
Processor Architecture IV:
Pipeline (1)

Kai Zhang
Fudan University

zhangk@fudan.edu.cn

from https://csapp.cs.cmu.edu/3e/home.html

mailto:zhangk@fudan.edu.cn

Overview
§ General Principles of Pipelining

§ Goal
§ Difficulties

§ Creating a Pipelined Y86-64 Processor
§ Rearranging SEQ
§ Inserting pipeline registers
§ Problems with data and control hazards

Real-World Pipelines: Car Washes

§ Idea
§ Divide process into independent

stages
§ Move objects through stages in

sequence
§ At any given times, multiple objects

being processed

Sequential Parallel

Pipelined

Computational Example

§ System
§ Computation requires total of 300 picoseconds (1ps =10^-3ns)
§ Additional 20 picoseconds to save result in register
§ Must have clock cycle of at least 320 ps
§ Throughput calculation P283

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

3-Way Pipelined Version

§ System
§ Divide combinational logic into 3 blocks of 100 ps each
§ Can begin new operation as soon as previous one passes

through stage A.
• Begin new operation every 120 ps

§ Overall latency increases
• 360 ps from start to finish

R
e
g

Clock

Comb.
logic
A

R
e
g

Comb.
logic
B

R
e
g

Comb.
logic
C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps
Throughput = 8.33 GIPS

Pipeline Diagrams
§ Unpipelined

§ Cannot start new operation until previous one completes

§ 3-Way Pipelined

§ Up to 3 operations in process simultaneously

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

Operating a Pipeline

Time

OP1
OP2
OP3

A B C
A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R
e
g

R
e
g

R
e
g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.
logic

A

Comb.
logic

B

Comb.
logic

C

Clock

300

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

Limitations: Nonuniform Delays

§ Throughput limited by slowest stage
§ Other stages sit idle for much of the time
§ Challenging to partition system into balanced stages

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps
Throughput = 5.88 GIPS

Comb.
logic
A

Time

OP1
OP2
OP3

A B C
A B C

A B C

How to deal with an imbalanced pipeline?

Limitations: Register Overhead

§ As try to deepen pipeline, overhead of loading registers
becomes more significant

§ Percentage of clock cycle spent loading register:
• 1-stage pipeline: 6.25%
• 3-stage pipeline: 16.67%
• 6-stage pipeline: 28.57%

§ High speeds of modern processor designs obtained through
very deep pipelining

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

R
e
g

Comb.
logic

50 ps 20 ps

Quiz Time!

Exercise 4.28

Data Dependencies

§ System
§ Each operation depends on result from preceding one

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3

Data Hazards

§ Result does not feed back around in time for next operation
§ Pipelining has changed behavior of system

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Data Dependencies in Processors

§ Result from one instruction used as operand for another
• Read-after-write (RAW) dependency

§ Very common in actual programs
§ Must make sure our pipeline handles these properly

• Get correct results
• Minimize performance impact

§ Solutions
• Adding more lines in the hardware to get the results in the middle,

e.g., the output of an ALU can be used directly for the next instruction
• Inserting more instructions between the instructions with data

dependencies

1 irmovq $50, %rax

2 addq %rax , %rbx

3 mrmovq 100(%rbx), %rdx

§ Start fetch of new instruction after current one has completed
fetch stage
• Not enough time to reliably determine next instruction

§ Predicting the PC: Guess which instruction will follow
• Recover if prediction was incorrect

Control Dependency

Pipeline Summary
§ Concept

§ Break instruction execution into 5 stages
§ Run instructions through in pipelined mode

§ Limitations
§ Can’t handle dependencies between instructions when

instructions follow too closely
§ Data dependencies

• One instruction writes register, later one reads it
§ Control dependency

• Instruction sets PC in way that pipeline did not predict correctly
• Mispredicted branch and return

§ Fixing the Pipeline
§ In the class of Computer Organization and Architecture

