
Processor Architecture I:
Instruction Set Architecture

from https://csapp.cs.cmu.edu/3e/home.html

Kai Zhang
Fudan University

zhangk@fudan.edu.cn

mailto:zhangk@fudan.edu.cn


Instruction Set Architecture

§ Assembly Language View
§ Processor state

• Registers, memory, …
§ Instructions

• addq, pushq, ret, …
• How instructions are encoded as 

bytes

§ Layer of Abstraction
§ Above: how to program machine

• Processor executes instructions in a 
sequence

§ Below: what needs to be built
• Use variety of tricks to make it run 

fast
• E.g., execute multiple instructions 

simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program



ZF SF OF

Y86-64 Processor State

§ Program Registers
• 15 registers (omit %r15).  Each 64 bits

§ Condition Codes
• Single-bit flags set by arithmetic or logical instructions

• ZF: Zero SF: Negative OF: Overflow
§ Program Counter

• Indicates address of next instruction
§ Program Status

• Indicates either normal operation or some error condition
§ Memory

• Byte-addressable storage array
• Words stored in little-endian byte order

RF: Program 
registers

CC: 
Condition 

codes

PC

DMEM: Memory

Stat: Program status

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%rax

%rcx

%rdx

%rbx

%rsp

%rbp

%rsi

%rdi



How to Encode the Instructions?

§ mov, add, mul, call, ret, push, pop …

§ How many bytes to represent instructions?

§ What is it like for mov %rax, %rbx?

§ What is it like for mov %rax, 8(%rbx)?

§ What is it like for jne $0x32731323?



Y86-64 Instruction Set #1
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9



Y86-64 Instructions

§ Format
§ 1–10 bytes of information read from memory

• Can determine instruction length from first byte
• Not as many instruction types, and simpler encoding than with 

x86-64

§ Each accesses and modifies some part(s) of the program 
state



0 1 2 3 4 5 6 7 8 9

V

D

D

Y86-64 Instruction Set #2
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rrmovq 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6



Y86-64 Instruction Set #3
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

addq 6 0

subq 6 1

andq 6 2

xorq 6 3



Y86-64 Instruction Set #4
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6



Encoding Registers
§ Each register has 4-bit ID

§ Same encoding as in x86-64

§ Register ID 15 (0xF) indicates “no register”
§ Will use this in our hardware design in multiple places

%rax

%rcx

%rdx

%rbx

0

1

2

3

%rsp

%rbp

%rsi

%rdi

4

5

6

7

%r8

%r9

%r10

%r11

8

9

A

B

%r12

%r13

%r14

No Register

C

D

E

F



Instruction Example

§ Addition Instruction

§ Add value in register rA to that in register rB
• Store result in register rB
• Note that Y86-64 only allows addition to be applied to register data

§ Set condition codes based on result
§ e.g., addq %rax,%rsi Encoding: 60 06
§ Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

addq rA, rB 6 0 rA rB

Encoded Representation

Generic Form



Arithmetic and Logical Operations

§ Refer to generically as 
“OPq”

§ Encodings differ only by 
“function code”
• Low-order 4 bits in first 

instruction word
§ Set condition codes as side 

effect

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code



Move Operations

§ Like the x86-64 movq instruction
§ Simpler format for memory addresses
§ Give different names to keep them distinct

rrmovq rA, rB 2 0

Register è Register

Immediate è Register

irmovq V, rB F rB3 0 V

Register è Memory

rmmovq rA, D(rB) 4 0 rA rB D

Memory è Register

mrmovq D(rB), rA 5 0 rA rB D

rA rB



Move Instruction Examples

irmovq $0xabcd, %rdxmovq $0xabcd, %rdx

30 f2 cd ab 00 00 00 00 00 00

X86-64 Y86-64

Encoding: 

rrmovq %rsp, %rbxmovq %rsp, %rbx

20 43

mrmovq -12(%rbp),%rcxmovq -12(%rbp),%rcx

50 15 f4 ff ff ff ff ff ff ff

rmmovq %rsi,0x41c(%rsp)movq %rsi,0x41c(%rsp)

40 64 1c 04 00 00 00 00 00 00

Encoding: 

Encoding: 

Encoding: 



Conditional Move Instructions

§ Refer to generically as 
“cmovXX”

§ Encodings differ only by 
“function code”

§ Based on values of 
condition codes

§ Variants of rrmovq
instruction
• (Conditionally) copy value 

from source to destination 
register

rrmovq rA, rB

Move Unconditionally

cmovle rA, rB

Move When Less or Equal

cmovl rA, rB

Move When Less

cmove rA, rB

Move When Equal

cmovne rA, rB

Move When Not Equal

cmovge rA, rB

Move When Greater or Equal

cmovg rA, rB

Move When Greater

2 0 rA rB

2 1 rA rB

2 2 rA rB

2 3 rA rB

2 4 rA rB

2 5 rA rB

2 6 rA rB



Jump Instructions

§ Refer to generically as “jXX”
§ Encodings differ only by “function code” fn
§ Based on values of condition codes
§ Same as x86-64 counterparts
§ Encode full destination address

• Unlike PC-relative addressing seen in x86-64

jXX Dest 7 fn

Jump (Conditionally)

Dest



Jump Instructions

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest



Y86-64 Program Stack

§ Region of memory holding 
program data

§ Used in Y86-64 (and x86-64) for 
supporting procedure calls

§ Stack top indicated by %rsp
• Address of top stack element

§ Stack grows toward lower 
addresses
• Top element is at highest address 

in the stack
• When pushing, must first 

decrement stack pointer
• After popping, increment stack 

pointer
%rsp

•

•

•

Increasing
Addresses

Stack “Top”

Stack 
“Bottom”



Stack Operations

§ Decrement %rsp by 8
§ Store word from rA to memory at %rsp
§ Like x86-64

§ Read word from memory at %rsp
§ Save in rA
§ Increment %rsp by 8
§ Like x86-64

pushq rA A 0 rA F

popq rA B 0 rA F



How to Test the Push/Pop Order

§ Decrease %rsp -> store word?
§ Store word -> Decrease %rsp?

Exercise 4.7



Subroutine Call and Return

§ Push address of next instruction onto stack
§ Start executing instructions at Dest
§ Like x86-64

§ Pop value from stack
§ Use as address for next instruction
§ Like x86-64

call Dest 8 0 Dest

ret 9 0



Miscellaneous Instructions

§ Don’t do anything

§ Stop executing instructions
§ x86-64 has comparable instruction, but can’t execute it 

in user mode
§ We will use it to stop the simulator
§ Encoding ensures that program hitting memory for the 

code region initialized to zero will halt

nop 1 0

halt 0 0



Status Conditions

§ Normal operation

§ Halt instruction encountered

§ Bad address (either instruction or data) 
encountered

§ Invalid instruction encountered

§ Desired Behavior
§ If AOK, keep going
§ Otherwise, stop program execution

Mnemonic Code

ADR 3

Mnemonic Code

INS 4

Mnemonic Code

HLT 2

Mnemonic Code

AOK 1



Writing Y86-64 Code

§ Try to Use C Compiler as Much as Possible
§ Write code in C
§ Compile for x86-64 with gcc –Og –S

§ Transliterate into Y86-64
§ Modern compilers make this more difficult

§ Coding Example
§ Find number of elements in null-terminated list

int len1(int a[]);

5043

6125

7395

0

a

Þ 3



Y86-64 Code Generation Example

§First Try
§ Write typical array code

§ Compile with gcc -Og -S

§Problem
§ Hard to do array indexing on 

Y86-64
• Since don’t have scaled 

addressing modes/* Find number of elements in
null-terminated list */

long len(long a[])
{
long len;
for (len = 0; a[len]; len++)

;
return len;

}

L3:
addq $1,%rax
cmpq $0, (%rdi,%rax,8)
jne L3



Y86-64 Code Generation Example #2

§Second Try
§ Write C code that mimics 

expected Y86-64 code

§Result
§ Compiler generates code 

with less complex address 
computation instructions

§ Can help write Y86 codelong len2(long *a)
{

long ip = (long) a;
long val = *(long *) ip;
long len = 0;
while (val) {

ip += sizeof(long);
len++;
val = *(long *) ip;

}
return len;

}

L3:
leaq 8(%rdi), %rdx
movq %rdx, %rdi
addq $1, %rax
movq (%rdx), %rdx



Y86-64 Code Generation Example #3

len:
irmovq $1, %r8          # Constant 1
irmovq $8, %r9          # Constant 8
irmovq $0, %rax # len = 0
mrmovq (%rdi), %rdx # val = *a
andq %rdx, %rdx # Test val
je Done                 # If zero, goto Done

Loop:
addq %r8, %rax # len++
addq %r9, %rdi # a++
mrmovq (%rdi), %rdx # val = *a
andq %rdx, %rdx # Test val
jne Loop                # If !0, goto Loop

Done:
ret

Register Use

%rdi a

%rax len

%rdx val

%r8 1

%r9 8



Y86-64 Sample Program Structure #1

§ Program starts at 
address 0

§ Must set up stack
• Where located
• Pointer values
• Make sure don’t 

overwrite code!
§ Must initialize data

init: # Initialization
. . .
call Main
halt

.align 8 # Program data
array:

. . .

Main: # Main function
. . .
call len . . .

len: # Length function
. . .

.pos 0x100 # Placement of stack
Stack:



Y86-64 Program Structure #2

§ Program starts at 
address 0

§ Must set up stack
§ Must initialize data
§ Can use symbolic 

names

init:
# Set up stack pointer
irmovq Stack, %rsp
# Execute main program
call Main
# Terminate
halt

# Array of 4 elements + terminating 0
.align 8

Array:
.quad 0x000d000d000d000d
.quad 0x00c000c000c000c0
.quad 0x0b000b000b000b00
.quad 0xa000a000a000a000
.quad 0



Y86-64 Program Structure #3

§ Set up call to len
§ Follow x86-64 procedure conventions
§ Push array address as argument

Main:   
irmovq array,%rdi
# call len(array)
call len
ret



Assembling Y86-64 Program

§ Generates “object code” file len.yo
• Actually looks like disassembler output

unix> yas len.ys

0x054:                      | len:
0x054: 30f80100000000000000 |   irmovq $1, %r8          # Constant 1
0x05e: 30f90800000000000000 |   irmovq $8, %r9          # Constant 8
0x068: 30f00000000000000000 |   irmovq $0, %rax # len = 0
0x072: 50270000000000000000 |   mrmovq (%rdi), %rdx # val = *a
0x07c: 6222                 |   andq %rdx, %rdx # Test val
0x07e: 73a000000000000000   |   je Done                 # If zero, goto Done
0x087:                      | Loop:
0x087: 6080                 |   addq %r8, %rax # len++
0x089: 6097                 |   addq %r9, %rdi # a++
0x08b: 50270000000000000000 |   mrmovq (%rdi), %rdx # val = *a
0x095: 6222                 |   andq %rdx, %rdx # Test val
0x097: 748700000000000000   |   jne Loop                # If !0, goto Loop
0x0a0:                      | Done:
0x0a0: 90                   |   ret



Simulating Y86-64 Program

§ Instruction set simulator
• Computes effect of each instruction on processor state
• Prints changes in state from original

unix> yis len.yo

Stopped in 33 steps at PC = 0x13.  Status 'HLT', CC Z=1 S=0 O=0
Changes to registers:
%rax:   0x0000000000000000      0x0000000000000004
%rsp:   0x0000000000000000      0x0000000000000100
%rdi:   0x0000000000000000      0x0000000000000038
%r8:    0x0000000000000000      0x0000000000000001
%r9:    0x0000000000000000      0x0000000000000008

Changes to memory:
0x00f0: 0x0000000000000000      0x0000000000000053
0x00f8: 0x0000000000000000      0x0000000000000013



CISC Instruction Sets
§ Complex Instruction Set Computer
§ IA32 is example

§ Stack-oriented instruction set
§ Use stack to pass arguments, save program counter
§ Explicit push and pop instructions

§ Arithmetic instructions can access memory
§ addq %rax, 12(%rbx,%rcx,8)

• requires memory read and write
• Complex address calculation

§ Condition codes
§ Set as side effect of arithmetic and logical instructions

§ Philosophy
§ Add instructions to perform “typical” programming tasks



RISC Instruction Sets
§ Reduced Instruction Set Computer
§ Internal project at IBM, later popularized by Hennessy 

(Stanford) and Patterson (Berkeley)
§ Fewer, simpler instructions

§ Might take more to get given task done
§ Can execute them with small and fast hardware

§ Register-oriented instruction set
§ Many more (typically 32) registers
§ Use for arguments, return pointer, temporaries

§ Only load and store instructions can access memory
§ Similar to Y86-64 mrmovq and rmmovq

§ No Condition codes
§ Test instructions return 0/1 in register



MIPS Registers

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14
$15

$0
$at
$v0
$v1
$a0
$a1
$a2
$a3
$t 0
$t 1
$t 2
$t 3
$t 4
$t 5
$t 6
$t 7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t 8
$t 9
$k0
$k1
$gp
$sp
$s8
$r a

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer
Callee Save Temp
Return Address



MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000
R-R

Op Ra Rb Immediate
R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1 

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset
Branch

beq $3,$2,dest # Branch when $3 = $2



CISC vs. RISC

§ Original Debate
§ Strong opinions!
§ CISC proponents -- easy for compiler, fewer code bytes
§ RISC proponents -- better for optimizing compilers, can 

make run fast with simple chip design
§ Current Status

§ For desktop processors, choice of ISA not a technical issue
• With enough hardware, can make anything run fast
• Code compatibility more important

§ x86-64 adopted many RISC features
• More registers; use them for argument passing

§ For embedded processors, RISC makes sense
• Smaller, cheaper, less power
• Most cell phones use ARM processor



Summary

§ Y86-64 Instruction Set Architecture
§ Similar state and instructions as x86-64
§ Simpler encodings
§ Somewhere between CISC and RISC

§ How Important is ISA Design?
§ Less now than before

• With enough hardware, can make almost anything go fast


