Machine-Level Programming I:
Basics

Kai Zhang
Fudan Unviersity
zhangk@fudan.edu.cn

from https://csapp.cs.cmu.edu/3e/home.html

mailto:zhangk@fudan.edu.cn

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Intel x86 Processors

= Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

® Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

" First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3333
" First multi-core Intel processor

m Corei?7 2008 731M 1600-4400
" Four cores

m Corei9 2023 4.2B 4600-6000
= 24 cores

m M2 Ultra-2023 -67B - 24-core CPU, 60-core GPU, 32-core Neural Engine

Intel x86 Processors, cont.

m Machine Evolution

Integrated:Memory Controller~:3:Ch DDR3:

= 386 1985 0.3M

" Pentium 1993 3.1M

" Pentium/MMX 1997 4.oM Core 0 Core 1 Core2 Core3 -
" PentiumPro 1995 6.5M

" Pentium llI 1999 8.2M v

" Pentium 4 2000 42M (s}

= Core 2 Duo 2006 291M L Shared L3 Cache

= Corei7 2008 731M

= Corei7 Skylake 2015 1.9B

= Core i9 Raptorlake 2023 4.2B

m Added Features

" |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
" Transition from 32 bits to 64 bits & More cores

Intel x86 Processors, cont.

m Past Generations
= 1st Pentium Pro 1995

= 15t Pentium Il
= 1st Pentium 4
= 15t Core 2 Duo

1999
2000
2006

m Recent Generations

[H

Nehalem
Sandy Bridge
lvy Bridge
Haswell
Broadwell
Skylake

Kaby Lake
Coffee Lake
. Cannon Lake
10. Raptor Lake

© 0N U R WN

2008
2011
2012
2013
2014
2015
2016
2017
2018
2022

Process technology

600 nm
250 nm
180 nm
65 nm

45 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
10 nm
/nm

Process technology dimension
= width of narrowest wires
(10 nm = 100 atoms wide)

iPhone:

Al2 - 7nm
Al4 - 5nm
Al16 - 4nm
Al7 - 3nm

(while AMD has 7nm in 2019)

6

DDR4

2019 Intel Scalable Processor

ur

DDR4

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recent Years
" Intel got its act together
= Still dominate the market
= AMD catched up
= 7nm Ryzen processor has both high performance and low price
= 5nm Zen 4

Intel’s 64-Bit History

m 2001: Intel Attempts Radical Shift from IA32 to I1A64
= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
"= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!

Our Coverage

m IA32
" The traditional x86

= X86-64

® The standard
" mypc> gcc —-m32 hello.c
" mypc> gcc —-mb4 hello.c

m Presentation
= Book covers x86-64

= Web aside on IA32
= We will only cover x86-64

10

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Levels of Abstraction

C programmer

C code
Nice clean layers,
but beware...
Assembly programmer
e Addresses ey
Registers > ode
PC < Data > (I:)a‘:a
Condition Instructions Stack
Codes <

O
Wi/
i

Computer Designer

RS
£ 2

’ J i

Caches, clock freq, layout, ...

12

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing correct machine/assembly code

= Examples: instruction set specification, registers

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Microarchitecture: Implementation of the architecture

= Examples: cache sizes and core frequency

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones
= RISCV: New open-source ISA

13

Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

: . » Byte addressable arra
= Address of next instruction y y

= Called “RIP” (x86-64)
= Register file

= Code and user data
= Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching 14

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
= Reall0, float80in x87 FPU

m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

15

x86-64 Integer Registers

$rax Seax $r8 $r8d

$rbx %$ebx $r9 $rod

$rcx Secx $rl0 $rlod
srdx %edx srll srlld
srsi %esi %rl2 srl2d
srdi sedi %rl3 $rl3d
3rsp %esp srl4 $rldd
srbp %ebp %rld $r15d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)

Some History: IA32 Registers

general purpose

A

—

Teax %ax %ah %al
zecx $cx %ch %cl
sedx %dx sdh %d1
sebx $bx $bh $bl
zesi $si
sedi sdi
zesp %sp
sebp %bp

16-bit virtual registers
(backwards compatibility)

Y

Origin

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

(mostly obsolete)

17

Assembly Characteristics: Operations

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches
" Indirect branches

18

Moving Data

m Moving Data

ource, Dest
, I, g —quad, 1 word = 16 bits (P119)

m Qperand Types
" Immediate: Constant integer data
= Example: $0x400, $-533
= Like C constant, but prefixed with 'S’
= Register: One of 16 integer registers
= Example: $rax, %rl3
= But $rsp reserved for special use

= Qthers have special uses for particular instructions

" Memor
= Simplest example: ($rax)

= Various other “addressing modes”

onsecutive bytes of memory at address given by register

Warning: Intel docs use
mov Dest, Source
We use AT&T syntax

19

movq Operand Combinations

Source Dest Src,Dest
4 Reg movg $0x4,%rax
Imm
Mem movg $-147, (%$rax)

movq < Reg {Reg movqg %rax,$rdx

Mem movg %rax, ($rdx)

\\Aﬂenr Reg movg (%rax),%rdx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;

*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

20

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (3%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) ,$rdx

21

Quiz Time!

Exercise 3.2, 3.3

Check Figure 3-4 for all move instructions.

22

Example of Simple Addressing Modes

void
whatAmI (<type> a, <type> b)
{

P27

} whatAmI:
movq %$rdi) , %rax
movq %rsi), %rdx
movq $rdx, (%rdi)
movq $rax, (%rsi)
ret

] grsi
$rdi

23

Example of Simple Addressing Modes

void swap

{

(long *xp, long *yp)

long t0 = *xp;
long t1 = *yp;
tl;
*yp = tO0;

X
o
Il

swap:
movq %$rdi) , %rax
movq %rsi), %rdx
movq $rdx, (%rdi)
movq $rax, (%rsi)

ret

24

Understanding Swap()

void swap

{

(long *xp, long *yp)

long t0 = *xp;
long tl1 = *yp;
*xp = tl1;
*yp = t0;

Register Value

$rdi Xp

$rsi yp swap:

$rax t0 movq

2 rdx t1 movq
movq
movq

ret

Registers
$rdi | o
srsi
srax
Srdx

(3rdi) , %rax

%$rsi), %rdx

Srdx, (%rdi)

$rax, (%rsi)

CYSIERSE T TS

Memory
t0 = *xp
tl = *yp
*xp = tl
*yp = tO0

25

Understanding Swap()

Registers

$rdi| 0x120

$rsi 0x100

$rax

$rdx

swap:
movq
movq
movq
movq
ret

$rdi) ,
(%rsi) ,
$rdx,
$rax,

$rax
Srdx
%rdi)
$rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

26

Understanding Swap()

Registers

rdi

0x120

$rsi

0x100

$rax

123

$rdx

swap:
movq
movq
movq
movq
ret

$rdi) ,
$rsi),

$rdx,
$rax,

$rax
$rdx
%rdi)
$rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

27

Understanding Swap()

Registers

rdi

0x120

$rsi

0x100

$rax

123

$rdx

456

swap:
movq
movq
movq
movq
ret

%$rdi) ,
$rsi),

$rdx,
$rax,

$rax
$rdx
%rdi)
$rsi)

Memory
Address
123 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
t1 = *yp
*xp = tl
*yp = t0

28

Understanding Swap()

Registers

rdi

0x120

$rsi

0x100

$rax

123

$rdx

456

swap:
movq
movq
movq
movq
ret

%$rdi) ,
$rsi),

$rdx,
$rax,

$rax
$rdx
$rdi)
$rsi)

Memory
Address
456 | 0x120
0x118
0x110
0x108
456 | 0x100
t0 = *xp
tl = *yp
*xp = tl
*yp = t0

29

Understanding Swap()

ret

] Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX108
$rdx 456 123 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

30

Quiz Time!

Exercise 3.5

N

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (3%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) ,$rdx

32

Complete Memory Addressing Modes

m Most General Form
D(Rb,Rj,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers

= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

33

Address Computation Examples

D(Rb,R;i,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers

$rdx O0xf000

$rcx 0x0100

= Ri: Indexregister: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (3rdx)

$rdx, srcx)

$rdx, %$rcx,4)

0x80(,%rdx,2)

34

Quiz Time!

Exercise 3.1

Check Figure 3-3 for all formats.

35

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Address Computation Instruction

m leaqSrc, Dst

" Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
"= Computing addresses without a memory reference
= E.g., translationofp = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
1 12 (1 .
{°ng miz(long x) Converted to ASM by compiler:
return x*12; leaq (%$rdi,%rdi,2), %rax # t = x+2*x

} salq $2, %rax # return t<<2

Quiz Time!

Exercise 3.6, 3.7

38

Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg Src,Dest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

Xorqg Src,Dest Dest = Dest A Src

andqg Src,Dest Dest = Dest & Src

orqg Src,Dest Dest = Dest | Src

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

m One Operand Instructions

incqg
decq

negq
notqg

Dest
Dest
Dest
Dest

Dest = Dest + 1
Dest = Dest -1
Dest = — Dest
Dest = ~Dest

m See book for more instructions

40

Arithmetic Expression Example

long arith
(long x, long y, long z)

{

long t1
long t2
long t3
long t4
long t5

long rval
return rval;

xX+y;

z+tl;

x+4;

y * 48;

t3 + t4;

= t2 * t5;

arith:
leaq $rdi,%$rsi), %rax
addq $rdx, S%rax
leaq %$rsi,%rsi,2), %$rdx
salqg $4, %rdx
leaq 4 (%rdi,%$rdx), %rcx
imulq ¥rcx, srax
ret

Interesting Instructions
= leagq: address computation
= salgq:shift
= imulgqg: multiplication

= But, only used once

41

Understanding Arithmetic Expression
Example

long arith

(long x, long y, long z)

{

long t1
long t2
long t3
long t4
long t5
long rva

1

xX+y;

z+tl;

x+4;

y * 48;

t3 + t4;

= t2 * t5;

return rval;

arith:
leaq %$rdi,%$rsi), %rax # tl
addg $rdx, %$rax # t2
leaq %$rsi,%rsi,2), %rdx
salqg $4, %$rdx # t4
leaq 4 (%rdi,%rdx), %$rcx # t5
imulqg $rcx, %rax # rval
ret

Regser L usel)

$rdi
$rsi

$rdx

$rax

$rcx

Argument x
Argument y

Argument z,
t4

tl, t2, rval
t5

42

Quiz Time!

Exercise 3.10

43

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gce -Og pl.c p2.c -o p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting binary in file p

text

text

binary

binary

Cprogram (pl.c p2.c)

Compiler (gcc -Og -S)

A

Asm program (pl.s p2.s)

Assembler (gcc or as)

A 4

Object program (pl.o p2.0) Static libraries

(.a)

Linker (gcc or 1d)

A 4

Executable program (p)

45

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

long plus(long x, long y);

void sumstore(long x, long y,
long *dest)
{
long t = plus(x, y);
*dest = t;

sumstore:
pushqg $rbx
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
PopPgd $rbx
ret

Obtain with command
gcec -Og —S sum.c

Produces file sum. s

Warning: Will get very different results on different

machines (Linux, Mac 0S-X, ...) due to different versions
of gcc and different compiler settings.

46

What it really looks like

.globl sumstore

.type sumstore, @function
sumstore:

.LFB35:
.cfi_startproc
pushg 3%rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq srdx, 3%rbx
call plus
movq $rax, (%rbx)

popa srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore

47

What it really looks like

sumstore:

pushqg

movq
call

movq

PopPq

ret

$rbx

Srdx,
plus
Srax,

$rbx

$rbx

$rbx)

Things that look weird
and are preceded by a *’
are generally directives (1§
T

sumstore:
pushqg $rbx
movq $rdx, %rbx
call plus
movq $rax, (%rbx)
PoPgq $rbx
ret

48

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)

m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

49

Assembly Characteristics: Operations

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
® Conditional branches

50

Object Code

Code for sumstore

m Assembler
0x0400595:

" Translates .s into .o
0x53
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
0xd3 o . - .
Oxe8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | .] o
Oxff Resolves references between files

e Total of 14 bytes

0x48 " Combines with static run-time libraries

0x89 e Each instruction

0x03 1, 3, or 5 bytes

Ox5b e Starts at address

Oxc3 0x0400595 = Linking occurs when program begins
execution

= E.g., code formalloc, printf
= Some libraries are dynamically linked

51

Machine Instruction Example
m C Code

*dest = t; :
= Store value t where designated by

dest
m Assembly

movq srax, (%rbx) = Move 8-byte value to memory

= Quad words in x86-64 parlance

" Operands:
t: Register $rax
dest: Register $rbx
*dest: MemoryM[%$rbx]

m Object Code
0x40059e: 48 89 03 = 3-byte instruction

= Stored at address 0x40059e

52

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595:
400596:
400599:
40059e:
4005al:
4005a2:

53

48 89 d3

e8 £2 ff ff ff
48 89 03

5b

c3

push
mov
callq
mov

pop
retq

%rbx

srdx, $rbx
400590 <plus>
$rax, (%rbx)
%rbx

m Disassembler

objdump -d sum

= Useful tool for examining object code

= Analyzes bit pattern of series of instructions

" Produces approximate rendition of assembly code

= Can be run on either a.out (complete executable) or . o file

53

Alternate Disasse

Disassembled

mbly

0x0000000000400595
0x0000000000400596
0x0000000000400599
0x000000000040059e
0x00000000004005a1
0x00000000004005a2

Dump of assembler code for function sumstore:

<+0>: push Srbx

<+1>: mov $rdx, $rbx

<+4>: callg 0x400590 <plus>
<+9>: mov $rax, (%$rbx)
<+12>:pop $rbx

<+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum

disassemble sumstore

54

Alternate Disassembly

Object Disassembled
Code
Dump of assembler code for function sumstore:
0x0400595: 0x0000000000400595 <+0>: push %rbx
0x33 0x0000000000400596 <+1>: mov $rdx, $rbx
0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>
0x89 0x000000000040059% <+9>: mov $rax, ($rbx)
0xd3 0x00000000004005al1 <+12>:pop $rbx
Oxe8 0x00000000004005a2 <+13>:retq
Oxf2
Oxff
g:g = Within gdb Debugger
0x48 = Disassemble procedure
0x89 gdb sum
gXO3 disassemble sumstore
x5b
Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore

55

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000:

30001001: , _ _

30001003 : .Reverse engmeerlr.\g forbidden by
30001005 Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code

m Disassembler examines bytes and reconstructs assembly source

56

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

" Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= Ccompiler will figure out different instruction combinations to
carry out computation

57

