600
WebVid-2.5M
HNSW
RobustVamana
RoarGraph

Figure 12: Evaluation of hops vs. recall.

0.7 0.8 0.9 1.0
recall@10

0

2000

4000

6000

Q
P

S

Text-to-Image-10M

0.7 0.8 0.9 1.0
recall@10

0

2000

4000

6000
LAION-10M

0.7 0.8 0.9 1.0
recall@10

0

2000

4000

6000

WebVid-2.5M

0.90 0.95
1000

2000

0.90 0.95
1500
2000
2500

Query-Base Bipartite Graph Projected Graph RoarGraph

Figure 13: Ablation comparisons.

HNSW, and 53.1%, 54.7%, and 41.1% compared to RobustVamana

when recall@10 ≥ 0.90. The ratio diminishes with the increasing

recall@k, underscoring that RoarGraph established effective edges

for navigating cross-modal queries.

5.4 Ablation Study
We perform a comparative evaluation to validate the effective-

ness of techniques used in building RoarGraph. The Query-Base
Bipartite Graph and the Projected Graph created before deriving

RoarGraph are involved, denoted as 𝐺𝑏𝑖 and 𝐺𝑝 𝑗 , both of which

are capable of querying. We use QPS-recall in evaluations instead

of reporting hops-recall. This is because, unlike the comparison

of HNSW and RoarGraph that have a similar degree bound, the

bipartite graph necessarily maintains a high out-degrees of query

nodes. It incurs more nodes to visit at each hop than𝐺𝑝 𝑗 and Roar-

Graph, as a result, the reduction in hop costs can not match the

QPS improvement in the comparison of 𝐺𝑏𝑖 ,𝐺𝑝 𝑗 , and RoarGraph.

For instance, on the LAION dataset, queries traversing hops ≥100
visited 10507, 2426, and 3494 nodes, with recall@10 = 0.918, 0.906,

and 0.937 for the Query-Base Bipartite Graph, Projected Graph, and

RoarGraph, respectively. These statistics demonstrate that 𝐺𝑏𝑖 re-

quires visiting more nodes per hop. It also reveals that the Projected

Graph benefits from the Neighborhood-Aware Projection technique,

which effectively decreases node degrees and shows an ability to

navigate greedy routing for OOD queries, with only visiting 2426

nodes to achieve recall@10=0.9 in about 100 hops. The Connec-
tivity Enhancement provides supplementary edges with increased

degrees, improves reachability and connectivity, and we believe it

introduces more alternative pathways for search routing, thereby

shortening the search path and enhancing search accuracy in a

high recall regime.

The results of performance evaluation in Figure 13 show that the

bipartite graph exhibits the lowest performance across the three

datasets as analyzed, whereas the Projected Graph achievesmultiple

times acceleration in all recall regimes throughNeighborhood-Aware
Projection. We observe that RoarGraph performs consistently 1.49 ×
faster than the Projected Graph on Text-to-Image, but the Projected

Graph demonstrates better efficiency when recall@10 ≤ 0.86 on

LAION and WebVid datasets. This observation can be attributed to

the increased node degrees after Connectivity Enhancement. The
supplementary edges introduce additional computation overhead

for low recall rates, however, they prove instrumental in finding

effective paths for convergence at a high recall level.

5.5 Effects of Query Set Size for Indexing
To assess RoarGraph’s sensitivity to the number of queries (|T |)

used in construction, we evaluate QPS-recall tradeoff for different

query set sizes by varying the coefficient 𝑝 in |T | = 𝑝 × |X| during
index construction, the query set is denoted as T𝑝 .

Figure 14 displays how search speed correlates with recall rates

across different query set sizes during the index construction pro-

cess, with evaluations conducted at 𝑝 = 10%, 50%, and 100% of

the base data size. It reveals that employing T0.5 in RoarGraph

construction achieves performance comparable to that built with

T1 for both recall@10 and recall@100 metrics in all datasets. De-

spite a performance decline with reduced query set sizes, indexes

constructed from T0.1 are only 11.3%, 12.9%, and 29.2% slower in

reaching recall@100 ≥ 0.95 compared to those constructed with

T0.5. Importantly, the results highlight that RoarGraph maintains

superior efficiency, outperforming HNSW by 1.44−4.38× in achiev-

ing recall@10 = 0.9 across three datasets, even when only T0.1 are
used for building RoarGraph.

5.6 Robustness to In-Distribution Query
In addition to exhibiting superior performance in OOD-ANNS, it

is essential that an ANNS index effectively handles in-distribution

(ID) queries so that one index can serve different query types in

the application. In this experiment, we undertake a comparative

analysis utilizing ID queries as the workload for single-modal ANNS

evaluation. For each of the three datasets, ID queries comprise 10K

visual embeddings sampled from the original large-scale dataset.

As shown in Figure 15, RoarGraph demonstrates robustness

to ID workloads, offering competitive efficiency against HNSW

across three datasets. RobustVamana, although generally slower

than RoarGraph and HNSW, attains recall@10 ≥ 0.995 on LAION,

where both HNSW and RoarGraph fail to reach.

5.7 Index Size and Construction Overhead
Figure 16 compares the index size and index build overheads.

The final index sizes reflect the memory consumption in the search

phase. As shown in the figure, RoarGraph indexes consume 9.04

GB, 20.64 GB, and 5.07 GB for Text-to-Image, LAION, WebVid,

respectively – only slightly larger than NSG. The result shows

that RoarGraph maintains a memory-friendly small index size but

provides significant improvements in cross-modal ANNS.

In the evaluation of index construction overheads, we use 64

threads for all graph indexes. We compared RoarGraph’s construc-

tion using two query vector set sizes: 100% and 10% (T1 and T0.1),
relative to the base data volume. HNSW emerged as the most time-

efficient index to build across all datasets. Both NSG and 𝜏-𝑀𝑁𝐺 re-

quire to build an approximate nearest neighbor graph that increases

the construction time. Specifically, utilizing T1 in RoarGraph’s con-

struction took 1.12 to 3.02 times longer than RobustVamana, 1.7 to

7.5 times longer than NSG, and 4.8 to 17.5 times longer than HNSW.

0.80 0.90 1.00
recall@10

0

2000

4000

Q
P

S

Text-to-Image-10M

100%
50%
10%
HNSW

0.70 0.80 0.90 1.00
recall@10

0

1000

2000

3000

Laion-10M

100%
50%
10%
HNSW

0.60 0.80 1.00
recall@10

0

2000

4000
Webvid-2.5M

100%
50%
10%
HNSW

0.90 0.95 1.00
recall@100

0

500

1000

1500

Q
P

S

Text-to-Image-10M

100%
50%
10%
HNSW

0.80 0.90 1.00
recall@100

0

500

1000

Laion-10M

100%
50%
10%
HNSW

0.70 0.80 0.90 1.00
recall@100

0

500

1000

Webvid-2.5M

100%
50%
10%
HNSW

Figure 14: Performance comparison across different query
set sizes for index construction.

0.90 1.00
recall@10

0

5000

10000

Q
P

S

Text-to-Image-10M
HNSW
RobustVamana
RoarGraph

0.80 0.90 1.00
recall@10

0

2000

4000

6000

LAION-10M
HNSW
RobustVamana
RoarGraph

0.96 0.98 1.00
recall@10

0

2000

4000

6000

WebVid-2.5M
HNSW
RobustVamana
RoarGraph

Figure 15: Evaluation on in-distribution workloads.

103

104

In
de

x
Co

ns
tru

ct
io

n
Ti

m
e

(s
)

HNSW
NSG
-MNG

RobustVamana
RoarGraph- 0.1

RoarGraph- 1

Text-to-Image-10M LAION-10M WebVid-2.5M

20

40

In
de

x
Si

ze
 (G

B) Index Size

Figure 16: Comparison of index sizes and construction over-
heads. Bars stand for the time costs.

However, RoarGraph is 21% faster compared to 𝜏-MNG on WebVid.

The preprocessing phase in RoarGraph, which computes ground

truths of query vectors, accounts for 87% to 93% of the total con-

struction time with T1. When constructed with T0.1, RoarGraph’s
construction time is significantly reduced, taking only 16% to 54%

as long as 𝜏-MNG, and 35% to 98% as long as NSG. While construct-

ing RoarGraph with T0.1 is still twice as long to construct on the

Text-to-Image and LAION datasets, it matches HNSW’s build time

on WebVid. In this case, the preprocessing phase occupies 67%, 73%,

and 43% of the entire index construction time on Text-to-Image,

LAION, and WebVid, respectively.

Considering RoarGraph constructed with T0.1 still offers notable
search performance improvement (see Section 5.5) while signifi-

cantly reducing construction time, this allows applications to make

tradeoffs between construction costs and search efficiency, making

it a flexible and practical choice for different scenarios.

6 DISCUSSION
RoarGraph construction in real-world scenarios. The key

idea of RoarGraph is to effectively utilize cross-modal query vectors

to build a graph index that provides significant improvements in

0.8 0.9 1.0
recall@10

2000

4000

Q
P

S

Text-to-Image-10M

0.8 0.9 1.0
recall@10

1000

2000

3000

LAION-10M

0.8 0.9 1.0
recall@10

2000

4000

WebVid-2.5M

0.94 0.95 0.96
1300
1600

0.94 0.95 0.96
1000

1200

0.94 0.95 0.96
1200

1400

insert-1% insert-5% insert-10% insert-20% rebuild

Figure 17: Impacts from different amounts of insertions.

cross-modal vector search performance, and it can be adopted in

the following real-world scenarios.

Vast amounts of historical queries are available in large-scale

embedding-based information retrieval and recommendation sys-

tems, as evidenced by Bing [71], YouTube [12], Amazon [8, 40, 82],

TikTok [23, 48], Pinterest [27], etc. Therefore, as a workload-driven

cross-modal ANNS index incorporating knowledge from query vec-

tors, RoarGraph can effectively utilize the historical query vectors

to build the index. Besides, such applications can also use their mul-

timodal deep-learning models, which produce embeddings for both

base data and queries, to encode queries from large-scale (up to

billions) public real-world datasets [5, 53, 60, 61] if supplementary

data is needed. Under situations with a limited number of queries,

RoarGraph can still yield notable performance improvements (as

described in Section 5.5).

Update in RoarGraph. The query-base bipartite graph dur-

ing index construction is saved to facilitate offline insertion for

RoarGraph. The insertion begins by considering the incoming base

data vector 𝑣 as a query to search its approximate nearest neighbor

within RoarGraph, and only the base node connected by at least one

query node 𝑞 will be returned as a result. In cases where multiple

query nodes are eligible, the nearest 𝑞 to 𝑣 is selected. The next step

is to leverage the out-neighbors of 𝑞, denoted as 𝑁𝑜𝑢𝑡 (𝑞), to inte-
grate 𝑣 and 𝑞 as a sub-bipartite graph (𝑁𝑜𝑢𝑡 (𝑞) ∪ 𝑞 ∪ 𝑣). Following
this, Neighborhood-Aware Projection is applied on the sub-bipartite

graph, with 𝑣 serving as pivot. This produces a projected graph com-

prising the new vector 𝑣 , and RoarGraph merges newly established

edges associated with 𝑣 to complete the insertion. Additionally, the

bipartite graph is updated to include 𝑣 among the out-neighbors of

𝑞, paving the way for subsequent insertion. The insertion strategy

is efficient because we avoid the costly process of computing exact

distances between incoming data and query nodes in the bipartite

graph. It only takes 583 seconds to insert two million base data

vectors from the LAION dataset into a RoarGraph with 64 threads.

This time consumption constitutes only 7% of the time required to

rebuild the index.

We evaluated indexes after different numbers of insertions and

compared them to the reconstructed index. The volumes of the in-

serted data are proportional to the dataset scale, ranging from 1-20%.

Figure 17 shows that RoarGraph indexes updated through this inser-

tion strategy are competitive to those rebuilt for including new data.

After handling the insertion of two million vectors into RoarGraphs

constructed from Text-to-Image and LAION datasets, RoarGraph

shows about 13% and 10% performance deterioration relative to the

reconstructed index when recall@10=0.95. On WebVid-2.5M, a 17%

QPS reduction relative to the rebuilt index for recall@10=0.95 is

observed after inserting 0.5 million vectors.

For deletions, RoarGraph adopts tombstones to mark deleted

points [56, 79]. Deleted points participate in routing but are ex-

cluded from results.

The current insertion approach faces challenges when handling

continuous massive insertions, as the subsequent bipartite graph

approximates closeness relationships less precisely than the recon-

structed index. Besides, tombstones require periodic reconstruction

as updates accumulate [56]. These challenges indicate that both

insertion and deletion methods need explorations in future work.

7 RELATEDWORK
The literature on ANNS is extensive. Despite the approaches

introduced above, there are studies that utilize queries to improve

the performance of graph-based ANNS. In the work of [43], it for-

mulates the termination condition of beam search as a binary clas-

sification task, then utilizes queries to train a classification model

to determine when to terminate the search. Introducing graph con-

volutional networks (GCN) into ANNS, [6] aims to discover an

optimal search routing path through learning from extensive train-

ing queries. The study conducted by [18] combines reinforcement

learning with GCN to guide the search routing on the proximity

graph. To learn from query distribution and prune edges within

a graph index, GraSP [84] employs a probabilistic model and sub-

graph sampling to learn the importance score of edges and prune

the graph. However, learning-based methods require costly training

and tuning phases during index construction.

Using neural networks for similarity ranking in recommenda-

tion systems, [69] utilizes a bipartite graph to connect users and

items and execute the search on the bipartite graph. It claims that

there is no defined similarity metric within item vectors or user

vectors, so edges should be established only between the two types

of nodes. This scenario differs from cross-modal retrieval, where

the similarity between different base vectors or query vectors can

also be evaluated.

ScaNN [26] uses vector quantization (VQ) [25] for partition and

Product Quantization (PQ) [36] for compression with anisotropic

loss. It applies optimizations, such as scalar quantization, rescoring,

and SIMD in-register PQ lookup [1] for fast search.

Several theoretical analyses of graph-based methods in ANNS

have been conducted [19, 20, 56, 57, 64]. The time complexity of the

search process for the graph index, as derived from these studies, is

based on the assumption that the query follows the same distribu-

tion as the base data. However, these proofs face challenges when

applied to cross-modal ANNS.

8 CONCLUSION
As an important workload from cross-modal data retrieval, we

perform an insightful analysis of OOD queries in this paper. We

find that the k-nearest neighbors of an OOD query are distant

from each other in the high-dimensional embedding space. This is

the root cause of the inefficiency of existing ANNS approaches, as

this characteristic breaks the assumptions of their designs. We pro-

pose RoarGraph, an efficient graph index for OOD-ANNS, which

is constructed under the guidance of query distribution. Exten-

sive experimental results demonstrate the superior performance of

RoarGraph on cross-modal vector search.

REFERENCES
[1] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Accel-

erated Nearest Neighbor Search with Quick ADC. In Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval (Bucharest, Romania)

(ICMR ’17). Association for Computing Machinery, New York, NY, USA, 159–166.

https://doi.org/10.1145/3078971.3078992

[2] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based

Language Models and Applications. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts),
Yun-Nung (Vivian) Chen, Margot Margot, and Siva Reddy (Eds.). Association for

Computational Linguistics, Toronto, Canada, 41–46. https://doi.org/10.18653/

v1/2023.acl-tutorials.6

[3] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.

[4] Artem Babenko and Victor S. Lempitsky. 2014. Additive Quantization for Extreme

Vector Compression. In 2014 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014. IEEE Computer

Society, 931–938. https://doi.org/10.1109/CVPR.2014.124

[5] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen

in Time: A Joint Video and Image Encoder for End-to-End Retrieval. In IEEE
International Conference on Computer Vision.

[6] Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko.

2019. Learning to Route in Similarity Graphs. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA (Proceedings of Machine Learning Research), Kamalika

Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 475–484. http:

//proceedings.mlr.press/v97/baranchuk19a.html

[7] Yue Cao,Mingsheng Long, JianminWang, and Philip S Yu. 2016. Correlation hash-

ing network for efficient cross-modal retrieval. arXiv preprint arXiv:1602.06697
(2016).

[8] Wei-Cheng Chang, Jyun-Yu Jiang, Jiong Zhang, Mutasem Al-Darabsah,

Choon Hui Teo, Cho-Jui Hsieh, Hsiang-Fu Yu, and S. V. N. Vishwanathan. 2024.

PEFA: ParamEter-Free Adapters for large-scale embedding-based retrieval mod-

els. InWSDM 2024. https://www.amazon.science/publications/pefa-parameter-

free-adapters-for-large-scale-embedding-based-retrieval-models

[9] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon,

and Cho-Jui Hsieh. 2023. FINGER: Fast Inference for Graph-based Approximate

Nearest Neighbor Search. In Proceedings of the ACM Web Conference 2023. 3225–
3235.

[10] Benjamin Coleman, Santiago Segarra, Alexander J Smola, and Anshumali Shri-

vastava. 2022. Graph Reordering for Cache-Efficient Near Neighbor Search.

Advances in Neural Information Processing Systems 35 (2022), 38488–38500.
[11] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen,

Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 191–198. https:

//doi.org/10.1145/2959100.2959190

[12] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[13] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.

Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings
of the 20th ACM Symposium on Computational Geometry, Brooklyn, New York,
USA, June 8-11, 2004, Jack Snoeyink and Jean-Daniel Boissonnat (Eds.). ACM,

253–262. https://doi.org/10.1145/997817.997857

[14] Artem Babenko Dmitry Baranchuk. 2021. Text-to-Image dataset for billion-scale

similarity search. Retrieved August 23, 2023 from https://research.yandex.com/

datasets/text-to-image-dataset-for-billion-scale-similarity-search

[15] Mohamad Dolatshah, Ali Hadian, and Behrouz Minaei-Bidgoli. 2015. Ball*-tree:

Efficient spatial indexing for constrained nearest-neighbor search in metric

spaces. CoRR abs/1511.00628 (2015). arXiv:1511.00628 http://arxiv.org/abs/1511.

00628

[16] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph

construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[17] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.

Graph trend filtering networks for recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 112–121.

[18] Chao Feng, Defu Lian, Xiting Wang, Zheng Liu, Xing Xie, and Enhong Chen.

2023. Reinforcement routing on proximity graph for efficient recommendation.

ACM Transactions on Information Systems 41, 1 (2023), 1–27.
[19] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similarity

SearchWith Satellite System Graph: Efficiency, Scalability, and Unindexed Query

Compatibility. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8 (2022), 4139–4150.

https://doi.org/10.1109/TPAMI.2021.3067706

[20] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474. https://doi.org/10.14778/3303753.3303754

[21] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive

hashing scheme based on dynamic collision counting. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.

Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 541–552. https://doi.

org/10.1145/2213836.2213898

[22] Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Nearest

Neighbor Search: with Reliable and Efficient Distance Comparison Operations.

Proc. ACMManag. Data 1, 2 (2023), 137:1–137:27. https://doi.org/10.1145/3589282
[23] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun, Kai Jia, Wenzhi Xiao,

Ruofan Ding, Xingyan Bin, Hui Yang, and Xiaobing Liu. 2020. Deep retrieval:

Learning a retrievable structure for large-scale recommendations. arXiv preprint
arXiv:2007.07203 (2020).

[24] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product

Quantization for Approximate Nearest Neighbor Search. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013.
IEEE Computer Society, 2946–2953. https://doi.org/10.1109/CVPR.2013.379

[25] Robert Gray. 1984. Vector quantization. IEEE Assp Magazine 1, 2 (1984), 4–29.
[26] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic

vector quantization. In International Conference on Machine Learning. PMLR,

3887–3896.

[27] Saket Gurukar, Nikil Pancha, Andrew Zhai, Eric Kim, Samson Hu, Srinivasan

Parthasarathy, Charles Rosenberg, and Jure Leskovec. 2022. MultiBiSage: A Web-

Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest.

arXiv preprint arXiv:2205.10666 (2022).
[28] HaroldHotelling. 1933. Analysis of a complex of statistical variables into principal

components. Journal of educational psychology 24, 6 (1933), 417.

[29] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
7132–7141.

[30] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. 2333–2338.

[31] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor

Search. Proc. VLDB Endow. 9, 1 (2015), 1–12. https://doi.org/10.14778/2850469.

2850470

[32] Siteng Huang, Biao Gong, Yulin Pan, Jianwen Jiang, Yiliang Lv, Yuyuan Li,

and Donglin Wang. 2023. VoP: Text-Video Co-Operative Prompt Tuning for

Cross-Modal Retrieval. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 6565–6574.
https://doi.org/10.1109/CVPR52729.2023.00635

[33] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
Jeffrey Scott Vitter (Ed.). ACM, 604–613. https://doi.org/10.1145/276698.276876

[34] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan

Simhadri, and Sheshansh Agrawal. 2022. OOD-DiskANN: Efficient and Scal-

able Graph ANNS for Out-of-Distribution Queries. CoRR abs/2211.12850 (2022).

https://doi.org/10.48550/arXiv.2211.12850 arXiv:2211.12850

[35] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar

Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point

nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[36] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[37] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.
[38] Leonid V Kantorovich. 1960. Mathematical methods of organizing and planning

production. Management science 6, 4 (1960), 366–422.
[39] Maciej Kilian. 2022. clip-video-encode. Retrieved October 10, 2023 from https:

//github.com/iejMac/clip-video-encode

[40] Soomin Lee, Eilon Sheetrit, Omar Alonso, and Avihai Mejer. 2024. Prod-

uct query recommendation for enriching suggested Q&As. In CHIIR 2024.
https://www.amazon.science/publications/product-query-recommendation-

for-enriching-suggested-q-as

[41] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and

Jingjing Liu. 2021. Less is more: Clipbert for video-and-language learning via

sparse sampling. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 7331–7341.

[42] Patrick S. H. Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich

Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021. PAQ:

https://doi.org/10.1145/3078971.3078992
https://doi.org/10.18653/v1/2023.acl-tutorials.6
https://doi.org/10.18653/v1/2023.acl-tutorials.6
https://doi.org/10.1109/CVPR.2014.124
http://proceedings.mlr.press/v97/baranchuk19a.html
http://proceedings.mlr.press/v97/baranchuk19a.html
https://www.amazon.science/publications/pefa-parameter-free-adapters-for-large-scale-embedding-based-retrieval-models
https://www.amazon.science/publications/pefa-parameter-free-adapters-for-large-scale-embedding-based-retrieval-models
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/997817.997857
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
https://research.yandex.com/datasets/text-to-image-dataset-for-billion-scale-similarity-search
http://arxiv.org/abs/1511.00628
http://arxiv.org/abs/1511.00628
https://doi.org/10.1109/TPAMI.2021.3067706
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1145/2213836.2213898
https://doi.org/10.1145/2213836.2213898
https://doi.org/10.1145/3589282
https://doi.org/10.1109/CVPR.2013.379
https://doi.org/10.14778/2850469.2850470
https://doi.org/10.14778/2850469.2850470
https://doi.org/10.1109/CVPR52729.2023.00635
https://doi.org/10.1145/276698.276876
https://doi.org/10.48550/arXiv.2211.12850
https://github.com/iejMac/clip-video-encode
https://github.com/iejMac/clip-video-encode
https://www.amazon.science/publications/product-query-recommendation-for-enriching-suggested-q-as
https://www.amazon.science/publications/product-query-recommendation-for-enriching-suggested-q-as

65 Million Probably-Asked Questions and What You Can Do With Them. Trans.
Assoc. Comput. Linguistics 9 (2021), 1098–1115. https://doi.org/10.1162/tacl_a_

00415

[43] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Im-

proving Approximate Nearest Neighbor Search through Learned Adaptive

Early Termination. In Proceedings of the 2020 International Conference on Man-
agement of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-

Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2539–2554.

https://doi.org/10.1145/3318464.3380600

[44] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and

Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional

Data - Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng.
32, 8 (2020), 1475–1488. https://doi.org/10.1109/TKDE.2019.2909204

[45] Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y

Zou. 2022. Mind the gap: Understanding the modality gap in multi-modal

contrastive representation learning. Advances in Neural Information Processing
Systems 35 (2022), 17612–17625.

[46] Haotian Liu, Kilho Son, Jianwei Yang, Ce Liu, Jianfeng Gao, Yong Jae Lee, and

Chunyuan Li. 2023. Learning customized visual models with retrieval-augmented

knowledge. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15148–15158.

[47] Song Liu, Haoqi Fan, Shengsheng Qian, Yiru Chen,Wenkui Ding, and Zhongyuan

Wang. 2021. Hit: Hierarchical transformer with momentum contrast for video-

text retrieval. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 11915–11925.

[48] Zhuoran Liu, Leqi Zou, Xuan Zou, CaihuaWang, Biao Zhang, Da Tang, Bolin Zhu,

Yijie Zhu, Peng Wu, Ke Wang, et al. 2022. Monolith: real time recommendation

systemwith collisionless embedding table. arXiv preprint arXiv:2209.07663 (2022).
[49] Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait,

Ravi Garg, Alan Blair, Chunhua Shen, and Anton van den Hengel. 2022. Retrieval

augmented classification for long-tail visual recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 6959–6969.

[50] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:

Hierarchical Graph Structure Based on Voronoi Diagrams for Solving Approx-

imate Nearest Neighbor Search. Proc. VLDB Endow. 15, 2 (2021), 246–258.

https://doi.org/10.14778/3489496.3489506

[51] Prasanta Chandra Mahalanobis. 2018. On the generalized distance in statistics.

Sankhyā: The Indian Journal of Statistics, Series A (2008-) 80 (2018), S1–S7.
[52] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable SmallWorld Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/

TPAMI.2018.2889473

[53] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan

Laptev, and Josef Sivic. 2019. Howto100m: Learning a text-video embedding by

watching hundred million narrated video clips. In Proceedings of the IEEE/CVF
international conference on computer vision. 2630–2640.

[54] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman,Weitian Ding, Ankit

Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic product search.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2876–2885.

[55] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,

and Jure Leskovec. 2020. Pinnersage: Multi-modal user embedding framework

for recommendations at pinterest. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 2311–2320.

[56] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023.

Efficient Approximate Nearest Neighbor Search in Multi-dimensional Databases.

Proc. ACM Manag. Data 1, 1 (2023), 54:1–54:27. https://doi.org/10.1145/3588908

[57] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. 2020. Graph-based Near-

est Neighbor Search: From Practice to Theory. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event (Proceedings of Machine Learning Research), Vol. 119. PMLR, 7803–7813.

http://proceedings.mlr.press/v119/prokhorenkova20a.html

[58] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-

hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.

2021. Learning transferable visual models from natural language supervision. In

International conference on machine learning. PMLR, 8748–8763.

[59] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Mod-

els From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-
ceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.),

Vol. 139. PMLR, 8748–8763. http://proceedings.mlr.press/v139/radford21a.html

[60] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross

Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell

Wortsman, et al. 2022. Laion-5b: An open large-scale dataset for training next

generation image-text models. Advances in Neural Information Processing Systems
35 (2022), 25278–25294.

[61] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk,

ClaytonMullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki.

2021. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs.

arXiv preprint arXiv:2111.02114 (2021).
[62] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and

Hannaneh Hajishirzi. 2019. Real-time open-domain question answering with

dense-sparse phrase index. arXiv preprint arXiv:1906.05807 (2019).

[63] Shelly Sheynin, Oron Ashual, Adam Polyak, Uriel Singer, Oran Gafni, Eliya

Nachmani, and Yaniv Taigman. 2023. kNN-Diffusion: Image Generation via

Large-Scale Retrieval. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.
https://openreview.net/pdf?id=x5mtJD2ovc

[64] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. 2023. A Theoretical

Analysis Of Nearest Neighbor Search On Approximate Near Neighbor Graph.

arXiv preprint arXiv:2303.06210 (2023).
[65] Chanop Silpa-Anan and Richard I. Hartley. 2008. Optimised KD-trees for fast im-

age descriptor matching. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska,
USA. IEEE Computer Society. https://doi.org/10.1109/CVPR.2008.4587638

[66] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,

Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar

Krishnaswamny, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong

Wang. 2022. Results of the NeurIPS’21 Challenge on Billion-Scale Approxi-

mate Nearest Neighbor Search. In Proceedings of the NeurIPS 2021 Competitions
and Demonstrations Track (Proceedings of Machine Learning Research), Douwe
Kiela, Marco Ciccone, and Barbara Caputo (Eds.), Vol. 176. PMLR, 177–189.

https://proceedings.mlr.press/v176/simhadri22a.html

[67] Sivic and Zisserman. 2003. Video Google: A text retrieval approach to object

matching in videos. In Proceedings ninth IEEE international conference on computer
vision. IEEE, 1470–1477.

[68] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. 2014. SRS:

Solving c-Approximate Nearest Neighbor Queries in High Dimensional Euclidean

Space with a Tiny Index. Proc. VLDB Endow. 8, 1 (2014), 1–12. https://doi.org/10.

14778/2735461.2735462

[69] Shulong Tan, Weijie Zhao, and Ping Li. 2021. Fast neural ranking on bipartite

graph indices. Proceedings of the VLDB Endowment 15, 4 (2021), 794–803.
[70] Eric S Tellez, Martin Aumüller, and Edgar Chavez. 2023. Overview of the SISAP

2023 Indexing Challenge. In International Conference on Similarity Search and
Applications. Springer, 255–264.

[71] Zhoujin Tian, Chaozhuo Li, Zhiqiang Zuo, Zengxuan Wen, Lichao Sun, Xinyue

Hu, Wen Zhang, Haizhen Huang, Senzhang Wang, Weiwei Deng, et al. 2023.

Pass: Personalized advertiser-aware sponsored search. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4924–4936.

[72] Leonid Nisonovich Vaserstein. 1969. Markov processes over denumerable prod-

ucts of spaces, describing large systems of automata. Problemy Peredachi Infor-
matsii 5, 3 (1969), 64–72.

[73] Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu, Bo Li, Mohammad Shoeybi,

and Bryan Catanzaro. 2023. Instructretro: Instruction tuning post retrieval-

augmented pretraining. arXiv preprint arXiv:2310.07713 (2023).
[74] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. 2016. A Com-

prehensive Survey on Cross-modal Retrieval. CoRR abs/1607.06215 (2016).

arXiv:1607.06215 http://arxiv.org/abs/1607.06215

[75] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-

prehensive Survey and Experimental Comparison of Graph-Based Approxi-

mate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964–1978.

https://doi.org/10.14778/3476249.3476255

[76] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.
[77] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N.

Holtmann-Rice, David Simcha, and Felix X. Yu. 2017. Multiscale Quantiza-

tion for Fast Similarity Search. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,

Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-

man Garnett (Eds.). 5745–5755. https://proceedings.neurips.cc/paper/2017/hash/

b6617980ce90f637e68c3ebe8b9be745-Abstract.html

[78] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,

Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor

Negative Contrastive Learning for Dense Text Retrieval. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=zeFrfgyZln

[79] Zhaozhuo Xu, Weijie Zhao, Shulong Tan, Zhixin Zhou, and Ping Li. 2022. Proxim-

ity Graph Maintenance for Fast Online Nearest Neighbor Search. arXiv preprint
arXiv:2206.10839 (2022).

https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1145/3318464.3380600
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.14778/3489496.3489506
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3588908
http://proceedings.mlr.press/v119/prokhorenkova20a.html
http://proceedings.mlr.press/v139/radford21a.html
https://openreview.net/pdf?id=x5mtJD2ovc
https://doi.org/10.1109/CVPR.2008.4587638
https://proceedings.mlr.press/v176/simhadri22a.html
https://doi.org/10.14778/2735461.2735462
https://doi.org/10.14778/2735461.2735462
http://arxiv.org/abs/1607.06215
https://doi.org/10.14778/3476249.3476255
https://proceedings.neurips.cc/paper/2017/hash/b6617980ce90f637e68c3ebe8b9be745-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b6617980ce90f637e68c3ebe8b9be745-Abstract.html
https://openreview.net/forum?id=zeFrfgyZln

[80] Erkun Yang, Dongren Yao, Tongliang Liu, and Cheng Deng. 2022. Mutual quan-

tization for cross-modal search with noisy labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7551–7560.

[81] Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neigh-

bor Search in General Metric Spaces. In Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, Vijaya Ramachandran (Ed.). ACM/SIAM, 311–321. http:

//dl.acm.org/citation.cfm?id=313559.313789

[82] Changlong Yu, Xin Liu, Jefferson Maia, Tianyu Cao, Laurence (Yang)

Li, Yifan Gao, Yangqiu Song, Rahul Goutam, Haiyang Zhang, Bing Yin,

and Zheng Li. 2024. COSMO: A large-scale e-commerce common sense

knowledge generation and serving system at Amazon. In SIGMOD 2024.
https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-

common-sense-knowledge-generation-and-serving-system-at-amazon

[83] Tan Yu, Hongliang Fei, and Ping Li. 2022. Cross-Probe BERT for Fast Cross-Modal

Search. In SIGIR ’22: The 45th International ACM SIGIR Conference on Research and

Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique
Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and

Gabriella Kazai (Eds.). ACM, 2178–2183. https://doi.org/10.1145/3477495.3531826

[84] Minjia Zhang, Wenhan Wang, and Yuxiong He. 2022. GraSP: Optimizing Graph-

based Nearest Neighbor Search with Subgraph Sampling and Pruning. In Pro-
ceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining. 1395–1405.

[85] Weijie Zhao, Shulong Tan, and Ping Li. 2020. Song: Approximate nearest neighbor

search on gpu. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 1033–1044.

[86] Bolong Zheng, Xi Zhao, Lianggui Weng, Quoc Viet Hung Nguyen, Hang Liu, and

Christian S. Jensen. 2022. PM-LSH: a fast and accurate in-memory framework

for high-dimensional approximate NN and closest pair search. VLDB J. 31, 6
(2022), 1339–1363. https://doi.org/10.1007/s00778-021-00680-7

[87] Tao Zhou, Jie Ren, Matúš Medo, and Yi-Cheng Zhang. 2007. Bipartite network

projection and personal recommendation. Physical review E 76, 4 (2007), 046115.

http://dl.acm.org/citation.cfm?id=313559.313789
http://dl.acm.org/citation.cfm?id=313559.313789
https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-common-sense-knowledge-generation-and-serving-system-at-amazon
https://www.amazon.science/publications/cosmo-a-large-scale-e-commerce-common-sense-knowledge-generation-and-serving-system-at-amazon
https://doi.org/10.1145/3477495.3531826
https://doi.org/10.1007/s00778-021-00680-7

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on ANNS
	2.2 Out-of-Distribution ANNS
	2.3 The Inefficiency of Current Approaches for OOD-ANNS

	3 Analysis of OOD Workloads in Cross-modal ANNS
	3.1 Underlying Key Differences
	3.2 Why Previous Methods Fail on OOD-ANNS

	4 RoarGraph: A graph index for efficient OOD-ANNS
	4.1 Query Guided Index for ANNS: Challenges
	4.2 Design and Implementation
	4.3 Search on RoarGraph

	5 Experiment
	5.1 Experimental Setup
	5.2 Search Speed vs. Recall
	5.3 Routing Hops vs. Recall
	5.4 Ablation Study
	5.5 Effects of Query Set Size for Indexing
	5.6 Robustness to In-Distribution Query
	5.7 Index Size and Construction Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

