Processor Architecture I:
Instruction Set Architecture

Kai Zhang
Fudan University
zhangk@fudan.edu.cn

from https://csapp.cs.cmu.edu/3e/home.html

mailto:zhangk@fudan.edu.cn

Instruction Set Architecture

= Assembly Language View

= Processor state

* Registers, memory, ...
= |nstructions

* addg, pushgqg, ret, ..

* How instructions are encoded as
bytes

= Layer of Abstraction

= Above: how to program machine

* Processor executes instructions in a
sequence

= Below: what needs to be built

* Use variety of tricks to make it run
fast

e E.g., execute multiple instructions
simultaneously

Application
Program

Compiler‘ 0S

CPU
Design

Circuit
Design

Chip
Layout

Y86-64 Processor State

RF: Program CC:)
registers Condition Stat: Program status
codes
Frax Irsp %r8 %rl2
$rex $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
$rdx $rsi $rl0 $rld PC
%rbx grdi grll

= Program Registers
* 15 registers (omit $r15). Each 64 bits
Condition Codes

* Single-bit flags set by arithmetic or logical instructions
* ZF: Zero SF: Negative OF: Overflow

= Program Counter

* |ndicates address of next instruction
Program Status

* Indicates either normal operation or some error condition
= Memory

* Byte-addressable storage array
* Words stored in little-endian byte order

How to Encode the Instructions?

= mov, add, mul, call, ret, push, pop ...

= How many bytes to represent instructions?

= What is it like for mov %rax, %rbx??

= What is it like for mov %rax, 8(%rbx)?

= What is it like for jne 50x32731323?

Y86-64 Instruction Set #1

Byte 0 5
halt 010

nop 110

cmovXX rA, rB 2 |fn|rA | rB

irmovg V, rB 310]F|rB

rmmovqg rA, DB) |4 |0 |rA|rB

mrmovg D(rB), rA | 5|0 |rA|rB

OPg rA, B 6 |fn|rA|rB

jXX Dest 7 | fn Dest
call Dest 810 Dest
ret 910

pushqg rA A|O|JrA|F

popqg rA B|O|rA| F

Y86-64 Instructions

" Format

= 1-10 bytes of information read from memory
e Can determine instruction length from first byte

* Not as many instruction types, and simpler encoding than with
x86-64

= Each accesses and modifies some part(s) of the program
state

Y86-64 In

Byte

halt

nop

cmovxXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovqg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

struction Set

#2

[rrmovqg
4 5
cmovle
0] 0
cmovl
110
R cmove
2 | ftn|rA|rB
cmovne
3101F |rB
cmovge
41 0|rA|rB
& cmovyg
510]|rA|rB
6 |[fn]rA|rB
7 | fn Dest
810 Dest
910
A|O|rA| F
B|OJrA| F

Y86-64 In

Byte

halt

nop

cmovxXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovqg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

struction Set

#3

4 5 8
010
110
2 | ftn|rA|rB
3101F |rB
410 |rA|rB r
addg
510]|rA|rB
subqg
6 |[fn]rA|rB
andg
7 | fn Dest
9 Xorqg
810 Dest
910
A|O|rA| F
B|OJrA| F

Y86-64 In

Byte

halt

nop

cmovxXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovqg D (rB), rA
OPg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

struction Set

#4

4 5 [jmp
010 Jle
110 i1
2 |In|rA|rB < je

/

3|ol|F|mB /| sne
4 | 0JrA|rB jge
510]rA|rB & ig
6 |fn|rA|rB
7 | fn Dest
8|0 Dest
910
A|OJrA| F
B|OJ|rA|F

Encoding Registers

= Each register has 4-bit ID

%r8
%r9
%rl0
grll
%rl2
%rl3
%rl4
No Register

$rax

Irex
grdx
%rbx
Irsp
%rbp
grsi
$rdi

JjoonjoxjWIN|R|O

HIEAR|[ODQO|W|>»|O©|®

= Same encoding as in x86-64

= Register ID 15 (0xF) indicates “no register”
= Will use this in our hardware design in multiple places

Instruction Example

= Addition Instruction

/ Generic Form

/
addqg rA, rB 6|0|rA(rB

Encoded Representation

= Add value in register rA to that in register rB
e Store result in register rB
* Note that Y86-64 only allows addition to be applied to register data

= Set condition codes based on result
" e.g.,,addg %rax, %rsi Encoding: 60 06
" Two-byte encoding

 First indicates instruction type
* Second gives source and destination registers

Arithmetic and Logical Operations

Instruction Code Function Code
Add \ /
Y ¥ o .
addq A, 1B ToTaE Befer’:co generically as
OPg
Subtract (rA from rB) = Encodings differ only by
“function code”
zees] i, (12 6| 1|rAjrB * Low-order 4 bits in first
instruction word

And = Set condition codes as side

andqg rA, rB 6| 2|rA|rB effect

Exclusive-Or

xorq rA, rB 6|3|rA|rB

Move Operations
Register = Register

rrmovgrA, rB |2 |0 |rArB

Immediate = Register

irmovgV, rB 3|0|F|rB Vv

Register & Memory
rmmovg rA, D(rB)| 4 | 0 |[rA|rB D

Memory = Register
mrmovq D (rB), rA | 5| 0 |[rA|rB D

" Like the x86-64 movqg instruction

= Simpler format for memory addresses
= Give different names to keep them distinct

Move Instruction Examples

X86-64 Y86-64

movqg $0xabcd, %$rdx irmovqg $0xabcd, %$rdx

Encoding: 30 £2 cd ab 00 00 00 00 00 00

movq 3rsp, 3%rbx rrmovq 3%rsp, 3%rbx

Encoding: 20 43

movq -12 (%$rbp) , $rcx mrmovq -12 (%rbp) ,%rcx

Encoding: 50 15 f4 ff ff ff ff ff ff ff

movqg %rsi,0x4lc (%rsp) rmmovqg %rsi,0x4lc (%rsp)

Encoding: 40 64 1c 04 00 00 00 00 00 00

Conditional Move Instructions

Move Unconditionally

rrmovq rA, rB 2| ofra|rB = Refer to generically as
o ’)
Move When Less or Equal CmovXX
cmovile rA, rB 2 11 [rAlrB " Encodings differ only by

o . 7)
Move When Less function code

cmovl rA, rB 212 lrAB Basec;l on values of
condition codes

Variants of rrmovqg
instruction

* (Conditionally) copy value

Move When Equal

cmove rA, rB 2| 3|rA|rB

Move When Not Equal

cmovne rA, rB 2 | 4|rArB from source to destination
Move When Greater or Equal register
cmovge rA, rB 2| 5|rA|rB

Move When Greater

cmovg rA, rB 2| 6|rA|rB

Jump Instructions

Jump (Conditionally)

jXX Dest | 7 |fn Dest

= Refer to generically as “9XX”

" Encodings differ only by “function code” fn
= Based on values of condition codes

= Same as x86-64 counterparts

= Encode full destination address
* Unlike PC-relative addressing seen in x86-64

Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest

Jump When Less or Equal

jleDest |7 |1 Dest

Jump When Less

j1 Dest 7|2 Dest

Jump When Equal

je Dest 713 Dest

Jump When Not Equal

jne Dest |7 | 4 Dest

Jump When Greater or Equal

jge Dest |7 |5 Dest

Jump When Greater

jg Dest 7|6 Dest

Y86-64 Program Stack

Stack . _
“Bottom” = Region of memory holding

program data

" Used in Y86-64 (and x86-64) for
supporting procedure calls

= Stack top indicated by $rsp
* Address of top stack element

Increasing
Addresses = Stack grows toward lower

addresses

* Top element is at highest address
in the stack

* When pushing, must first
decrement stack pointer

After popping, increment stack
Stack “Top” pointer

—— 3rsp .

Stack Operations

pushq rA A|OJrA| F

" Decrement $rsp by 8
= Store word from rA to memory at 3rsp
= Like x86-64

popq rA B O|rA F

" Read word from memory at $rsp
= Save in rA

" Increment $rsp by 8

= Like x86-64

How to Test the Push/Pop Order

" Decrease %rsp -> store word?
= Store word -> Decrease %rsp?

Exercise 4.7

Subroutine Call and Return

call Dest 8|0 Dest

= Push address of next instruction onto stack

= Start executing instructions at Dest
" Like x86-64

ret 90

" Pop value from stack
= Use as address for next instruction
= Like x86-64

Miscellaneous Instructions

nop 10 |

" Don’t do anything

halt 0|0 |

= Stop executing instructions

" x86-64 has comparable instruction, but can’t execute it
in user mode

= We will use it to stop the simulator

" Encoding ensures that program hitting memory for the
code region initialized to zero will halt

Status Conditions

DIETSENETT = Normal operation
AOK 1
= Halt instruction encountered
Code
HLT 2

= Bad address (either instruction or data)

EIEETENETEN encountered
ADR 3

 Mnemonic | Code [iia Invalid instruction encountered
INS 4

= Desired Behavior
= |f AOK, keep going
= Otherwise, stop program execution

Writing Y86-64 Code

= Try to Use C Compiler as Much as Possible
= Write code inC
= Compile for x86-64 with gcc -0g -S
= Transliterate into Y86-64
= Modern compilers make this more difficult

= Coding Example
= Find number of elements in null-terminated list
int lenl (int al]);

a — 5043
6125
7395

= 3

Y86-64 Code Generation Example

=First Try
= Write typical array code

/* Find number of elements in
null-terminated list */

long len(long al[])

{
long len;
for (len = 0; a[len]; len++)

return len;

"= Compile withgce -Og -S

*Problem

= Hard to do array indexing on
Y86-64

e Since don’t have scaled
addressing modes

L3:
addg $1,%rax
cmpg S0, (%rdi,%rax,8)
jne L3

Y86-64 Code Generation Example #2

=sSecond Try

= Write C code that mimics
expected Y86-64 code

{

long len2(long *a)

long ip = (long) a;
long val = *(long *) ip;
long len = 0;
while (val) {
ip += sizeof (long) ;
len++;
val = *(long *) ip;
}

return len;

="Result

= Compiler generates code
with less complex address
computation instructions

= Can help write Y86 code

L3:
leaq 8(%rdi), %rdx
movq $rdx, %rdi
addg $1, %$rax
movq $rdx) , %$rdx

Y86-64 Code Generation Example #3

len:

irmovg $1, %r8
irmovqg $8, %r9
irmovqg $0, %rax
mrmovqg (%rdi), %Srdx
andqg %rdx, %rdx

je Done

Loop:

addg %r8, %rax
addg %r9, %rdi
mrmovqg (%rdi), %rdx
andqg %rdx, %rdx

jne Loop

Done:

ret

3H = H = H I

H H=H N

Constant 1
Constant 8

len = 0

val = *a

Test val

If zero, goto Done

len++
a++

val = *a
Test val

If '0, goto Loop

Register | Use

Srdi
srax
srdx
%r8

%$r9

a
len
val
1
8

Y86-64 Sample Program Structure #1

init:

call Main
halt

.align 8
array:
Main:

call len
len:

.pos 0x100
Stack:

Initialization

Program data

Main function

Length function

Placement of stack

= Program starts at
address O
" Must set up stack
* Where located

* Pointer values

* Make sure don’t
overwrite code!

= Must initialize data

Y86-64 Program Structure #2

init:
Set up stack pointer = Program starts at
irmovqg Stackf srsp address O
Execute main program
call Main " Must set up stack
o S e = Must initialize data
halt
= Can use symbolic
Array of 4 elements + terminating O Names
.align 8
Array:
.quad 0x000d40004000d4d000d
.quad 0x00c000c000c000cO
.quad 0x0b000b000b000b00
.quad 0xa000a000a000a000
.quad O

Y86-64 Program Structure #3

Main:
irmovq array, 3srdi
call len(array)
call len
ret

= Set up call to len
" Follow x86-64 procedure conventions
" Push array address as argument

Assembling Y86-64 Program

unix> yas len.ys

= Generates “object code” file 1en.yo

* Actually looks like disassembler output

0x054:
0x054:
0x05e:
0x068:
0x072:
0x07c:
0x07e:
0x087:
0x087:
0x089:
0x08b:
0x095:
0x097:
0x0a0:
0x0a0:

30£80100000000000000
30£90800000000000000
30£00000000000000000
50270000000000000000
6222
73a000000000000000

6080

6097
50270000000000000000
6222
748700000000000000

90

| len:

| irmovg $1, %r8
| irmovg $8, %r9
| irmovg $0, %rax
| mrmovq (%rdi), %rdx
| andg %rdx, S%rdx
| je Done

| Loop:

| addg %r8, %rax
| addg %r9, %rdi
| mrmovq (%rdi),

| andg %rdx, %rdx
| jne Loop

| Done:

| ret

$rdx

H HH HH I

H = HH

Constant 1
Constant 8
len = 0
val = *a
Test val
If zero, goto Done
len++

at++

val = *a

Test val

If '0, goto Loop

Simulating Y86-64 Program

unix> yis len.yo

= Instruction set simulator

* Computes effect of each instruction on processor state

* Prints changes in state from original

Stopped in 33 steps at PC =
Changes to registers:

grax: 0x0000000000000000
grsp: 0x0000000000000000
grdi: 0x0000000000000000
%r8: 0x0000000000000000
%r9: 0x0000000000000000

Changes to memory:
0x00£f0: 0x0000000000000000
0x00£8: 0x0000000000000000

0x13. Status 'HLT', CC Z=1 S=0 O=0

0x0000000000000004
0x0000000000000100
0x0000000000000038
0x0000000000000001
0x0000000000000008

0x0000000000000053
0x0000000000000013

CISC Instruction Sets

= Complex Instruction Set Computer
" |[A32 is example

= Stack-oriented instruction set

= Use stack to pass arguments, save program counter
= Explicit push and pop instructions

= Arithmetic instructions can access memory
= addg %rax, 12 (5rbx,%rcx, 8)
* requires memory read and write
* Complex address calculation

= Condition codes
= Set as side effect of arithmetic and logical instructions
= Philosophy

= Add instructions to perform “typical” programming tasks

RISC Instruction Sets

= Reduced Instruction Set Computer

" Internal project at IBM, later popularized by Hennessy
(Stanford) and Patterson (Berkeley)

= Fewer, simpler instructions
= Might take more to get given task done
= Can execute them with small and fast hardware

= Register-oriented instruction set
= Many more (typically 32) registers
= Use for arguments, return pointer, temporaries

=" Only load and store instructions can access memory
= Similar to Y86-64 mrmovg and rmmovg

=" No Condition codes
= Test instructions return 0/1 in register

MIPS Registers

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14
$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$to

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:

May be overwritten by
called procedures

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$ko

$k1

$gp

$sp

$s8

$ra

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Caller Save Temp

Reserved for
Operating Sys
Global Pointer
Stack Pointer
Callee Save Temp
Return Address

MIPS Instruction Examples

R-R
Op Ra Rb Rd 00000 Fn
addu $3,$2,61 # Register add: $3 = $2+$1
R-I
Op Ra Rb Immediate

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2
Branch
Op Ra Rb Offset
beq $3,$2,dest # Branch when $3 = $2
Load/Store
Op Ra Rb Offset
lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

CISC vs. RISC

= Original Debate
= Strong opinions!
= CISC proponents -- easy for compiler, fewer code bytes

= RISC proponents -- better for optimizing compilers, can
make run fast with simple chip design

= Current Status

" For desktop processors, choice of ISA not a technical issue
* With enough hardware, can make anything run fast
e Code compatibility more important

= x86-64 adopted many RISC features
* More registers; use them for argument passing

" For embedded processors, RISC makes sense

e Smaller, cheaper, less power
* Most cell phones use ARM processor

Summary

= Y86-64 Instruction Set Architecture
= Similar state and instructions as x86-64
= Simpler encodings
= Somewhere between CISC and RISC

= How Important is ISA Design?

" Less now than before
* With enough hardware, can make almost anything go fast

