
Processor Architecture II:
Logic Design

Kai Zhang
Fudan University

zhangk@fudan.edu.cn

from https://csapp.cs.cmu.edu/3e/home.html

mailto:zhangk@fudan.edu.cn

Overview of Logic Design

§ Fundamental Hardware Requirements
§ Communication

• How to get values from one place to another
§ Computation
§ Storage

§ Bits are Our Friends
§ Everything expressed in terms of values 0 and 1
§ Communication

• Low or high voltage on wire
§ Computation

• Compute Boolean functions
§ Storage

• Store bits of information

Digital Signals

§ Use voltage thresholds to extract discrete values from
continuous signal

§ Simplest version: 1-bit signal
• Either high range (1) or low range (0)
• With guard range between them

§ Not strongly affected by noise or low quality circuit
elements
• Can make circuits simple, small, and fast

Voltage

Time

0 1 0

Computing with Logic Gates

§ Outputs are Boolean functions of inputs
§ Respond continuously to changes in inputs

• With some, small delay

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay Falling Delay

Combinational Circuits

§ Acyclic Network of Logic Gates
§ Continuously responds to changes on primary inputs
§ Primary outputs become (after some delay) Boolean

functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

Bit Equality

§ Generate 1 if a and b are equal

§ Hardware Control Language (HCL)
§ Very simple hardware description language

• Boolean operations have syntax similar to C logical operations
§ We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

Word Equality

§ 64-bit word size
§ HCL representation

• Equality operation
• Generates Boolean value

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

Quiz Time!

Exercise 4.9

Bit-Level Multiplexor

§ Control signal s
§ Data signals a and b
§ Output a when s=1

b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

Word Multiplexor

§ Select input word A or B
depending on control signal s

§ HCL representation
• Case expression in switch (C)
• Series of test : value pairs
• Output value for first successful

test

Word-Level Representation

HCL Representation

b63

s

a63

out63

b62

a62

out62

b0

a0

out0

int Out = [
s : A;
1 : B;

];

s

B

A
OutMUX

Hardware Control Language
§ Very simple hardware description language
§ Can only express limited aspects of hardware operation

• Parts we want to explore and modify

§ Data Types
§ bool: Boolean

• a, b, c, …
§ int: words

• A, B, C, …
• Does not specify word size---bytes, 64-bit words, …

§ Statements
§ bool a = bool-expr ;

§ int A = int-expr ;

HCL Operations
§ Classify by type of value returned

§ Boolean Expressions
§ Logic Operations

• a && b, a || b, !a
§ Word Comparisons

• A == B, A != B, A < B, A <= B, A >= B, A > B
§ Set Membership

• A in { B, C, D }
• Same as A == B || A == C || A == D

§ Word Expressions
§ Case expressions

• [a : A; b : B; c : C]
• Evaluate test expressions a, b, c, … in sequence
• Return word expression A, B, C, … for first successful test

HCL Word-Level Examples

§ Find minimum of three
input words

§ HCL case expression
§ Final case guarantees

match

A
Min3MIN3B

C
int Min3 = [
A < B && A < C : A;
B < A && B < C : B;
1 : C;

];

D0

D3

Out4

s0
s1

MUX4
D2
D1

n Select one of 4 inputs
based on two control bits

n HCL case expression
n Simplify tests by assuming

sequential matching

int Out4 = [
!s1&&!s0: D0;
!s1 : D1;
!s0 : D2;
1 : D3;

];

Minimum of 3 Words

4-Way Multiplexor

Quiz Time!

Exercise 4.12

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

§ Combinational logic – One ALU
• Continuously responding to inputs

§ Control signal selects function computed
• Corresponding to 4 arithmetic/logical operations in Y86-64

§ Also computes values for condition codes

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

Control signal

V1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

Storing 1 Bit
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Storing 1 Bit
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin V1

V2
Vin = V2

Stable 0

Stable 1

Metastable

Physical Analogy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Stable 0

Stable 1

Metastable

.Stable left . Stable right.

Metastable

Storing and Accessing 1 Bit

Q+

Q–

R

S

R-S Latch

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

1-Bit Latch
D Latch

Q+

Q–

R

S

D

C

Data

Clock

Latching – Q+ changes according to d

1

d !d !d !d d

d d !d
0

Storing – Q+ will not change

d !d q

!q

!q

q0

0

Transparent 1-Bit Latch

§ When in latching mode, combinational propogation from D
to Q+ and Q–

§ Value latched depends on value of D as C falls

C

D

Q+
Time

Changing DLatching

1

d !d !d !d d

d d !d

Edge-Triggered Latch

§ Only in latching mode
for brief period
• Rising clock edge

§ Value latched depends
on data as clock rises

§ Output remains stable
at all other times

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

C

D

Q+

Time

T

Registers

§ Stores word of data
• Different from program registers seen in assembly code

§ Collection of edge-triggered latches
§ Loads input on rising edge of clock

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7
o6
o5
o4
o3
o2
o1
o0

Clock

Structure

Register Operation

§ Stores data bits
§ For most of time acts as barrier between input and output
§ As clock rises, loads input

State = x
Rising
clock_

Output = xInput = y
x _

State = y

Output = y
y

State Machine Example

§ Accumulator
circuit

§ Load or
accumulate on
each cycle

Comb. Logic

A
L
U

0

Out
MUX

0

1

Clock

In
Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

R
egister

Random-Access Memory

§ Stores multiple words of memory
• Address input specifies which word to read or write

§ Register file
• Holds values of program registers
• %rax, %rsp, etc.
• Register identifier serves as address

• ID 15 (0xF) implies no read or write performed
§ Multiple Ports

• Can read and/or write multiple words in one cycle
• Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

Register File Timing
§ Reading

§ Like combinational logic
§ Output data generated based on input

address
• After some delay

§ Writing
§ Like register
§ Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

W dstW

valW

Clock

x2
Rising
clock_ _ Register

file
W dstW

valW

Clock

y2

x2

x

2

Summary

§ Computation
§ Performed by combinational logic
§ Computes Boolean functions
§ Continuously reacts to input changes

§ Storage
§ Registers

• Hold single words
• Loaded as clock rises

§ Random-access memories
• Hold multiple words
• Possible multiple read or write ports
• Read word when address input changes
• Write word as clock rises

