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Abstract

Efficient processing of k-nearest neighbor (kNN) join operations on
streaming data is critical for applications in location-aware services,
recommendation systems, and spatial analytics. To serve users in
real time, these applications generally require a high-performance
kNN join on continuously changing streaming data. This paper
introduces StreamingRT, a framework that leverages ray tracing
(RT) cores in GPUs to accelerate stream kNN joins in 3D space. By
modeling stream data into large primitives and transferring queries
into short rays, StreamingRT transforms the kNN join problem into
an efficient ray tracing task. To address the ray tracing index updat-
ing overhead on stream data, we propose two key techniques, i.e.,
boundary-extended point partitioning and query-driven BVH lazy
updating. Moreover, we also adopt multi-BVH coprocessing and
CPU-GPU pipelining to improve performance. These techniques
enable efficient stream kNN join on ray tracing cores, delivering un-
precedented performance improvement. Experimental evaluations
show that StreamingRT can achieve up to 2.2X and 5.8X speedup
over the state-of-the-art approach on RT cores and CUDA cores,
respectively.

CCS Concepts

« Computing methodologies — Vector / streaming algorithms;
Ray tracing; » Information systems — Join algorithms.
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1 Introduction

The k-nearest neighbor (kNN) join is a fundamental operation in
spatial data processing, widely used in applications that require
proximity-based data association. Given two datasets R and S, the
kNN join operation finds, for each tuple in R, its k-nearest neigh-
bors in S. This operation is essential in various domains, including
geographic information systems, location-based recommendation
engines, and spatial database queries [12, 19, 31, 33]. For example,
in location-aware social networking, kNN join can be used to find
the nearest users for friend recommendations. Similarly, in location-
based advertising, it enables businesses to target users with relevant
promotions based on their proximity to specific stores or points of
interest.

In real-time scenarios, this operation extends to stream kNN
join, where both R and S are continuously incoming data streams.
This is particularly relevant in applications such as recommender
systems [3], real-time location-based services [28] and anomaly
detection [42]. A prominent example is the taxi-hailing service [18],
where a stream of customer requests must be continuously matched
with the closest available taxis in real time. The effectiveness of such
applications hinges on the ability to process spatial data streams
efficiently; otherwise, delayed or irrelevant responses can degrade
the quality of service. Stream kNN join operations pose signifi-
cant challenges due to the dual requirements of high-speed data
ingestion and the computational complexity of spatial operations,
such as distance calculations and neighbor ranking [39, 43]. More-
over, these operations must adhere to strict latency constraints to
ensure that users receive responses tailored to their location and
preferences in real time. Failure to meet these constraints can re-
sult in increased waiting times, inefficient taxi assignments, and a
suboptimal user experience.

The stream kNN join operation combines the complexities of
both the join process and kNN query execution while contending
with the dynamic and often unpredictable nature of data streams.
These challenges become particularly pronounced in high-velocity,
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high-volume environments, where maintaining low latency is criti-
cal. Traditional CPU-based processing usually uses some special
indexes, such as R-tree [41], which are inadequate for such work-
loads due to limited parallelism and massive updates. To address
these challenges, distributed processing frameworks for stream
kNN join, such as the approach described in [30], partition data
streams and distribute kNN join tasks across multiple machines. In
addition, GPU-based solutions [11, 40] have been designed to accel-
erate stream kNN join with their massive parallelism and thousands
of CUDA cores.

Modern desktop and server-class GPUs are equipped with ray
tracing (RT) cores designed to accelerate real-time rendering of
complex 3D scenes. Beyond graphics, NVIDIA has extended RT
core functionality through APIs that enable custom objects and
ray casting within a 3D space, unlocking new possibilities for
high-performance geometric computations. Recent studies have
demonstrated the potential of RT cores in accelerating various data
processing tasks, including point location [22, 36], nearest neigh-
bor search [7, 27, 45], DBSCAN clustering [26], database index-
ing [13, 20], and range minimum queries [21]. These applications
leverage RT cores by representing data points as geometric prim-
itives, such as triangles or spheres, which are structured within
a Bounding Volume Hierarchy (BVH) for efficient spatial queries.
Queries are then mapped to rays traversing the BVH, where in-
tersections indicate relevant data points. This approach reduces
computational overhead, avoiding unnecessary calculations. By re-
framing traditional data processing challenges as ray tracing prob-
lems, RT cores enable substantial performance gains, particularly in
previously computationally prohibitive tasks. Their ability to accel-
erate nearest neighbor search, spatial analytics, and real-time query
processing expands the role of GPUs beyond rendering, demonstrat-
ing their potential for broader applications in high-performance
computing.

RTNN [45] is currently the state-of-the-art algorithm that lever-
ages RT cores for kNN search, but it is designed only for static
data. RTNN analyzes the static dataset and constructs primitives of
different sizes for different points, and casts short rays from query
points. From the intersected points, the k nearest neighbors are
selected according to the relative distance. However, through ex-
periments, we find that RTNN is inefficient in performing kNN on
stream data. In stream kNN, queries are performed on each sliding
window where data changes dynamically. When performing RTNN
on stream data, the data needs to be analyzed for each window,
and the entire BVH also has to be rebuilt. These analyses and index
updating operations may take more than half of the overall exe-
cution time, resulting in suboptimal performance and ray tracing
computational resource underutilization.

In this paper, we present a novel approach, StreamingRT, which
effectively accelerate stream kNN join with ray tracing cores. Stream-
ingRT effectively addresses the high overhead caused by frequent
data structure updates in streaming data scenarios. It is primarily
based on two key techniques: boundary-extended point partition-
ing and BVH lazy updating. We first partition the entire space into
small regions and build an independent BVH for each region, which
significantly reduces the cost of index reconstruction compared
to updating a single large BVH for each window. Then, based on
dynamically arriving queries and data points from the stream, we
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Figure 1: Example of Stream kNN Join
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dynamically determine whether a BVH update is necessary for a
given query. This adaptive mechanism helps to minimize unnec-
essary computational overhead and significantly enhances stream
kNN query performance. By incorporating the optimizations, our
approach provides a highly efficient solution for stream kNN join.

The contributions of this paper are as follows:

e We propose StreamingRT, a solution that efficiently acceler-
ates stream kNN join with ray tracing cores.

e We propose two techniques to address the data updating
overhead in stream processing with RT cores: boundary-
extended point partitioning and BVH lazy updating.

o We evaluate its performance under diverse workloads and pa-
rameters. Our experimental results show that StreamingRT
can achieve 2.2x and 5.8 speedup over the state-of-the-art
approach on RT cores and CUDA cores, respectively.

To the best of our knowledge, StreamingRT is the first work
to study stream kNN join on ray tracing cores. We believe the
proposed techniques would benefit other stream processing jobs
with RT cores.

2 Background

2.1 Problem Definition of Stream kNN Join

kNN search. Given the tuple ¢ and the tuple set S, the kNN of ¢
over S is denoted as kNN (¢, S) and defined as follows: kNN (¢, S)
is a subset of S with a maximum size of k, where the distance of
all other elements of S to the tuple ¢ is greater than or equal to the
distance of each element of kNN(t,S) to the tuple ¢.

KNN(LS) C S, [KNN(2, )| = min(k, |S])
Vs; € kNN(t,S),Sj €S—kNN(t,S) — |t,si| < |l’,Sj|

kNN join. Given the tuple set R and the tuple set S, the kNN of
Rover S is denoted as R > v S and defined as follows: R »<x S
is a subset of S and each point in R finds its kNN in S and return all
the (r, s) pairs where point s in S is one of k nearest neighbor of
point r. The result set contains k X n(R) pairs.

Stream kNN join. Given two streams R and S, the kNN of R
over S is denoted as R > 7N S. For a specific time ¢, R s yn S
generates the result of W;.(t) > Wi (t) where W;(t) is the sliding
window of R and W;(t) is the sliding window of S at the time of ¢.

In a stream kNN join process, the goal is to continuously process
incoming data streams and find the k-nearest neighbors (kNN)
for each new data point in real-time. This means that, for each
window of query stream, we need to locate its k-closest points
from the corresponding point stream window, which is particularly
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useful for applications like anomaly detection, recommendation
systems, and traffic monitoring. For example, in Figure 1, consider
a live stream of GPS locations from taxi passengers as the query
stream, alongside another stream of GPS locations from various
taxis. At each time step with a specific window, a stream kNN join
operation identifies the k nearest taxis for each passenger, enabling
prioritized pickups and optimized scheduling decisions based on
spatial distance. However, executing this process efficiently in real-
time presents several challenges. First, high throughput demands
can be challenging , requiring the system to handle a high query rate.
Second, as the data stream changes, it is also difficult to maintain
search index and in time updating. When the query and point
datasets in a stream kNN join are the same, the operation is referred
to as a stream self kNN join. In this case, each incoming data point
is compared with other points within the same stream to identify
its k-nearest neighbors. This self-join variant is particularly useful
for identifying similar items or detecting anomalies within a single
data stream, as it allows for real-time proximity analysis among
points from the same source.

2.2 Background of Ray Tracing

Ray tracing is a computationally demanding rendering technique
that accurately models light interactions within a scene, captur-
ing effects such as reflections, refractions, and absorption [29]. To
enhance performance, modern GPUs incorporate dedicated RT
cores—specialized hardware designed to accelerate ray tracing
computations. NVIDIA introduced its first-generation RT cores
with the Turing architecture, achieving up to a 10x speedup over
software-based implementations [29]. Since then, RT cores have
been integral to NVIDIA’s Turing, Ampere, and Ada architectures.
Beyond NVIDIA, other manufacturers have also adopted hardware-
accelerated ray tracing, with AMD integrating support in GPUs
like the Radeon RX 7800 XT. This broad adoption underscores the
growing importance of ray tracing in modern graphics processing.

At the heart of ray tracing is the computation of intersections
between rays and a 3D scene, which is typically represented as a
collection of geometric primitives such as triangles and spheres.
These intersection tests are the primary factor influencing rendering
time [35] and are significantly accelerated by RT cores. To optimize
these computations, the scene’s primitives are partitioned and en-
closed within bounding volumes, most commonly Axis-Aligned
Bounding Boxes (AABBs). Primitives directly contained within
AABBs are referred to as leaf AABBs. These bounding volumes are
further organized hierarchically into a tree structure known as the
BVH. Figure 2 illustrates a scene with three triangles, where leaf
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AABBs enclose individual primitives, while larger AABBs encapsu-
late smaller ones to facilitate efficient traversal.

A ray is defined by an origin point O and a direction vector D,
parameterized as:

R(t)=0+tD

where the parameter ¢ is typically constrained to an interval, t €
[tmins tmax], to define a finite segment of the ray. Once a ray is cast,
it traverses the BVH tree, with intersection tests against geometric
primitives efficiently accelerated by RT cores. During traversal, if a
ray intersects an AABB, further intersection tests are performed
on the primitives or AABBs enclosed within it. Conversely, if a ray
does not intersect an AABB, all enclosed primitives can be safely
skipped, as they are guaranteed not to intersect the ray. This hier-
archical pruning significantly reduces the computational workload
of ray tracing. As illustrated in Figure 2, Ray A bypasses AABB 2,
allowing primitive y to be skipped entirely. In contrast, since Ray
A intersects AABB 3, further intersection tests must be performed
on its child nodes, AABB 4 and AABB 5 and finally intersects with
primitive z. Similarly, Ray B intersects AABB 2, bypasses AABB 3
and its enclosed AABB 4 and AABB 5, and eventually intersects
with primitive y.

Figure 3 illustrates the programming model of Nvidia OptiX.
The OptiX framework offers a flexible, shader-based programming
model that enables developers to define custom behaviors at various
stages of the ray traversal process. This level of control allows users
to tailor the ray tracing pipeline for a wide range of applications
beyond traditional rendering tasks. During ray traversal, the Inter-
section shader is triggered whenever a ray intersects a leaf node
in the AABB hierarchy. This shader is responsible for performing
the critical ray-primitive intersection test, determining whether the
ray intersects with any geometric primitives in the 3D space. If an
intersection is detected, the user-defined Any-Hit shader may be
invoked to process the intersection data. This shader provides the
flexibility to handle rays that intersect multiple primitives, such as
by determining transparency or conditionally accepting intersec-
tions. In addition to the Any-Hit shader, the OptiX model supports
other programmable shaders that further enhance control over the
ray tracing process. The Closest-Hit shader is executed when the
ray intersects the closest primitive along its path, providing precise
control over how intersection data is processed, such as shading
or recording the result of the nearest object. Conversely, the Miss
shader is called when a ray does not intersect any primitives, en-
abling users to define behavior for rays that miss all objects, such
as assigning a background color or other fallback logic.

By leveraging this rich shader-based model, RT cores are not only
utilized to accelerate geometric intersection tests, including movie
special effects [4], advanced computer-aided manufacturing [6],
and video games [10], but also enable complex, customizable oper-
ations across various computational tasks. This versatility makes
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ray tracing approach using short rays and spherical primi-
tives. (c) Stream processing with dynamic updates.

OptiX a powerful tool for both rendering and non-rendering appli-
cations, such as physics simulations, data processing, and spatial
queries, all of which benefit from the highly parallelized ray tracing
capabilities provided by Nvidia’s hardware. Recent studies have
increasingly explored the use of RT cores to accelerate render-
ing workloads, such as graph drawing [44], rendering transparent
objects [37], dexel modeling [15], and particle movement [1, 2]. Be-
yond graphics, several works have investigated leveraging RT cores
for data processing tasks. These include point location [22, 36],
nearest neighbor search [27, 45], DBSCAN clustering [26], database
indexing [13], range minimum queries [20] and efficient outlier
detection [38].

2.3 Challenges of Accelerating Stream KNN Join
with RT Cores

Building an efficient transformation of stream kNN join into a ray
tracing task involves two key aspects: 1) mapping data and query
into primitives and rays, and 2) consistently updating the data set
and the index on stream data.

For data mapping, Figure 4(a) demonstrates a naive transforma-
tion where each data point is represented by a sphere with a small
radius, while rays are cast from the query point Qg in multiple
directions with a predefined length r, testing for intersections with
points Py, Py, P2, and P3. This leads to at least Z—”, ray casting

arCSll’l( ﬁ)
where r is the primitive radius and R is ray length [38]. This ap-
proach casts an excessive amount of rays in the 3D space, while
the number of ray tracing cores is limited, resulting in unneces-
sary resource consumption. RTNN[45] is a pioneering work that
transforms the kNN join into a ray tracing job. RTNN performs a
grid-based static analysis on the dataset and generates primitives
of different sizes for each point, and a short ray is cast from each
query point to reduce intersection tests. This approach improves
kNN performance because it launches much fewer rays and reduces
the intersection count and this method is also used by other works
such as RT-KNNS [27].

Through experiments, we find that the approach of RTNN suffers
from inefficiency in handling stream data. First, analyzing the data
set and setting an appropriate radius for each primitive incurs a
huge overhead. Second, BVH reconstruction across streaming win-
dows also introduces significant costs. For the NBody dataset[32], it
takes about 26% of the overall execution time on data analysis and
optimization, while the BVH construction takes around 24% of the
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Condition 1 Condition 2
Figure 5: Two conditions for ray-AABB intersection

time [45]. This is extremely inefficient in processing streaming data,
as data analysis and BVH reconstruction are required for every
window, which means the utilization of the RT core is less than
40%.

3 Design and Implementation

3.1 Stream KNN Join as a Ray Tracing Job

In order to reduce the number of intersection tests and unnecessary
computation on stream data, we propose StreamingRT, which maps
stream kNN join into ray tracing jobs with lightweight updating.
Figure 4(b) demonstrates our optimized transformation of the kNN
join using RT cores. The transformation procedure creates a fixed
r-radius sphere around each point. Instead of casting rays in all
directions, short rays of length FLOAT_MIN are then cast from all
queries to traverse the BVH. For example, in Figure 4(b), the query
point Qg emits a short ray, only testing for intersections with nearby
primitives. Rays intersect with the spheres representing P; and Py,
marking them as potential nearest neighbors, while Py and P3 do
not intersect the rays and are excluded from the kNN set. Figure 4(c)
illustrates how StreamingRT works on streaming data, where two
points, Py and Py, are removed from the dataset, and two new points,
Py and Ps, are added.

A ray is considered to intersect an AABB under two specific
conditions [45]. First, the ray physically intersects one or more of
the AABB’s bounds, shown in Figure 5 condition 1. Second, the
ray’s origin lies within the AABB, even if the ray does not intersect
any of the bounding faces directly, shown in Figure 5 condition
2. These conditions serve as the foundation for efficient traversal
and pruning in BVH. StreamingRT leverages condition 2 for its
short ray intersection mechanism. When a ray originating from Qg
intersects a leaf AABB, the Intersection Shader in OptiX is invoked.
The shader checks whether Qy intersects the sphere enclosed by
the AABB by computing the Euclidean distance between Qg and the
sphere’s center point. If the distance is less than r, the ray cast from
Qo is considered to have intersected the sphere and the intersected
point will be considered as one of the neighbors.

The mechanism adopted by StreamingRT brings several advan-
tages: it reduces unnecessary computations by focusing the ray
casting on specific regions of interest, improving overall scalability
by allowing the BVH (Bounding Volume Hierarchy) structure to
efficiently exclude distant points from consideration. Moreover, the
reduced number of intersection tests, combined with the use of RT
cores, significantly accelerates the kNN join on streaming data. To
meet the demands of high throughput and frequent updates, this
paper proposes two key optimization techniques to improve algo-
rithm performance. First, a boundary-extended point partitioning
strategy is employed to divide points in 3D space into different
regions, with a separate BVH tree constructed for each region. This
approach effectively reduces the overhead of BVH reconstruction
and avoids the cost of rebuilding a single large BVH for all points.
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Second, a BVH lazy updating scheme is utilized to reduce the re-
dundant computations during dynamic data updates. In addition, a
multi-BVH coprocessing and a CPU-GPU pipelining mechanism
are used to improve performance and fully exploit heterogeneous
computational resources. In the following parts of this section, we
provide detailed descriptions of these three techniques.

3.2 Boundary-Extended Point Partitioning

In ray tracing, constructing acceleration structures (e.g., BVH) is
a critical yet time-consuming process. The time required to build
a BVH tree is closely related to the number of AABBs present in
the scene. For instance, in Figure 6, constructing a BVH tree for
five million points takes approximately 25 milliseconds, while the
time increases to around 40 milliseconds for ten million points. As
the number of points increases, the time taken for BVH construc-
tion escalates significantly, and the ray tracing time also increases,
leading to potential performance degradation in overall ray tracing
processing on stream data. To address this challenge, we propose
a boundary-extended point partitioning strategy. This method in-
volves dividing the point set within the scene into multiple smaller
subsets, effectively reducing the overhead of globally reconstructing
the BVH tree during point flow.

In detail, we implement point partitioning using a grid-based
scheme along the x, y, and z axes in a three-dimensional space
shown in algorithm 1 line 1 to line 9. Each axis is divided indepen-
dently based on predefined partition counts. For example, setting
the partition counts to px = 3, py = 2, and p, = 1 means dividing
the x-axis into three partitions, the y-axis into two partitions, and
keeping the z-axis as a single partition. Given a range of 0 to 300
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Algorithm 1 Boundary-extended Point Partitioning

Require: Point P(x,y, z), max range Ry, Ry, R, partition counts
Ny, Ny, Nz, search radius r, 3D partition list L

: Compute cell sizes:

: Cx & Rx/Nx,Cy < Ry/Ny, C; < R;/N,

: Compute partition index:

Iy — [x/Cx] Iy « |y/Cy] I, — |2/C;]

: Add P to its partition L; according to index

: Compute cell boundaries:

B [ X Cy, BP9 (I +1) X Cy

L Byt — Iy X Cy, BY™  (Iy +1) X Cy

9: BI"" «— I, X C5, B! «— (I + 1) X C,

o I T NS O I

10: Compute distance from P to 6 boundaries:

11: N « number of distance < r

12: if N =1 then

13- Add P to 1 face neighbor partition Ly accordingly

14: else if N = 2 then

15:  Add P to 2 face and 1 edge neighbor partitions L, accordingly

16: else if N = 3 then

17: Add P to 3 face, 3 edge and 1 vertex neighbor partitions L,
accordingly

18: else

190 No additional partitions added

20: end if

for x and 0 to 100 for both y and z, the x-axis partitions span 0-100,
100-200, and 200-300, while the y-axis partitions cover 0-50 and
50-100. The z-axis remains unchanged. This results in a total of
3 X 2 X 1 = 6 partitions. The gray dashed lines in Figure 7 illustrate
the partitioning along the x- and y-axes.

A key challenge in partitioning is handling boundary conditions.
In our intersection tests, we determine whether the ray origin of
each query lies within a spherical primitive. Queries near partition
boundaries require special treatment to ensure accuracy. Specif-
ically, if the maximum radius r of a spherical primitive is 5, we
expand each partition’s boundaries by this value in both directions.
This adjustment ensures that points near the boundary are cor-
rectly included in the corresponding BVH trees. For instance, P;
is a neighbor of Py and Ps3 is a neighbor of P;, but they are not
in the partition directly, so we need to extend the boundaries by
r and include P; and Ps3 to extended region, as illustrated by the
red solid box in Figure 7. This approach ensures that points near
boundaries are covered by multiple BVH trees, eliminating the need
for boundary queries to traverse multiple trees while maintaining
computational accuracy and improving traversal efficiency.

To determine whether a boundary point belongs to other parti-
tions, we calculate the distance between the point’s coordinates and
the six boundary planes of its enclosing partitioning cube based on
the search radius r which is shown in algorithm 1 line 10 to line 20.
If the distance to a boundary plane is less than r, the point is added
to the adjacent cube across that plane. If the point is within r of a
single boundary, it is added to one face neighbor. If it is within r
of two boundaries, it is added to two face neighbors and one edge
neighbor. If it is within r of three boundaries, it is added to three face
neighbors, three edge neighbors, and one vertex neighbor. Once the
space is partitioned, each data point is assigned to a specific region
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based on its coordinates. We do direct partitioning for query points
using its calculated index because queries don’t need extended and
queries within each partition are also sorted in Z-order to enhance
ray coherence, which improves memory access locality and boosts
performance. During the search process, we construct individual
BVH trees for each partition, forming a BVH forest. Since each
tree contains only a subset of the dataset, this partitioned approach
dramatically reduces traversal time and improve ray coherence
compared to searching through a single large BVH tree.

This approach not only optimizes the BVH building process but
also alleviates performance bottlenecks caused by an increasing
number of data points, thereby providing a more efficient solu-
tion for real-time ray tracing in dynamic scenes. In addition, point
partitioning brings another significant advantage: it enhances ray
coherence. Improving ray coherence significantly reduces memory
access inconsistencies during tree traversal, increases opportunities
for memory coalescing, lowers data access latency, and improves
cache hit rates. This optimization further enhances computational
efficiency in the ray tracing process.

3.3 BVH Lazy Updating

Our optimization strategy combines a lazy updating mechanism to
enhance efficiency in handling nearest neighbor searches across
dynamic partitions. The lazy updating approach addresses the issue
of unnecessary BVH rebuilds that occur due to independent move-
ments of queries and data points across partitions and data locality
across sliding window. Instead of rebuilding the BVH each time a
partition updates, we trigger a rebuild only when both conditions
are met: data points in a partition change, and a query accesses
this updated partition shown in algorithm 2 line 4 to line 16. For
instance, if data points shift in a particular partition but no query
accesses it, the BVH remains unaltered, conserving computational
resources. Similarly, if a query changes its position without the
data points in a partition being modified, the BVH for that partition
is left as is. This lazy updating approach thus minimizes unneces-
sary BVH rebuilds, allowing queries to proceed through previous
traversal structures and reducing time and computational load.

We first do extended partitioning for incomming point window,
and direct partitioning for query window. For each partition, a
previous point set is maintained for comparison. The previous set
and the BVH are in a one-to-one correspondence, so it only update
when BVH is updated, which is shown in line 15. To efficiently
compare the differences between previous point set and current
point set, we use sets to store the points in each window. Since
the coordinates are floating-point numbers, to avoid errors caused
by floating-point hashing, we encode the coordinates as strings.
For instance, we represent the value of each axis as an 8-character
string, where the integer part occupies the first 3 characters and
the fractional part up to 5 decimal places occupies the remaining
5 characters. Padding is applied to both parts as needed. This en-
coding scheme can be adjusted according to specific application
needs and data distribution. Finally, the three encoded axis values
are concatenated into a 24-character string, which is used as the
key for storage.
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Algorithm 2 Partitioned Lazy Update Decision Algorithm

Require: Previous point window set list Pprevy, current point win-
dow Weyr, current query window Qcur
1: Extended partition Wey, into {W2,, W2, ..., WA

2. Direct partition Qcyr into {Ql,, Q% - - -» ON,}

3: for all vvciur in {chlur’ Wczur: T VVC]]\J[I'} do

4 if QL,, is empty then

5 continue

6. endif

7. Initialize empty set PL

s forall p e W, do

9: key < ENCODEPOINT(p)

10: Add key to P!,

11:  end for

12: if Pl = Pf,rev then

13: (Perform query without rebuilding BVH)
14:  else

15: P}i)rev — Ptl.:ur

16: (Rebuild BVH structure and perform query)
172 end if

18: end for

3.4 Implementation and Optimization

3.4.1 Multi-BVH coprocessing In our ray tracing approach, we as-
semble the traversal of all queries into a single kernel launch rather
than using multiple CUDA streams. This decision is based on the
fact that the RT cores are typically operating at maximum capacity,
making the use of multiple streams effectively serial in nature. Ad-
ditionally, introducing multiple streams would lead to extra CPU
scheduling overhead and context-switching costs between streams,
which could increase tracing time and reduce overall performance.

OptiX inherently supports a single-ray programming model,
where each optixTrace call initiates a single ray and allows for
flexible use of multiple traversable handles for different acceleration
structures (AS), which can be chosen per ray in a single launch. This
flexibility allows us to set up a BVH forest where each partition has
its own BVH. We organize queries for each partition in advance and,
during tracing, select the appropriate BVH for each query based on
its identifier. By consolidating queries across different partitions
into a single launch, we maximize the GPU’s workload efficiency,
reducing kernel launch overhead while minimizing unnecessary
stream-switching and resource contention. OptiX does allow for
parallel optixLaunch calls in separate CUDA streams. However, if
the launch dimensions are large enough to saturate the GPU, there is
minimal advantage to running multiple launches in parallel[9]. Each
launch would share the same hardware units, and the asynchronous
processing could introduce substantial overhead. For our approach,
a single optixLaunch covering all queries from different partitions
in one call not only minimizes performance losses from stream-
switching but also simplifies the pipeline by eliminating the need
for separate launch parameters and output buffers across streams.
Each partition is assigned a unique BVH tree, and every BVH is
associated with an identifier. During the traversal process, each
ray retains the identifier of its corresponding BVH, allowing it to
selectively traverse only the BVH tree with the matching identifier.
By ensuring that each ray operates independently on its assigned
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BVH, this design minimizes contention for shared resources and
reduces the overhead typically associated with managing multiple
kernel launches.

3.4.2 CPU-GPU Pipeline In StreamingRT, the CPU is responsible
for extended point partitioning and the BVH lazy update checking
mechanism. For each window, the CPU first partitions the data
points using an extended partitioning algorithm and directly assigns
queries to their corresponding partitions. After partitioning, the
memory layout of the points is reorganized, and the queries within
each partition are sorted in Z-order. Once this process is complete,
all data is transferred to the GPU. The GPU is responsible for BVH
rebuilding and BVH traversal. It updates the BVH structures based
on the lazy update results provided by the CPU, and then performs
traversal to compute the kNN join results.

In StreamingRT, we build a CPU-GPU pipelining strategy to
accelerate the overall processing workflow. With the pipelining,
when the GPU is performing the kNN on the ith window with RT
cores, the CPU is performing data partitioning and checking lazy
update in parallel. This parallelism ensures that the CPU continu-
ously prepares partition data in advance, synchronizing with the
GPU’s ray tracing completion. When a new optixLaunch occurs,
the necessary partitioned data is already preprocessed, reducing
setup times and preventing GPU idle time.

4 Experiments

4.1 Experimental Setup

Dataset In our experiments, we use four 3D datasets with distinct
characteristics to evaluate the performance of the stream kNN join.
The Millennium Simulation Project [24, 25] provides a cosmolog-
ical N-body simulation dataset [32] containing 10M points, with
coordinates ranging from 0 to 500 along each of the three axes.
The Buddha and Dragon [5] model from the Stanford 3D Scanning
Repository [17] has 4.6M and 2.7M points respectively and most
points coordinate in [-1, 1] along the three axes. These three datasets
are three-dimensional and used for stream self kNN join: the Mil-
lennium dataset contains numerous dense clusters representing
galactic structures, where points are tightly packed within clusters
but widely spaced between clusters. The Buddha and Dragon model
has highly dense points distributed in a relatively small space, cap-
turing the detailed contours of the object. The fourth dataset, the
NYC Taxi Dataset of 2017 with about 3M points [34] ranging from
[0, 250] along x and y axes, is used for standard stream kNN join,
where passenger pick-up locations serve as queries, and drop-off
locations act as points. This dataset is primarily distributed in a
two-dimensional xy-plane (latitude and longitude), reflecting New
York City’s layout. The data points are more uniformly spread due
to the nature of citywide travel patterns, introducing randomness
across spatial areas. For GPU memory usage, the AABB of a single
point requires two 3D floating-point vectors(32B with padding) for
representation. For 1 million points, the total memory consump-
tion is approximately 60MB(for inner-nodes and leaf-nodes), which
is much smaller than the available GPU memory. Thus, memory
capacity is not a limiting factor in this case.

Competitors To evaluate the performance of our approach, we
compare it with two state-of-the-art nearest neighbor search meth-
ods: RTNN [45, 46] and FRNN [40]. RTNN utilizes NVIDIA’s RTCore
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technology, originally designed for ray tracing in graphics, to accel-
erate the neighbor search process. By treating search queries as rays
that intersect spatial structures, RTNN can efficiently traverse large
datasets, leveraging RT core’s hardware-accelerated ray-tracing
capabilities. It also adopts two optimizations: query scheduling and
query partition. This approach allows RTNN to achieve significant
speed-ups in query handling by optimizing traversal steps. FRNN,
by contrast, operates on a fixed-radius nearest neighbor search
principle and is fully optimized for CUDA-based GPU computation
and it is also a drop-in replacement for kNN in Pytorch [8]. It di-
vides the space into partitions with a grid cell index, allowing it to
focus on a specific radius for each query, which leads to consistent,
efficient performance. FRNN’s reliance on spatial partitioning and
memory caching minimizes memory transfer latency and maxi-
mizes throughput, making it particularly well-suited for dense data
applications.

Hardware and Software We conduct all experiments on a
machine equipped with an Intel(R) Xeon(R) Silver 4316 CPU @
2.30GHz, 128GB DDR4 DRAM, and an NVIDIA GeForce RTX 4090
GPU featuring 128 RT cores, 16384 CUDA cores, and 24GB VRAM.
The operating system is 64-bit Ubuntu Server 20.04 with Linux
Kernel 5.15.0-72-generic. Our algorithm is implemented in C++ 17,
and the program is compiled using CUDA 12.1 and OptiX 7.5.

4.2 Performance Analysis with Different k
Neighbor Counts

This experiment evaluates the scalability of the three algorithms
as the number of neighbors k increases from 10 to 50 across four
datasets. As shown in Figure 8, the results highlight distinct perfor-
mance trends among the algorithms. The search radius for NBody
and NYTaxi is fixed at 5, while for Buddha and Dragon, it is set to
0.0001, with a window size of one million points and step size is of
20% window size.

StreamingRT consistently achieves the lowest execution times
across all datasets, benefiting from its streamlined design, which del-
egates preprocessing tasks to the CPU and executes ray tracing in
a single kernel launch. Unlike RTNN, which relies on multi-stream
and multi-kernel execution, StreamingRT minimizes coordination
overhead, leading to an average speedup of 1.4x on the NBody
dataset and over 2.2x on Buddha and Dragon. FRNN exhibits the
highest processing times, primarily due to its fixed-radius search
strategy. It constructs grid-based indices for each window, introduc-
ing substantial overhead as k increases. This limitation is especially
pronounced in the Buddha and Dragon datasets, where FRNN is
outperformed by StreamingRT by more than 5.5x. The inefficiencies
in FRNN’s index-building approach make it less suited for scenarios
with varying query parameters.

4.3 Performance Analysis Across Different
Window Sizes

Figure 9 presents the processing times of the three algorithms across

varying window sizes for four datasets. The search radius is set to

5 for NBody and NYTaxi, while Buddha and Dragon use a radius

0f 0.0001. The number of neighbors k is fixed at 10. Due to dataset

size, we use different window size on different dataset.
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Figure 8: Performance for one window of StreamingRT, RTNN, and FRNN across varying k values.
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Figure 9: Performance for one window of StreamingRT, RTNN, and FRNN across varying window sizes.
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Figure 10: Performance for one window of StreamingRT, RTNN, and FRNN as sliding size varies from 20% to 100% of the

window.

For NBody dataset, StreamingRT achieves a speedup of over
1.6x compared to RTNN and more than 5.8x over FRNN. This effi-
ciency arises from its streamlined CPU-GPU pipeline and optimized
BVH updates, which minimize redundant computations. RTNN per-
forms well at smaller window sizes but suffers from increasing
synchronization and management overhead due to its multi-stream,
multi-kernel execution. FRNN exhibits the steepest performance
degradation, as its grid-based indexing must be rebuilt for each
window, making it inefficient for clustered data.

For the Buddha and Dragon dataset, StreamingRT maintains the
lowest processing times, benefiting from its lazy BVH updating
and single-kernel execution. StreamingRT is more than 1.8x faster
than RTNN and over 5.8x faster than FRNN. For the NYTaxi dataset,
StreamingRT continues to outperform the alternatives, and achieves
speedups of over 1.6x against RTNN and more than 1.5 over FRNN.

4.4 Performance Analysis with Varying Sliding
Sizes

Figure 10 shows the execution time (in milliseconds) of three algo-
rithms as the sliding size varies from 20% to 100% of the window.
This experiment evaluates how each algorithm scales with increas-
ing data updates. The experiment is conducted on the four datasets
with a search radius of 5 on NBody and 0.0001 on Buddha and
Dragon, k = 10, and a window size of one million points. The slid-
ing size represents the proportion of points updated within each
window.

StreamingRT achieves the lowest execution time across all sliding
sizes, demonstrating superior adaptability as updating data volume
increases. At the largest sliding size, it is over 1.4 times faster than
RTNN and more than 5.6 times faster than FRNN. This efficiency

Varying Radius Performance
RTNN

B streamingRT

= FRNN

5 10 15 20
Radius (r)

Figure 11: Time performance of StreamingRT, RTNN, and
FRNN across varying radius for NBody datasets.

stems from its lazy BVH updates and pipeline optimization, which
minimize redundant computations. The relatively shallow increase
in its processing time is caused by the data preprocessing on CPU
when facing more data updating. Even when performing a full
update for each window, StreamingRT still outperforms the other
two algorithms. RTNN exhibits a moderate increase in processing
time as the sliding size grows. Its reliance on ray tracing hardware
provides efficiency but requires optimization at each step, making
it less responsive to sliding variations. Since RTNN processes all
points within the window regardless of updates, its performance
remains relatively stable compared to StreamingRT. FRNN, similarly,
shows limited sensitivity to sliding size changes, as it reconstructs
grid-based indices for every window. However, this approach incurs
significant overhead, leading to the highest execution times among
the three methods. The high cost of index rebuilding makes FRNN
less suitable for applications requiring dynamic data adaptation.
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Figure 12: Impact of various optimization techniques on per-
formance across NBody and Buddha datasets.

4.5 Performance Analysis Across Different
Radius

Figure 11 presents the processing time for three algorithms as
the search radius varies from 5 to 20. We only use NBody dataset
because of the limitation of coordination range. This experiment
evaluates how increasing the radius affects performance, as a larger
radius expands the search space, increasing intersection checks
and computational overhead. The experiment is conducted on the
NBody dataset with k = 10 and a window size of one million points.

For small radii (e.g., r = 5), StreamingRT exhibits the best perfor-
mance, achieving significantly lower processing time than RTNN
and FRNN. This advantage arises from its efficient hardware utiliza-
tion and multi-BVH coprocessing, which allows rapid processing
of smaller queries. As the radius grows, StreamingRT maintains
relatively stable performance, dynamically adjusting resources to
minimize redundant operations and balance the workload. RTNN
shows stable performance across different radii, as it determines an
optimal search radius globally. This design prevents performance
degradation as the specified radius increases, making RTNN robust
and efficient. However, for small radii, its preprocessing overhead
may outweigh its benefits, leading to slightly higher runtime than
StreamingRT. FRNN consistently exhibits the highest processing
time, particularly for large radii. Its fixed-radius search structure
lacks adaptability, leading to increased computational costs as the
search space expands. This limitation makes FRNN less efficient for
scenarios requiring flexible search parameters.

4.6 Impact of Optimization Techniques on
Performance

Figure 12 illustrates the impact of different optimization techniques
on processing time for the NBody and Buddha datasets. The meth-
ods include No Optimization, Partitioning (PT), PT with Multi-
BVH coprocessing (PT+MBC), and PT+MBC with Lazy Updating
and CPU-GPU pipeline (PT+MBC+LU), evaluating their effective-
ness in reducing computation overhead. No Optimization serves
as a baseline, showing high processing times, particularly for the
Buddha dataset due to its dense distribution. Partitioning (PT) im-
proves performance by dividing the search space, reducing BVH
rebuild time, but introduces partitioning overhead that limits its
standalone efficiency. Adding Multi-BVH coprocessing (PT+MBC)
enhances performance by reducing kernel launch overhead and
stream-switching costs. The final optimization, PT+ MBC+LU, achieves
the lowest processing times by minimizing redundant updates and
reducing memory transfer time.
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5 Related Work

Stream KNN and kNN Join Several works have focused on pro-
cessing kNN join queries on streaming data, proposing various
innovative solutions to address the unique challenges of this task.
Yang et al. [41] introduced a high-dimensional R-tree (HDR-tree)
to tackle the reverse kNN problem on data streams, specifically
for use in recommender systems. Koudas et al. [16] developed an
approximate kNN method for sliding windows, employing adaptive
indexing based on space-filling curves to improve efficiency. Ex-
panding on the concept of continuous queries, Mouratidis et al. [23]
proposed a solution for continuous nearest neighbor queries on data
streams using conceptual partitioning, as well as a distributed kNN
processing system designed for publish/subscribe environments via
a content-addressable network overlay. To address scalability and
dynamic data challenges, Shahvarani et al. [30] introduced ADS-
kNN, an adaptive and scalable stream kNN join system tailored
for highly dynamic data streams. Hu et al. [14] proposed LSHI, a
locality-sensitive hashing-based index, to handle kNN join queries
in recommender systems efficiently. Gowanlock [11] presented
HybridKNN-Join, which incorporates three key optimizations to
fully utilize both CPU and GPU resources, demonstrating significant
improvements in kNN join task performance. Zhu [47] presented
GTS, a GPU-based tree index designed for the parallel processing of
similarity search with great performance gains. These complemen-
tary approaches collectively highlight the diversity of techniques
developed to advance kNN join query processing on streaming
data.

Ray Tracing Ray tracing technology is widely utilized in vari-
ous graphics applications, including movie special effects [4], ad-
vanced computer-aided manufacturing [6], and video games [10].
Recent studies have increasingly explored the use of RT cores to
accelerate rendering workloads, such as graph drawing [44], ren-
dering transparent objects [37], dexel modeling [15], and particle
movement [1, 2]. Beyond graphics, several works have investigated
leveraging RT cores for data processing tasks. These include point
location [22, 36], nearest neighbor search [27, 45], DBSCAN cluster-
ing [26], database indexing [13], and range minimum queries [20].
All these methods share a similar approach of transforming ques-
tions into RT core operations, but they focus on different domains.

6 Conclution

This paper presents StreamingRT, a high-performance framework
for stream kNN joins leveraging GPU ray tracing (RT) cores in 3D
space. By formulating stream kNN joins as ray tracing problems
and proposing boundary extended point partitioning to reduce
BVH reconstruction overhead, and BVH lazy updating to minimize
redundant computations, with CPU-GPU pipeline and multi-BVH
coprocessing improving performance, StreamingRT delivers over
2.2x and 5.8% speedup over the state-of-the-art approach on RT
cores and CUDA cores, respectively, paving the way for further
innovations in real-time analytics and high-dimensional query han-
dling.

7 Disclose Use of GenAl Tools

This paper was manually written by the authors, with generative
AT tools used for spell checking and grammar correction.
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