
Carnegie Mellon

Floating Point

Kai Zhang
Fudan Unviersity

zhangk@fudan.edu.cn

from https://csapp.cs.cmu.edu/3e/home.html

mailto:zhangk@fudan.edu.cn

2

Carnegie Mellon

Today: Floating Point

¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

3

Carnegie Mellon

Fractional Binary Numbers

¢ What is 1011.1012?

4

Carnegie Mellon

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

¢ Representation
§ Bits to right of “binary point” represent fractional powers of 2
§ Represents rational number:

• • •

5

Carnegie Mellon

Fractional Binary Numbers: Examples

¢ Value Representation (10111 = 16+4+2+1 = 23)
5 3/4 = 23/4 101.112 = 4 + 1 + 1/2 + 1/4
2 7/8 = 23/8 010.1112 = 2 + 1/2 + 1/4 + 1/8
1 7/16 = 23/16 001.01112 = 1 + 1/4 + 1/8 + 1/16

¢ Observations
§ Divide by 2 by shifting right (unsigned)
§ Multiply by 2 by shifting left
§ Numbers of form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
§ Use notation 1.0 – ε

6

Carnegie Mellon

Quiz Time!

Exercise 2.45

7

Carnegie Mellon

Representable Numbers

¢ Limitations?

8

Carnegie Mellon

Representable Numbers

¢ Limitation #1
§ Can only exactly represent numbers of the form x/2k

§ Other rational numbers have repeating bit representations

§ Value Representation
§ 1/3 0.0101010101[01]…2
§ 1/5 0.001100110011[0011]…2
§ 1/10 0.0001100110011[0011]…2

¢ Limitation #2
§ Just one setting of binary point (二进制小数点) within the w bits

§ Limited range of numbers (very small values? very large?)

9

Carnegie Mellon

Today: Floating Point

¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

10

Carnegie Mellon

IEEE Floating Point

¢ IEEE Standard 754
§ Established in 1985 as uniform standard for floating point arithmetic

§ Before that, many idiosyncratic formats
§ Supported by all major CPUs
§ Some CPUs don’t implement IEEE 754 in full

e.g., early GPUs, Cell BE processor

¢ Driven by numerical concerns
§ Nice standards for rounding, overflow, underflow
§ Hard to make fast in hardware

§ Numerical analysts predominated over hardware designers
in defining standard

11

Carnegie Mellon

Floating Point Representation
Example:
1521310 = (-1)0 x 1.11011011011012 x 213

¢ How to represent very large or small float numbers?

12

Carnegie Mellon

¢ Numerical Form:
(–1)s M 2E

§ Sign bit s determines whether number is negative or positive
§ Significand M normally a fractional value in range [1.0,2.0)
§ Exponent E weights value by power of two

¢ Encoding
§ MSB s is sign bit s
§ exp field encodes E (but is not equal to E)
§ frac field encodes M (but is not equal to M)
§ Similar to Sign-Magnitude(原码, P47)

Floating Point Representation

s exp frac

Example:
1521310 = (-1)0 x 1.11011011011012 x 213

13

Carnegie Mellon

Precision options

¢ Single precision: 32 bits
» 7 decimal digits, 10±38

¢ Double precision: 64 bits
» 16 decimal digits, 10±308

¢ Other formats: half precision, quad precision

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

14

Carnegie Mellon

Three “kinds” of floating point numbers

s exp frac

1 e-bits f-bits

00…00 exp ≠ 0 and exp ≠ 11…11 11…11

denormalized normalized special

15

Carnegie Mellon

“Normalized” Values

¢ When: exp ≠ 000…0 and exp ≠ 111…1

¢ Exponent coded as a biased value: E = exp – Bias
§ exp: unsigned value of exp field
§ Bias = 2k-1 - 1, where k is number of exponent bits

§ Single precision: 127 (exp: 1…254, E: -126…127)
§ Double precision: 1023 (exp: 1…2046, E: -1022…1023)

¢ Significand coded with implied leading 1: M = 1.xxx…x2
§ xxx…x: bits of frac field
§ Minimum when frac=000…0 (M = 1.0)
§ Maximum when frac=111…1 (M = 2.0 – ε)
§ Get extra leading bit for “free”

v = (–1)s M 2E

Carnegie Mellon

Normalized Encoding Example

Value: float F = 15213.0;
1521310 = 111011011011012

= 1.11011011011012 x 213

Significand
M = 1.11011011011012

frac = 110110110110100000000002

Exponent
E = 13

Bias = 2k-1 -1 = 28-1-1 = 127
exp = E + Bias = 13 + 127 = 140 = 100011002

Result:

0 10001100 11011011011010000000000
s exp frac

v = (–1)s M 2E

E = exp – Bias

17

Carnegie Mellon

C float Decoding Example

float: 0xC0A00000

binary:

1 8-bits 23-bits

E = 129

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E = exp – Bias

v = (–1)s M 2E =

Bias = 2k-1 – 1 = 127

18

Carnegie Mellon

C float Decoding Example

E = 129

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E = exp – Bias

v = (–1)s M 2E =

float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

19

Carnegie Mellon

C float Decoding Example

float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

E = exp – Bias = 129 – 127 = 2 (decimal)

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E = exp – Bias

v = (–1)s M 2E = (-1)1 * 1.25 * 22 = -5

Bias = 2k-1 – 1 = 127

20

Carnegie Mellon

How to represent 0 or numbers close to 0?

¢ Normalized numbers present 1.xxxx * 2^x

21

Carnegie Mellon

Denormalized Values

¢ Condition: exp = 000…0

¢ Exponent value: E = 1 – Bias (instead of exp – Bias, why?)
¢ Significand coded with implied leading 0: M = 0.xxx…x2

§ xxx…x: bits of frac

¢ Cases
§ exp = 000…0, frac = 000…0

§ Represents zero value
§ Note distinct values: +0 and –0 (sign bit)

§ exp = 000…0, frac ≠ 000…0
§ Numbers closest to 0.0
§ Equispaced

v = (–1)s M 2E

E = 1 – Bias

22

Carnegie Mellon

Special Values

¢ Condition: exp = 111…1

¢ Case: exp = 111…1, frac = 000…0
§ Represents value ¥ (infinity)
§ Operation that overflows
§ Both positive and negative (+¥, -¥)
§ E.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥ (printf -> “inf”)

¢ Case: exp = 111…1, frac ≠ 000…0
§ Not-a-Number (NaN)
§ Represents case when no numeric value can be determined
§ E.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

23

Carnegie Mellon

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

24

Carnegie Mellon

Today: Floating Point

¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

25

Carnegie Mellon

Tiny Floating Point Example

¢ 8-bit Floating Point Representation
§ the sign bit is in the most significant bit
§ the next four bits are the exp, with a bias of 7
§ the last three bits are the frac

¢ Same general form as IEEE Format
§ normalized, denormalized
§ representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

26

Carnegie Mellon

s exp frac E Value

0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240

Dynamic Range (s=0 only)

smallest norm

closest to 1 below

closest to 1 above

largest norm

Normalized
numbers

v = (–1)s M 2E

norm: E = exp – Bias
denorm: E = 1 – Bias

(-1)0(1+1/8)*2-6

27

Carnegie Mellon

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (s=0 only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

norm: E = exp – Bias
denorm: E = 1 – Bias

(-1)0(0+1/4)*2-6

(-1)0(1+1/8)*2-6

28

Carnegie Mellon

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 23-1-1 = 3

¢ Notice how the distribution gets denser toward zero.
8 values

s exp frac

1 3-bits 2-bits

29

Carnegie Mellon

Distribution of Values (close-up view)

¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

30

Carnegie Mellon

Quiz Time!

Exercise 2.47

31

Carnegie Mellon

Special Properties of the IEEE Encoding

¢ FP Zero Same as Integer Zero
§ All bits = 0

¢ Can (Almost) Use Unsigned Integer Comparison
§ Must first compare sign bits
§ Must consider −0 = 0
§ NaNs problematic

§ Will be greater than any other values
§ What should comparison yield? The answer is complicated.

§ Otherwise OK
§ Denorm vs. normalized
§ Normalized vs. infinity

32

Carnegie Mellon

Special Properties of the IEEE Encoding

¢ The smallest positive normalized value?
§ Exp = 1
§ Frac = 0
§ E = 1 – Bias = 1 – (2^(k-1) - 1) = -2^(k-1)+2
§ Value is 2^(-2^(k-1) + 2)

¢ The smallest positive denormalized value?
§ E = 1 – Bias = -2^(k-1)+2
§ Value is 2^(-2^(k-1) + 2) * 2^-n = 2^(-n-2^(k-1)+2)

¢ The largest denormalized value?
§ (1-2^(-n))*2*(-2*(k-1)+2)

¢ P82

33

Carnegie Mellon

Quiz Time!

Exercise 2.48

34

Carnegie Mellon

Today: Floating Point

¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

35

Carnegie Mellon

Floating Point Operations: Basic Idea

¢ x +f y = Round(x + y)

¢ x ´f y = Round(x ´ y)

¢ Basic idea
§ First compute exact result
§ Make it fit into desired precision

§ Possibly overflow if exponent too large
§ Possibly round to fit into frac

36

Carnegie Mellon

Rounding

¢ Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 –$1.50
§ Towards zero $1 $1 $1 $2 –$1
§ Round down (−¥) $1 $1 $1 $2 –$2
§ Round up (+¥) $2 $2 $2 $3 –$1
§ Nearest Even* (default) $1 $2 $2 $2 –$2

*Round to nearest, but if half-way in-between then round to nearest even (偶数)

What is the statistic issue for Roundup (四舍五入)？

37

Carnegie Mellon

Closer Look at Round-To-Even

¢ Default Rounding Mode
§ 50% round up, 50% round down
§ C99 has support for rounding mode management
§ All others are statistically biased

§ Sum of set of positive numbers will consistently be over- or under-
estimated

¢ Applying to Other Decimal Places / Bit Positions
§ When exactly halfway between two possible values

§ Round so that least significant digit is even
§ E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)

38

Carnegie Mellon

Rounding Binary Numbers

¢ Binary Fractional Numbers
§ “Even” when least significant bit is 0
§ “Half way” when bits to right of rounding position = 100…2

¢ Examples
§ Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

39

Carnegie Mellon

Rounding

¢ Round up conditions
§ Round = 1, Sticky = 1 ➙ > 0.5
§ Round = 0 ➙ < 0.5
§ Guard = 1, Round = 1, Sticky = 0 ➙ Round to even

Fraction GRS Incr? Rounded
1.0000000 000 N 1.000
1.1010000 100 N 1.101

1.0001000 010 N 1.000
1.0011000 110 Y 1.010

1.0001010 011 Y 1.001

1.1111100 111 Y 10.000

1.BBGRXXX
Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits

40

Carnegie Mellon

Quiz Time!

Exercise 2.50

41

Carnegie Mellon

Floating Point Addition

¢ (–1)s1 M1 2E1 + (-1)s2 M2 2E2

§Assume E1 > E2

¢ Exact Result: (–1)s M 2E

§Sign s, significand M:
§ Result of signed align & add

§Exponent E: E1

¢ Fixing
§If M ≥ 2, shift M right, increment E
§if M < 1, shift M left k positions, decrement E by k
§Overflow if E out of range
§Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up

1.010*22 + 1.110*23 = (0.1010 + 1.1100)*23

= 10.0110 * 23 = 1.00110 * 24 = 1.010 * 24

Carnegie Mellon

Mathematical Properties of FP Add

Compare to those of Abelian Group（阿贝尔群，P62）
Closed under addition?

But may generate infinity or NaN
Commutative?

Associative?
Overflow and inexactness of rounding

(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity(加法单位元)?
Every element has additive inverse?

Yes, except for infinities & NaNs
Monotonicity

a ≥ b ⇒ a+c ≥ b+c?
Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

43

Carnegie Mellon

FP Multiplication

¢ (–1)s1 M1 2E1 x (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

§ Sign s: s1 ^ s2
§ Significand M: M1 x M2
§ Exponent E: E1 + E2

¢ Fixing
§ If M ≥ 2, shift M right, increment E
§ If E out of range, overflow
§ Round M to fit frac precision

¢ Implementation
§ Biggest chore is multiplying significands（尾数）

4 bit significand: 1.010*22 x 1.110*23 = 10.0011*25

= 1.00011*26 = 1.001*26

Carnegie Mellon

Mathematical Properties of FP Mult

Compare to Commutative Ring (交换环)
Closed under multiplication?

But may generate infinity or NaN
Multiplication Commutative?
Multiplication is Associative?

Possibility of overflow, inexactness of rounding
Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

1 is multiplicative identity?
Multiplication distributes over addition(a*(b+c) = a*b+a*c)?

Possibility of overflow, inexactness of rounding
1e20*(1e20-1e20)= 0.0,

1e20*1e20 – 1e20*1e20 = NaN
Monotonicity

a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
Except for infinities & NaNs

Yes

Yes
No

Yes

No

Almost

45

Carnegie Mellon

Today: Floating Point

¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary

46

Carnegie Mellon

Floating Point in C

¢ C Guarantees Two Levels
§ float single precision
§ double double precision

¢ Conversions/Casting
§ Casting between int, float, and double changes bit representation
§ double/float → int

§ Truncates fractional part
§ Like rounding toward zero
§ Not defined when out of range or NaN: Generally sets to TMin

§ int → double (double has 64 bits, higher precision)
§ Exact conversion, as long as int has ≤ 53 (1 s + 52 frac) bit word size

§ int → float (no overflow, may rounding)
§ Will round according to rounding mode

47

Carnegie Mellon

int vs float

¢ There is no one-one mapping between int and float
§ int : uniform distributed in the space

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

48

Carnegie Mellon

Floating Point Puzzles

¢ For each of the following C expressions, either:
§ Argue that it is true for all argument values
§ Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;
float f = …;

double d = …;

Assume neither
d nor f is NaN

49

Carnegie Mellon

Summary

¢ IEEE Floating Point has clear mathematical properties
¢ Represents numbers of form M x 2E

¢ One can reason about operations independent of
implementation
§ As if computed with perfect precision and then rounded

¢ Not the same as real arithmetic
§ Violates associativity/distributivity
§ Makes life difficult for compilers & serious numerical applications

programmers

50

Carnegie Mellon

Additional Slides

51

Carnegie Mellon

Creating Floating Point Number

¢ Steps
§ Normalize to have leading 1
§ Round to fit within fraction
§ Postnormalize to deal with effects of rounding

¢ Case Study
§ Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers
128 10000000

15 00001101
33 00010001

35 00010011

138 10001010
63 00111111

s exp frac

1 4-bits 3-bits

52

Carnegie Mellon

Normalize

¢ Requirement
§ Set binary point so that numbers of form 1.xxxxx
§ Adjust all to have leading one

§ Decrement exponent as shift left
Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4

138 10001010 1.0001010 7
63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits

53

Carnegie Mellon

Postnormalize

¢ Issue
§ Rounding may have caused overflow
§ Handle by shifting right once & incrementing exponent
Value Rounded Exp Adjusted Numeric Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20

138 1.001 7 134
63 10.000 5 1.000/6 64

54

Carnegie Mellon

Interesting Numbers
Description exp frac Numeric Value
¢ Zero 00…00 00…00 0.0
¢ Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

§ Single ≈ 1.4 x 10–45

§ Double ≈ 4.9 x 10–324

¢ Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

§ Single ≈ 1.18 x 10–38

§ Double ≈ 2.2 x 10–308

¢ Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

§ Just larger than largest denormalized

¢ One 01…11 00…00 1.0
¢ Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

§ Single ≈ 3.4 x 1038

§ Double ≈ 1.8 x 10308

{single,double}

