
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3746252.3761409
.

.

RESEARCH-ARTICLE

StreamingRT: Stream KNN Join with Ray Tracing Core

SHIXI YANG, Fudan University, Shanghai, China
.

KAI ZHANG, Fudan University, Shanghai, China
.

ZHIGANG ZHAO, Qilu University of Technology, Jinan, Shandong, China
.

CHUNXIAO WANG, Qilu University of Technology, Jinan, Shandong, China
.

ZHENGYING HE, Fudan University, Shanghai, China
.

YINAN JING, Fudan University, Shanghai, China
.

View all
.

.

Open Access Support provided by:
.

Fudan University
.

Qilu University of Technology
.

PDF Download
3746252.3761409.pdf
26 January 2026
Total Citations: 0
Total Downloads: 68
.

.

Published: 10 November 2025
.

.

Citation in BibTeX format
.

.

CIKM '25: The 34th ACM International
Conference on Information and
Knowledge Management
November 10 - 14, 2025
Seoul, Republic of Korea
.

.

Conference Sponsors:
SIGWEB
SIGIR

CIKM '25: Proceedings of the 34th ACM International Conference on Information and Knowledge Management (November 2025)
hps://doi.org/10.1145/3746252.3761409

ISBN: 9798400720406

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3746252.3761409
https://dl.acm.org/doi/10.1145/3746252.3761409
https://dl.acm.org/doi/10.1145/contrib-99661752849
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-99661160680
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-99661052288
https://dl.acm.org/doi/10.1145/institution-60011592
https://dl.acm.org/doi/10.1145/contrib-99659943612
https://dl.acm.org/doi/10.1145/institution-60011592
https://dl.acm.org/doi/10.1145/contrib-81384604372
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-81312485147
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/3746252.3761409
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/institution-60011592
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3746252.3761409&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/conference/cikm
https://dl.acm.org/sig/sigweb
https://dl.acm.org/sig/sigir
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761409&domain=pdf&date_stamp=2025-11-10


StreamingRT: Stream KNN Join with Ray Tracing Core
Shixi Yang

sxyang22@m.fudan.edu.cn

Fudan University

Shanghai, China

Kai Zhang
∗

zhangk@fudan.edu.cn

Fudan University

Shanghai, China

Zhigang Zhao

zhaozg@sdas.org

Shandong Computer

Science Center

(National Supercomputing

Center in Jinan)

Jinan, Shandong, China

Chunxiao Wang

wangchx@sdas.org

Shandong Computer

Science Center

(National Supercomputing

Center in Jinan)

Jinan, Shandong, China

Zhenying He

zhenying@fudan.edu.cn

Fudan University

Shanghai, China

Yinan Jing

jingyn@fudan.edu.cn

Fudan University

Shanghai, China

X. Sean Wang

xywangCS@fudan.edu.cn

Fudan University

Shanghai, China

Abstract
Efficient processing of k-nearest neighbor (kNN) join operations on

streaming data is critical for applications in location-aware services,

recommendation systems, and spatial analytics. To serve users in

real time, these applications generally require a high-performance

kNN join on continuously changing streaming data. This paper

introduces StreamingRT, a framework that leverages ray tracing

(RT) cores in GPUs to accelerate stream kNN joins in 3D space. By

modeling stream data into large primitives and transferring queries

into short rays, StreamingRT transforms the kNN join problem into

an efficient ray tracing task. To address the ray tracing index updat-

ing overhead on stream data, we propose two key techniques, i.e.,

boundary-extended point partitioning and query-driven BVH lazy

updating. Moreover, we also adopt multi-BVH coprocessing and

CPU-GPU pipelining to improve performance. These techniques

enable efficient stream kNN join on ray tracing cores, delivering un-

precedented performance improvement. Experimental evaluations

show that StreamingRT can achieve up to 2.2× and 5.8× speedup
over the state-of-the-art approach on RT cores and CUDA cores,

respectively.

CCS Concepts
•Computingmethodologies→Vector / streaming algorithms;
Ray tracing; • Information systems→ Join algorithms.
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stream data processing; kNN join; ray tracing
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1 Introduction
The k-nearest neighbor (kNN) join is a fundamental operation in

spatial data processing, widely used in applications that require

proximity-based data association. Given two datasets 𝑅 and 𝑆 , the

kNN join operation finds, for each tuple in 𝑅, its 𝑘-nearest neigh-

bors in 𝑆 . This operation is essential in various domains, including

geographic information systems, location-based recommendation

engines, and spatial database queries [12, 19, 31, 33]. For example,

in location-aware social networking, kNN join can be used to find

the nearest users for friend recommendations. Similarly, in location-

based advertising, it enables businesses to target users with relevant

promotions based on their proximity to specific stores or points of

interest.

In real-time scenarios, this operation extends to stream kNN

join, where both 𝑅 and 𝑆 are continuously incoming data streams.

This is particularly relevant in applications such as recommender

systems [3], real-time location-based services [28] and anomaly

detection [42]. A prominent example is the taxi-hailing service [18],

where a stream of customer requests must be continuously matched

with the closest available taxis in real time. The effectiveness of such

applications hinges on the ability to process spatial data streams

efficiently; otherwise, delayed or irrelevant responses can degrade

the quality of service. Stream kNN join operations pose signifi-

cant challenges due to the dual requirements of high-speed data

ingestion and the computational complexity of spatial operations,

such as distance calculations and neighbor ranking [39, 43]. More-

over, these operations must adhere to strict latency constraints to

ensure that users receive responses tailored to their location and

preferences in real time. Failure to meet these constraints can re-

sult in increased waiting times, inefficient taxi assignments, and a

suboptimal user experience.

The stream kNN join operation combines the complexities of

both the join process and kNN query execution while contending

with the dynamic and often unpredictable nature of data streams.

These challenges become particularly pronounced in high-velocity,
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high-volume environments, where maintaining low latency is criti-

cal. Traditional CPU-based processing usually uses some special

indexes, such as R-tree [41], which are inadequate for such work-

loads due to limited parallelism and massive updates. To address

these challenges, distributed processing frameworks for stream

kNN join, such as the approach described in [30], partition data

streams and distribute kNN join tasks across multiple machines. In

addition, GPU-based solutions [11, 40] have been designed to accel-

erate stream kNN join with their massive parallelism and thousands

of CUDA cores.

Modern desktop and server-class GPUs are equipped with ray

tracing (RT) cores designed to accelerate real-time rendering of

complex 3D scenes. Beyond graphics, NVIDIA has extended RT

core functionality through APIs that enable custom objects and

ray casting within a 3D space, unlocking new possibilities for

high-performance geometric computations. Recent studies have

demonstrated the potential of RT cores in accelerating various data

processing tasks, including point location [22, 36], nearest neigh-

bor search [7, 27, 45], DBSCAN clustering [26], database index-

ing [13, 20], and range minimum queries [21]. These applications

leverage RT cores by representing data points as geometric prim-

itives, such as triangles or spheres, which are structured within

a Bounding Volume Hierarchy (BVH) for efficient spatial queries.

Queries are then mapped to rays traversing the BVH, where in-

tersections indicate relevant data points. This approach reduces

computational overhead, avoiding unnecessary calculations. By re-

framing traditional data processing challenges as ray tracing prob-

lems, RT cores enable substantial performance gains, particularly in

previously computationally prohibitive tasks. Their ability to accel-

erate nearest neighbor search, spatial analytics, and real-time query

processing expands the role of GPUs beyond rendering, demonstrat-

ing their potential for broader applications in high-performance

computing.

RTNN [45] is currently the state-of-the-art algorithm that lever-

ages RT cores for kNN search, but it is designed only for static

data. RTNN analyzes the static dataset and constructs primitives of

different sizes for different points, and casts short rays from query

points. From the intersected points, the k nearest neighbors are

selected according to the relative distance. However, through ex-

periments, we find that RTNN is inefficient in performing kNN on

stream data. In stream kNN, queries are performed on each sliding

window where data changes dynamically. When performing RTNN

on stream data, the data needs to be analyzed for each window,

and the entire BVH also has to be rebuilt. These analyses and index

updating operations may take more than half of the overall exe-

cution time, resulting in suboptimal performance and ray tracing

computational resource underutilization.

In this paper, we present a novel approach, StreamingRT, which

effectively accelerate stream kNN joinwith ray tracing cores. Stream-

ingRT effectively addresses the high overhead caused by frequent

data structure updates in streaming data scenarios. It is primarily

based on two key techniques: boundary-extended point partition-

ing and BVH lazy updating. We first partition the entire space into

small regions and build an independent BVH for each region, which

significantly reduces the cost of index reconstruction compared

to updating a single large BVH for each window. Then, based on

dynamically arriving queries and data points from the stream, we

Window N Window N+k

People stream

Car stream

Window N Window N+k
People Car People not change Car not change Knn join request

Success Request

Failed Request

Still Requesting

New Request

New Request

Figure 1: Example of Stream kNN Join

dynamically determine whether a BVH update is necessary for a

given query. This adaptive mechanism helps to minimize unnec-

essary computational overhead and significantly enhances stream

kNN query performance. By incorporating the optimizations, our

approach provides a highly efficient solution for stream kNN join.

The contributions of this paper are as follows:

• We propose StreamingRT, a solution that efficiently acceler-

ates stream kNN join with ray tracing cores.

• We propose two techniques to address the data updating

overhead in stream processing with RT cores: boundary-

extended point partitioning and BVH lazy updating.

• We evaluate its performance under diverse workloads and pa-

rameters. Our experimental results show that StreamingRT

can achieve 2.2× and 5.8× speedup over the state-of-the-art

approach on RT cores and CUDA cores, respectively.

To the best of our knowledge, StreamingRT is the first work

to study stream kNN join on ray tracing cores. We believe the

proposed techniques would benefit other stream processing jobs

with RT cores.

2 Background
2.1 Problem Definition of Stream kNN Join
kNN search. Given the tuple 𝑡 and the tuple set 𝑆 , the kNN of 𝑡

over 𝑆 is denoted as 𝑘𝑁𝑁 (𝑡, 𝑆) and defined as follows: 𝑘𝑁𝑁 (𝑡, 𝑆)
is a subset of 𝑆 with a maximum size of k, where the distance of

all other elements of 𝑆 to the tuple 𝑡 is greater than or equal to the

distance of each element of 𝑘𝑁𝑁 (𝑡, 𝑆) to the tuple 𝑡 .

𝑘𝑁𝑁 (𝑡, 𝑆) ⊂ 𝑆, |𝑘𝑁𝑁 (𝑡, 𝑆) | =𝑚𝑖𝑛(𝑘, |𝑆 |)
∀𝑠𝑖 ∈ 𝑘𝑁𝑁 (𝑡, 𝑆), 𝑠 𝑗 ∈ 𝑆 − 𝑘𝑁𝑁 (𝑡, 𝑆) → |𝑡, 𝑠𝑖 | ≤ |𝑡, 𝑠 𝑗 |

kNN join. Given the tuple set 𝑅 and the tuple set 𝑆 , the kNN of

𝑅 over 𝑆 is denoted as 𝑅 ⊲⊳𝑘𝑁𝑁 𝑆 and defined as follows: 𝑅 ⊲⊳𝑘𝑁𝑁 𝑆

is a subset of 𝑆 and each point in 𝑅 finds its kNN in 𝑆 and return all

the (𝑟, 𝑠) pairs where point 𝑠 in 𝑆 is one of k nearest neighbor of

point 𝑟 . The result set contains 𝑘 × 𝑛(𝑅) pairs.
Stream kNN join. Given two streams 𝑅 and 𝑆 , the kNN of 𝑅

over 𝑆 is denoted as 𝑅 ⊲⊳𝑘𝑁𝑁 𝑆 . For a specific time 𝑡 , 𝑅 ⊲⊳𝑘𝑁𝑁 𝑆

generates the result of𝑊𝑟 (𝑡) ⊲⊳𝑊𝑠 (𝑡) where𝑊𝑟 (𝑡) is the sliding
window of 𝑅 and𝑊𝑠 (𝑡) is the sliding window of 𝑆 at the time of 𝑡 .

In a stream kNN join process, the goal is to continuously process

incoming data streams and find the k-nearest neighbors (kNN)

for each new data point in real-time. This means that, for each

window of query stream, we need to locate its k-closest points

from the corresponding point stream window, which is particularly
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Figure 2: Example of ray tracing

useful for applications like anomaly detection, recommendation

systems, and traffic monitoring. For example, in Figure 1, consider

a live stream of GPS locations from taxi passengers as the query

stream, alongside another stream of GPS locations from various

taxis. At each time step with a specific window, a stream kNN join

operation identifies the 𝑘 nearest taxis for each passenger, enabling

prioritized pickups and optimized scheduling decisions based on

spatial distance. However, executing this process efficiently in real-

time presents several challenges. First, high throughput demands

can be challenging , requiring the system to handle a high query rate.

Second, as the data stream changes, it is also difficult to maintain

search index and in time updating. When the query and point

datasets in a stream kNN join are the same, the operation is referred

to as a stream self kNN join. In this case, each incoming data point

is compared with other points within the same stream to identify

its k-nearest neighbors. This self-join variant is particularly useful

for identifying similar items or detecting anomalies within a single

data stream, as it allows for real-time proximity analysis among

points from the same source.

2.2 Background of Ray Tracing
Ray tracing is a computationally demanding rendering technique

that accurately models light interactions within a scene, captur-

ing effects such as reflections, refractions, and absorption [29]. To

enhance performance, modern GPUs incorporate dedicated RT

cores—specialized hardware designed to accelerate ray tracing

computations. NVIDIA introduced its first-generation RT cores

with the Turing architecture, achieving up to a 10× speedup over

software-based implementations [29]. Since then, RT cores have

been integral to NVIDIA’s Turing, Ampere, and Ada architectures.

Beyond NVIDIA, other manufacturers have also adopted hardware-

accelerated ray tracing, with AMD integrating support in GPUs

like the Radeon RX 7800 XT. This broad adoption underscores the

growing importance of ray tracing in modern graphics processing.

At the heart of ray tracing is the computation of intersections

between rays and a 3D scene, which is typically represented as a

collection of geometric primitives such as triangles and spheres.

These intersection tests are the primary factor influencing rendering

time [35] and are significantly accelerated by RT cores. To optimize

these computations, the scene’s primitives are partitioned and en-

closed within bounding volumes, most commonly Axis-Aligned

Bounding Boxes (AABBs). Primitives directly contained within

AABBs are referred to as leaf AABBs. These bounding volumes are

further organized hierarchically into a tree structure known as the

BVH. Figure 2 illustrates a scene with three triangles, where leaf

Construct
BVH

optixAccel
Build

CUDA core

Ray Generation 
(RG) shader

BVH Tracing and 
Intersection Test

Intersection (IS) 
shader

Ray primitive 
intersect?

No

Any-Hit (AH) 
Shader

Yes 

Found a Hit? Closest-Hit 
(CH) Shader

Miss Shader

RT core

Figure 3: The simplified programming model of OptiX

AABBs enclose individual primitives, while larger AABBs encapsu-

late smaller ones to facilitate efficient traversal.

A ray is defined by an origin point 𝑂 and a direction vector 𝐷 ,

parameterized as:

𝑅(𝑡) = 𝑂 + 𝑡𝐷

where the parameter 𝑡 is typically constrained to an interval, 𝑡 ∈
[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], to define a finite segment of the ray. Once a ray is cast,

it traverses the BVH tree, with intersection tests against geometric

primitives efficiently accelerated by RT cores. During traversal, if a

ray intersects an AABB, further intersection tests are performed

on the primitives or AABBs enclosed within it. Conversely, if a ray

does not intersect an AABB, all enclosed primitives can be safely

skipped, as they are guaranteed not to intersect the ray. This hier-

archical pruning significantly reduces the computational workload

of ray tracing. As illustrated in Figure 2, Ray A bypasses AABB 2,

allowing primitive 𝑦 to be skipped entirely. In contrast, since Ray

A intersects AABB 3, further intersection tests must be performed

on its child nodes, AABB 4 and AABB 5 and finally intersects with

primitive 𝑧. Similarly, Ray B intersects AABB 2, bypasses AABB 3

and its enclosed AABB 4 and AABB 5, and eventually intersects

with primitive 𝑦.

Figure 3 illustrates the programming model of Nvidia OptiX.

The OptiX framework offers a flexible, shader-based programming

model that enables developers to define custom behaviors at various

stages of the ray traversal process. This level of control allows users

to tailor the ray tracing pipeline for a wide range of applications

beyond traditional rendering tasks. During ray traversal, the Inter-

section shader is triggered whenever a ray intersects a leaf node

in the AABB hierarchy. This shader is responsible for performing

the critical ray-primitive intersection test, determining whether the

ray intersects with any geometric primitives in the 3D space. If an

intersection is detected, the user-defined Any-Hit shader may be

invoked to process the intersection data. This shader provides the

flexibility to handle rays that intersect multiple primitives, such as

by determining transparency or conditionally accepting intersec-

tions. In addition to the Any-Hit shader, the OptiX model supports

other programmable shaders that further enhance control over the

ray tracing process. The Closest-Hit shader is executed when the

ray intersects the closest primitive along its path, providing precise

control over how intersection data is processed, such as shading

or recording the result of the nearest object. Conversely, the Miss

shader is called when a ray does not intersect any primitives, en-

abling users to define behavior for rays that miss all objects, such

as assigning a background color or other fallback logic.

By leveraging this rich shader-basedmodel, RT cores are not only

utilized to accelerate geometric intersection tests, including movie

special effects [4], advanced computer-aided manufacturing [6],

and video games [10], but also enable complex, customizable oper-

ations across various computational tasks. This versatility makes
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Figure 4: Transforming kNN join as a ray tracing job. (a) Di-
rect transformation into a ray tracing problem. (b) Optimized
ray tracing approach using short rays and spherical primi-
tives. (c) Stream processing with dynamic updates.

OptiX a powerful tool for both rendering and non-rendering appli-

cations, such as physics simulations, data processing, and spatial

queries, all of which benefit from the highly parallelized ray tracing

capabilities provided by Nvidia’s hardware. Recent studies have

increasingly explored the use of RT cores to accelerate render-

ing workloads, such as graph drawing [44], rendering transparent

objects [37], dexel modeling [15], and particle movement [1, 2]. Be-

yond graphics, several works have investigated leveraging RT cores

for data processing tasks. These include point location [22, 36],

nearest neighbor search [27, 45], DBSCAN clustering [26], database

indexing [13], range minimum queries [20] and efficient outlier

detection [38].

2.3 Challenges of Accelerating Stream KNN Join
with RT Cores

Building an efficient transformation of stream kNN join into a ray

tracing task involves two key aspects: 1) mapping data and query

into primitives and rays, and 2) consistently updating the data set

and the index on stream data.

For data mapping, Figure 4(a) demonstrates a naive transforma-

tion where each data point is represented by a sphere with a small

radius, while rays are cast from the query point 𝑄0 in multiple

directions with a predefined length 𝑟 , testing for intersections with

points 𝑃0, 𝑃1, 𝑃2, and 𝑃3. This leads to at least
2𝜋

arcsin( 𝑟𝑅 )
ray casting

where 𝑟 is the primitive radius and 𝑅 is ray length [38]. This ap-

proach casts an excessive amount of rays in the 3D space, while

the number of ray tracing cores is limited, resulting in unneces-

sary resource consumption. RTNN[45] is a pioneering work that

transforms the kNN join into a ray tracing job. RTNN performs a

grid-based static analysis on the dataset and generates primitives

of different sizes for each point, and a short ray is cast from each

query point to reduce intersection tests. This approach improves

kNN performance because it launches much fewer rays and reduces

the intersection count and this method is also used by other works

such as RT-KNNS [27].

Through experiments, we find that the approach of RTNN suffers

from inefficiency in handling stream data. First, analyzing the data

set and setting an appropriate radius for each primitive incurs a

huge overhead. Second, BVH reconstruction across streaming win-

dows also introduces significant costs. For the NBody dataset[32], it

takes about 26% of the overall execution time on data analysis and

optimization, while the BVH construction takes around 24% of the

O D

tmin

tmax

Condition 1

O

D
tmin

tmax

Condition 2
Figure 5: Two conditions for ray-AABB intersection

time [45]. This is extremely inefficient in processing streaming data,

as data analysis and BVH reconstruction are required for every

window, which means the utilization of the RT core is less than

40%.

3 Design and Implementation
3.1 Stream KNN Join as a Ray Tracing Job
In order to reduce the number of intersection tests and unnecessary

computation on stream data, we propose StreamingRT, which maps

stream kNN join into ray tracing jobs with lightweight updating.

Figure 4(b) demonstrates our optimized transformation of the kNN

join using RT cores. The transformation procedure creates a fixed

𝑟 -radius sphere around each point. Instead of casting rays in all

directions, short rays of length FLOAT_MIN are then cast from all

queries to traverse the BVH. For example, in Figure 4(b), the query

point𝑄0 emits a short ray, only testing for intersections with nearby

primitives. Rays intersect with the spheres representing 𝑃1 and 𝑃2,

marking them as potential nearest neighbors, while 𝑃0 and 𝑃3 do

not intersect the rays and are excluded from the kNN set. Figure 4(c)

illustrates how StreamingRT works on streaming data, where two

points, 𝑃0 and 𝑃1, are removed from the dataset, and two new points,

𝑃4 and 𝑃5, are added.

A ray is considered to intersect an AABB under two specific

conditions [45]. First, the ray physically intersects one or more of

the AABB’s bounds, shown in Figure 5 condition 1. Second, the

ray’s origin lies within the AABB, even if the ray does not intersect

any of the bounding faces directly, shown in Figure 5 condition

2. These conditions serve as the foundation for efficient traversal

and pruning in BVH. StreamingRT leverages condition 2 for its

short ray intersection mechanism. When a ray originating from 𝑄0

intersects a leaf AABB, the Intersection Shader in OptiX is invoked.

The shader checks whether 𝑄0 intersects the sphere enclosed by

the AABB by computing the Euclidean distance between𝑄0 and the

sphere’s center point. If the distance is less than 𝑟 , the ray cast from

𝑄0 is considered to have intersected the sphere and the intersected

point will be considered as one of the neighbors.

The mechanism adopted by StreamingRT brings several advan-

tages: it reduces unnecessary computations by focusing the ray

casting on specific regions of interest, improving overall scalability

by allowing the BVH (Bounding Volume Hierarchy) structure to

efficiently exclude distant points from consideration. Moreover, the

reduced number of intersection tests, combined with the use of RT

cores, significantly accelerates the kNN join on streaming data. To

meet the demands of high throughput and frequent updates, this

paper proposes two key optimization techniques to improve algo-

rithm performance. First, a boundary-extended point partitioning

strategy is employed to divide points in 3D space into different

regions, with a separate BVH tree constructed for each region. This

approach effectively reduces the overhead of BVH reconstruction

and avoids the cost of rebuilding a single large BVH for all points.
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Second, a BVH lazy updating scheme is utilized to reduce the re-

dundant computations during dynamic data updates. In addition, a

multi-BVH coprocessing and a CPU-GPU pipelining mechanism

are used to improve performance and fully exploit heterogeneous

computational resources. In the following parts of this section, we

provide detailed descriptions of these three techniques.

3.2 Boundary-Extended Point Partitioning
In ray tracing, constructing acceleration structures (e.g., BVH) is

a critical yet time-consuming process. The time required to build

a BVH tree is closely related to the number of AABBs present in

the scene. For instance, in Figure 6, constructing a BVH tree for

five million points takes approximately 25 milliseconds, while the

time increases to around 40 milliseconds for ten million points. As

the number of points increases, the time taken for BVH construc-

tion escalates significantly, and the ray tracing time also increases,

leading to potential performance degradation in overall ray tracing

processing on stream data. To address this challenge, we propose

a boundary-extended point partitioning strategy. This method in-

volves dividing the point set within the scene into multiple smaller

subsets, effectively reducing the overhead of globally reconstructing

the BVH tree during point flow.

In detail, we implement point partitioning using a grid-based

scheme along the 𝑥 , 𝑦, and 𝑧 axes in a three-dimensional space

shown in algorithm 1 line 1 to line 9. Each axis is divided indepen-

dently based on predefined partition counts. For example, setting

the partition counts to 𝑝𝑥 = 3, 𝑝𝑦 = 2, and 𝑝𝑧 = 1 means dividing

the 𝑥-axis into three partitions, the 𝑦-axis into two partitions, and

keeping the 𝑧-axis as a single partition. Given a range of 0 to 300

Algorithm 1 Boundary-extended Point Partitioning

Require: Point 𝑃 (𝑥,𝑦, 𝑧), max range 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧 , partition counts

𝑁𝑥 , 𝑁𝑦, 𝑁𝑧 , search radius 𝑟 , 3D partition list 𝐿

1: Compute cell sizes:

2: 𝐶𝑥 ← 𝑅𝑥/𝑁𝑥 , 𝐶𝑦 ← 𝑅𝑦/𝑁𝑦 , 𝐶𝑧 ← 𝑅𝑧/𝑁𝑧

3: Compute partition index:

4: 𝐼𝑥 ← ⌊𝑥/𝐶𝑥 ⌋ , 𝐼𝑦 ← ⌊𝑦/𝐶𝑦⌋ , 𝐼𝑧 ← ⌊𝑧/𝐶𝑧⌋
5: Add 𝑃 to its partition 𝐿𝑖 according to index

6: Compute cell boundaries:

7: 𝐵𝑚𝑖𝑛
𝑥 ← 𝐼𝑥 ×𝐶𝑥 , 𝐵𝑚𝑎𝑥

𝑥 ← (𝐼𝑥 + 1) ×𝐶𝑥
8: 𝐵𝑚𝑖𝑛

𝑦 ← 𝐼𝑦 ×𝐶𝑦 , 𝐵
𝑚𝑎𝑥
𝑦 ← (𝐼𝑦 + 1) ×𝐶𝑦

9: 𝐵𝑚𝑖𝑛
𝑧 ← 𝐼𝑧 ×𝐶𝑧 , 𝐵𝑚𝑎𝑥

𝑧 ← (𝐼𝑧 + 1) ×𝐶𝑧
10: Compute distance from 𝑃 to 6 boundaries:

11: 𝑁 ← number of distance < 𝑟

12: if 𝑁 = 1 then
13: Add 𝑃 to 1 face neighbor partition 𝐿𝑓 accordingly

14: else if 𝑁 = 2 then
15: Add 𝑃 to 2 face and 1 edge neighbor partitions 𝐿𝑒 accordingly

16: else if 𝑁 = 3 then
17: Add 𝑃 to 3 face, 3 edge and 1 vertex neighbor partitions 𝐿𝑣

accordingly

18: else
19: No additional partitions added

20: end if

for 𝑥 and 0 to 100 for both 𝑦 and 𝑧, the 𝑥-axis partitions span 0–100,

100–200, and 200–300, while the 𝑦-axis partitions cover 0–50 and

50–100. The 𝑧-axis remains unchanged. This results in a total of

3 × 2 × 1 = 6 partitions. The gray dashed lines in Figure 7 illustrate

the partitioning along the 𝑥- and 𝑦-axes.

A key challenge in partitioning is handling boundary conditions.

In our intersection tests, we determine whether the ray origin of

each query lies within a spherical primitive. Queries near partition

boundaries require special treatment to ensure accuracy. Specif-

ically, if the maximum radius 𝑟 of a spherical primitive is 5, we

expand each partition’s boundaries by this value in both directions.

This adjustment ensures that points near the boundary are cor-

rectly included in the corresponding BVH trees. For instance, 𝑃1
is a neighbor of 𝑃0 and 𝑃3 is a neighbor of 𝑃2, but they are not

in the partition directly, so we need to extend the boundaries by

𝑟 and include 𝑃1 and 𝑃3 to extended region, as illustrated by the

red solid box in Figure 7. This approach ensures that points near

boundaries are covered by multiple BVH trees, eliminating the need

for boundary queries to traverse multiple trees while maintaining

computational accuracy and improving traversal efficiency.

To determine whether a boundary point belongs to other parti-

tions, we calculate the distance between the point’s coordinates and

the six boundary planes of its enclosing partitioning cube based on

the search radius 𝑟 which is shown in algorithm 1 line 10 to line 20.

If the distance to a boundary plane is less than 𝑟 , the point is added

to the adjacent cube across that plane. If the point is within 𝑟 of a

single boundary, it is added to one face neighbor. If it is within 𝑟

of two boundaries, it is added to two face neighbors and one edge

neighbor. If it is within 𝑟 of three boundaries, it is added to three face

neighbors, three edge neighbors, and one vertex neighbor. Once the

space is partitioned, each data point is assigned to a specific region
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based on its coordinates. We do direct partitioning for query points

using its calculated index because queries don’t need extended and

queries within each partition are also sorted in Z-order to enhance

ray coherence, which improves memory access locality and boosts

performance. During the search process, we construct individual

BVH trees for each partition, forming a BVH forest. Since each

tree contains only a subset of the dataset, this partitioned approach

dramatically reduces traversal time and improve ray coherence

compared to searching through a single large BVH tree.

This approach not only optimizes the BVH building process but

also alleviates performance bottlenecks caused by an increasing

number of data points, thereby providing a more efficient solu-

tion for real-time ray tracing in dynamic scenes. In addition, point

partitioning brings another significant advantage: it enhances ray

coherence. Improving ray coherence significantly reduces memory

access inconsistencies during tree traversal, increases opportunities

for memory coalescing, lowers data access latency, and improves

cache hit rates. This optimization further enhances computational

efficiency in the ray tracing process.

3.3 BVH Lazy Updating
Our optimization strategy combines a lazy updating mechanism to

enhance efficiency in handling nearest neighbor searches across

dynamic partitions. The lazy updating approach addresses the issue

of unnecessary BVH rebuilds that occur due to independent move-

ments of queries and data points across partitions and data locality

across sliding window. Instead of rebuilding the BVH each time a

partition updates, we trigger a rebuild only when both conditions

are met: data points in a partition change, and a query accesses

this updated partition shown in algorithm 2 line 4 to line 16. For

instance, if data points shift in a particular partition but no query

accesses it, the BVH remains unaltered, conserving computational

resources. Similarly, if a query changes its position without the

data points in a partition being modified, the BVH for that partition

is left as is. This lazy updating approach thus minimizes unneces-

sary BVH rebuilds, allowing queries to proceed through previous

traversal structures and reducing time and computational load.

We first do extended partitioning for incomming point window,

and direct partitioning for query window. For each partition, a

previous point set is maintained for comparison. The previous set

and the BVH are in a one-to-one correspondence, so it only update

when BVH is updated, which is shown in line 15. To efficiently

compare the differences between previous point set and current

point set, we use sets to store the points in each window. Since

the coordinates are floating-point numbers, to avoid errors caused

by floating-point hashing, we encode the coordinates as strings.

For instance, we represent the value of each axis as an 8-character

string, where the integer part occupies the first 3 characters and

the fractional part up to 5 decimal places occupies the remaining

5 characters. Padding is applied to both parts as needed. This en-

coding scheme can be adjusted according to specific application

needs and data distribution. Finally, the three encoded axis values

are concatenated into a 24-character string, which is used as the

key for storage.

Algorithm 2 Partitioned Lazy Update Decision Algorithm

Require: Previous point window set list 𝑃prev, current point win-

dow𝑊cur, current query window 𝑄cur

1: Extended partition𝑊cur into {𝑊 1

cur
,𝑊 2

cur
, . . . ,𝑊 𝑁

cur
}

2: Direct partition 𝑄cur into {𝑄1

cur
, 𝑄2

cur
, . . . , 𝑄𝑁

cur
}

3: for all𝑊 𝑖
cur

in {𝑊 1

cur
,𝑊 2

cur
, . . . ,𝑊 𝑁

cur
} do

4: if 𝑄𝑖
cur

is empty then
5: continue
6: end if
7: Initialize empty set 𝑃𝑖

cur

8: for all 𝑝 ∈𝑊 𝑖
cur

do
9: 𝑘𝑒𝑦 ← EncodePoint(𝑝)
10: Add 𝑘𝑒𝑦 to 𝑃𝑖

cur

11: end for
12: if 𝑃𝑖

cur
= 𝑃𝑖

prev
then

13: (Perform query without rebuilding BVH)

14: else
15: 𝑃𝑖

prev
← 𝑃𝑖

cur

16: (Rebuild BVH structure and perform query)

17: end if
18: end for

3.4 Implementation and Optimization
3.4.1 Multi-BVH coprocessing In our ray tracing approach, we as-

semble the traversal of all queries into a single kernel launch rather

than using multiple CUDA streams. This decision is based on the

fact that the RT cores are typically operating at maximum capacity,

making the use of multiple streams effectively serial in nature. Ad-

ditionally, introducing multiple streams would lead to extra CPU

scheduling overhead and context-switching costs between streams,

which could increase tracing time and reduce overall performance.

OptiX inherently supports a single-ray programming model,

where each optixTrace call initiates a single ray and allows for

flexible use of multiple traversable handles for different acceleration

structures (AS), which can be chosen per ray in a single launch. This

flexibility allows us to set up a BVH forest where each partition has

its own BVH.We organize queries for each partition in advance and,

during tracing, select the appropriate BVH for each query based on

its identifier. By consolidating queries across different partitions

into a single launch, we maximize the GPU’s workload efficiency,

reducing kernel launch overhead while minimizing unnecessary

stream-switching and resource contention. OptiX does allow for

parallel optixLaunch calls in separate CUDA streams. However, if

the launch dimensions are large enough to saturate the GPU, there is

minimal advantage to runningmultiple launches in parallel[9]. Each

launch would share the same hardware units, and the asynchronous

processing could introduce substantial overhead. For our approach,

a single optixLaunch covering all queries from different partitions

in one call not only minimizes performance losses from stream-

switching but also simplifies the pipeline by eliminating the need

for separate launch parameters and output buffers across streams.

Each partition is assigned a unique BVH tree, and every BVH is

associated with an identifier. During the traversal process, each

ray retains the identifier of its corresponding BVH, allowing it to

selectively traverse only the BVH tree with the matching identifier.

By ensuring that each ray operates independently on its assigned
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BVH, this design minimizes contention for shared resources and

reduces the overhead typically associated with managing multiple

kernel launches.

3.4.2 CPU-GPU Pipeline In StreamingRT, the CPU is responsible

for extended point partitioning and the BVH lazy update checking

mechanism. For each window, the CPU first partitions the data

points using an extended partitioning algorithm and directly assigns

queries to their corresponding partitions. After partitioning, the

memory layout of the points is reorganized, and the queries within

each partition are sorted in Z-order. Once this process is complete,

all data is transferred to the GPU. The GPU is responsible for BVH

rebuilding and BVH traversal. It updates the BVH structures based

on the lazy update results provided by the CPU, and then performs

traversal to compute the kNN join results.

In StreamingRT, we build a CPU-GPU pipelining strategy to

accelerate the overall processing workflow. With the pipelining,

when the GPU is performing the kNN on the 𝑖th window with RT

cores, the CPU is performing data partitioning and checking lazy

update in parallel. This parallelism ensures that the CPU continu-

ously prepares partition data in advance, synchronizing with the

GPU’s ray tracing completion. When a new optixLaunch occurs,
the necessary partitioned data is already preprocessed, reducing

setup times and preventing GPU idle time.

4 Experiments
4.1 Experimental Setup
Dataset In our experiments, we use four 3D datasets with distinct

characteristics to evaluate the performance of the stream kNN join.

The Millennium Simulation Project [24, 25] provides a cosmolog-

ical N-body simulation dataset [32] containing 10M points, with

coordinates ranging from 0 to 500 along each of the three axes.

The Buddha and Dragon [5] model from the Stanford 3D Scanning

Repository [17] has 4.6M and 2.7M points respectively and most

points coordinate in [-1, 1] along the three axes. These three datasets

are three-dimensional and used for stream self kNN join: the Mil-

lennium dataset contains numerous dense clusters representing

galactic structures, where points are tightly packed within clusters

but widely spaced between clusters. The Buddha and Dragon model

has highly dense points distributed in a relatively small space, cap-

turing the detailed contours of the object. The fourth dataset, the

NYC Taxi Dataset of 2017 with about 3M points [34] ranging from

[0, 250] along x and y axes, is used for standard stream kNN join,

where passenger pick-up locations serve as queries, and drop-off

locations act as points. This dataset is primarily distributed in a

two-dimensional 𝑥𝑦-plane (latitude and longitude), reflecting New

York City’s layout. The data points are more uniformly spread due

to the nature of citywide travel patterns, introducing randomness

across spatial areas. For GPU memory usage, the AABB of a single

point requires two 3D floating-point vectors(32B with padding) for

representation. For 1 million points, the total memory consump-

tion is approximately 60MB(for inner-nodes and leaf-nodes), which

is much smaller than the available GPU memory. Thus, memory

capacity is not a limiting factor in this case.

Competitors To evaluate the performance of our approach, we

compare it with two state-of-the-art nearest neighbor search meth-

ods: RTNN [45, 46] and FRNN [40]. RTNN utilizes NVIDIA’s RTCore

technology, originally designed for ray tracing in graphics, to accel-

erate the neighbor search process. By treating search queries as rays

that intersect spatial structures, RTNN can efficiently traverse large

datasets, leveraging RT core’s hardware-accelerated ray-tracing

capabilities. It also adopts two optimizations: query scheduling and

query partition. This approach allows RTNN to achieve significant

speed-ups in query handling by optimizing traversal steps. FRNN,

by contrast, operates on a fixed-radius nearest neighbor search

principle and is fully optimized for CUDA-based GPU computation

and it is also a drop-in replacement for kNN in Pytorch [8]. It di-

vides the space into partitions with a grid cell index, allowing it to

focus on a specific radius for each query, which leads to consistent,

efficient performance. FRNN’s reliance on spatial partitioning and

memory caching minimizes memory transfer latency and maxi-

mizes throughput, making it particularly well-suited for dense data

applications.

Hardware and Software We conduct all experiments on a

machine equipped with an Intel(R) Xeon(R) Silver 4316 CPU @

2.30GHz, 128GB DDR4 DRAM, and an NVIDIA GeForce RTX 4090

GPU featuring 128 RT cores, 16384 CUDA cores, and 24GB VRAM.

The operating system is 64-bit Ubuntu Server 20.04 with Linux

Kernel 5.15.0-72-generic. Our algorithm is implemented in C++ 17,

and the program is compiled using CUDA 12.1 and OptiX 7.5.

4.2 Performance Analysis with Different 𝑘
Neighbor Counts

This experiment evaluates the scalability of the three algorithms

as the number of neighbors 𝑘 increases from 10 to 50 across four

datasets. As shown in Figure 8, the results highlight distinct perfor-

mance trends among the algorithms. The search radius for NBody

and NYTaxi is fixed at 5, while for Buddha and Dragon, it is set to

0.0001, with a window size of one million points and step size is of

20% window size.

StreamingRT consistently achieves the lowest execution times

across all datasets, benefiting from its streamlined design, which del-

egates preprocessing tasks to the CPU and executes ray tracing in

a single kernel launch. Unlike RTNN, which relies on multi-stream

and multi-kernel execution, StreamingRT minimizes coordination

overhead, leading to an average speedup of 1.4× on the NBody

dataset and over 2.2× on Buddha and Dragon. FRNN exhibits the

highest processing times, primarily due to its fixed-radius search

strategy. It constructs grid-based indices for each window, introduc-

ing substantial overhead as 𝑘 increases. This limitation is especially

pronounced in the Buddha and Dragon datasets, where FRNN is

outperformed by StreamingRT bymore than 5.5×. The inefficiencies

in FRNN’s index-building approach make it less suited for scenarios

with varying query parameters.

4.3 Performance Analysis Across Different
Window Sizes

Figure 9 presents the processing times of the three algorithms across

varying window sizes for four datasets. The search radius is set to

5 for NBody and NYTaxi, while Buddha and Dragon use a radius

of 0.0001. The number of neighbors 𝑘 is fixed at 10. Due to dataset

size, we use different window size on different dataset.
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Figure 8: Performance for one window of StreamingRT, RTNN, and FRNN across varying 𝑘 values.
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Figure 9: Performance for one window of StreamingRT, RTNN, and FRNN across varying window sizes.
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Figure 10: Performance for one window of StreamingRT, RTNN, and FRNN as sliding size varies from 20% to 100% of the
window.

For NBody dataset, StreamingRT achieves a speedup of over

1.6× compared to RTNN and more than 5.8× over FRNN. This effi-

ciency arises from its streamlined CPU-GPU pipeline and optimized

BVH updates, which minimize redundant computations. RTNN per-

forms well at smaller window sizes but suffers from increasing

synchronization and management overhead due to its multi-stream,

multi-kernel execution. FRNN exhibits the steepest performance

degradation, as its grid-based indexing must be rebuilt for each

window, making it inefficient for clustered data.

For the Buddha and Dragon dataset, StreamingRT maintains the

lowest processing times, benefiting from its lazy BVH updating

and single-kernel execution. StreamingRT is more than 1.8× faster

than RTNN and over 5.8× faster than FRNN. For the NYTaxi dataset,

StreamingRT continues to outperform the alternatives, and achieves

speedups of over 1.6× against RTNN and more than 1.5× over FRNN.

4.4 Performance Analysis with Varying Sliding
Sizes

Figure 10 shows the execution time (in milliseconds) of three algo-

rithms as the sliding size varies from 20% to 100% of the window.

This experiment evaluates how each algorithm scales with increas-

ing data updates. The experiment is conducted on the four datasets

with a search radius of 5 on NBody and 0.0001 on Buddha and

Dragon, 𝑘 = 10, and a window size of one million points. The slid-

ing size represents the proportion of points updated within each

window.

StreamingRT achieves the lowest execution time across all sliding

sizes, demonstrating superior adaptability as updating data volume

increases. At the largest sliding size, it is over 1.4 times faster than

RTNN and more than 5.6 times faster than FRNN. This efficiency
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Figure 11: Time performance of StreamingRT, RTNN, and
FRNN across varying radius for NBody datasets.

stems from its lazy BVH updates and pipeline optimization, which

minimize redundant computations. The relatively shallow increase

in its processing time is caused by the data preprocessing on CPU

when facing more data updating. Even when performing a full

update for each window, StreamingRT still outperforms the other

two algorithms. RTNN exhibits a moderate increase in processing

time as the sliding size grows. Its reliance on ray tracing hardware

provides efficiency but requires optimization at each step, making

it less responsive to sliding variations. Since RTNN processes all

points within the window regardless of updates, its performance

remains relatively stable compared to StreamingRT. FRNN, similarly,

shows limited sensitivity to sliding size changes, as it reconstructs

grid-based indices for every window. However, this approach incurs

significant overhead, leading to the highest execution times among

the three methods. The high cost of index rebuilding makes FRNN

less suitable for applications requiring dynamic data adaptation.
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Figure 12: Impact of various optimization techniques on per-
formance across NBody and Buddha datasets.

4.5 Performance Analysis Across Different
Radius

Figure 11 presents the processing time for three algorithms as

the search radius varies from 5 to 20. We only use NBody dataset

because of the limitation of coordination range. This experiment

evaluates how increasing the radius affects performance, as a larger

radius expands the search space, increasing intersection checks

and computational overhead. The experiment is conducted on the

NBody dataset with 𝑘 = 10 and a window size of one million points.

For small radii (e.g., 𝑟 = 5), StreamingRT exhibits the best perfor-

mance, achieving significantly lower processing time than RTNN

and FRNN. This advantage arises from its efficient hardware utiliza-

tion and multi-BVH coprocessing, which allows rapid processing

of smaller queries. As the radius grows, StreamingRT maintains

relatively stable performance, dynamically adjusting resources to

minimize redundant operations and balance the workload. RTNN

shows stable performance across different radii, as it determines an

optimal search radius globally. This design prevents performance

degradation as the specified radius increases, making RTNN robust

and efficient. However, for small radii, its preprocessing overhead

may outweigh its benefits, leading to slightly higher runtime than

StreamingRT. FRNN consistently exhibits the highest processing

time, particularly for large radii. Its fixed-radius search structure

lacks adaptability, leading to increased computational costs as the

search space expands. This limitation makes FRNN less efficient for

scenarios requiring flexible search parameters.

4.6 Impact of Optimization Techniques on
Performance

Figure 12 illustrates the impact of different optimization techniques

on processing time for the NBody and Buddha datasets. The meth-

ods include No Optimization, Partitioning (PT), PT with Multi-

BVH coprocessing (PT+MBC), and PT+MBC with Lazy Updating

and CPU-GPU pipeline (PT+MBC+LU), evaluating their effective-

ness in reducing computation overhead. No Optimization serves

as a baseline, showing high processing times, particularly for the

Buddha dataset due to its dense distribution. Partitioning (PT) im-

proves performance by dividing the search space, reducing BVH

rebuild time, but introduces partitioning overhead that limits its

standalone efficiency. Adding Multi-BVH coprocessing (PT+MBC)

enhances performance by reducing kernel launch overhead and

stream-switching costs. The final optimization, PT+MBC+LU, achieves

the lowest processing times by minimizing redundant updates and

reducing memory transfer time.

5 Related Work
Stream KNN and kNN Join Several works have focused on pro-

cessing kNN join queries on streaming data, proposing various

innovative solutions to address the unique challenges of this task.

Yang et al. [41] introduced a high-dimensional R-tree (HDR-tree)

to tackle the reverse kNN problem on data streams, specifically

for use in recommender systems. Koudas et al. [16] developed an

approximate kNN method for sliding windows, employing adaptive

indexing based on space-filling curves to improve efficiency. Ex-

panding on the concept of continuous queries, Mouratidis et al. [23]

proposed a solution for continuous nearest neighbor queries on data

streams using conceptual partitioning, as well as a distributed kNN

processing system designed for publish/subscribe environments via

a content-addressable network overlay. To address scalability and

dynamic data challenges, Shahvarani et al. [30] introduced ADS-

kNN, an adaptive and scalable stream kNN join system tailored

for highly dynamic data streams. Hu et al. [14] proposed LSHI, a

locality-sensitive hashing-based index, to handle kNN join queries

in recommender systems efficiently. Gowanlock [11] presented

HybridKNN-Join, which incorporates three key optimizations to

fully utilize both CPU andGPU resources, demonstrating significant

improvements in kNN join task performance. Zhu [47] presented

GTS, a GPU-based tree index designed for the parallel processing of

similarity search with great performance gains. These complemen-

tary approaches collectively highlight the diversity of techniques

developed to advance kNN join query processing on streaming

data.

Ray Tracing Ray tracing technology is widely utilized in vari-

ous graphics applications, including movie special effects [4], ad-

vanced computer-aided manufacturing [6], and video games [10].

Recent studies have increasingly explored the use of RT cores to

accelerate rendering workloads, such as graph drawing [44], ren-

dering transparent objects [37], dexel modeling [15], and particle

movement [1, 2]. Beyond graphics, several works have investigated

leveraging RT cores for data processing tasks. These include point

location [22, 36], nearest neighbor search [27, 45], DBSCAN cluster-

ing [26], database indexing [13], and range minimum queries [20].

All these methods share a similar approach of transforming ques-

tions into RT core operations, but they focus on different domains.

6 Conclution
This paper presents StreamingRT, a high-performance framework

for stream kNN joins leveraging GPU ray tracing (RT) cores in 3D

space. By formulating stream kNN joins as ray tracing problems

and proposing boundary extended point partitioning to reduce

BVH reconstruction overhead, and BVH lazy updating to minimize

redundant computations, with CPU-GPU pipeline and multi-BVH

coprocessing improving performance, StreamingRT delivers over

2.2× and 5.8× speedup over the state-of-the-art approach on RT

cores and CUDA cores, respectively, paving the way for further

innovations in real-time analytics and high-dimensional query han-

dling.

7 Disclose Use of GenAI Tools
This paper was manually written by the authors, with generative

AI tools used for spell checking and grammar correction.
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